1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
// Copyright 2015 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

//! Building blocks for parsing DER-encoded ASN.1 structures.
//!
//! This module contains the foundational parts of an ASN.1 DER parser.

use super::Positive;
use crate::error;

pub const CONSTRUCTED: u8 = 1 << 5;
pub const CONTEXT_SPECIFIC: u8 = 2 << 6;

#[derive(Clone, Copy, PartialEq)]
#[repr(u8)]
pub enum Tag {
    Boolean = 0x01,
    Integer = 0x02,
    BitString = 0x03,
    OctetString = 0x04,
    Null = 0x05,
    OID = 0x06,
    Sequence = CONSTRUCTED | 0x10, // 0x30
    UTCTime = 0x17,
    GeneralizedTime = 0x18,

    ContextSpecificConstructed0 = CONTEXT_SPECIFIC | CONSTRUCTED | 0,
    ContextSpecificConstructed1 = CONTEXT_SPECIFIC | CONSTRUCTED | 1,
    ContextSpecificConstructed3 = CONTEXT_SPECIFIC | CONSTRUCTED | 3,
}

impl From<Tag> for usize {
    fn from(tag: Tag) -> Self {
        tag as Self
    }
}

impl From<Tag> for u8 {
    fn from(tag: Tag) -> Self {
        tag as Self
    } // XXX: narrowing conversion.
}

pub fn expect_tag_and_get_value<'a>(
    input: &mut untrusted::Reader<'a>,
    tag: Tag,
) -> Result<untrusted::Input<'a>, error::Unspecified> {
    let (actual_tag, inner) = read_tag_and_get_value(input)?;
    if usize::from(tag) != usize::from(actual_tag) {
        return Err(error::Unspecified);
    }
    Ok(inner)
}

pub fn read_tag_and_get_value<'a>(
    input: &mut untrusted::Reader<'a>,
) -> Result<(u8, untrusted::Input<'a>), error::Unspecified> {
    let tag = input.read_byte()?;
    if (tag & 0x1F) == 0x1F {
        return Err(error::Unspecified); // High tag number form is not allowed.
    }

    // If the high order bit of the first byte is set to zero then the length
    // is encoded in the seven remaining bits of that byte. Otherwise, those
    // seven bits represent the number of bytes used to encode the length.
    let length = match input.read_byte()? {
        n if (n & 0x80) == 0 => usize::from(n),
        0x81 => {
            let second_byte = input.read_byte()?;
            if second_byte < 128 {
                return Err(error::Unspecified); // Not the canonical encoding.
            }
            usize::from(second_byte)
        }
        0x82 => {
            let second_byte = usize::from(input.read_byte()?);
            let third_byte = usize::from(input.read_byte()?);
            let combined = (second_byte << 8) | third_byte;
            if combined < 256 {
                return Err(error::Unspecified); // Not the canonical encoding.
            }
            combined
        }
        _ => {
            return Err(error::Unspecified); // We don't support longer lengths.
        }
    };

    let inner = input.read_bytes(length)?;
    Ok((tag, inner))
}

pub fn bit_string_with_no_unused_bits<'a>(
    input: &mut untrusted::Reader<'a>,
) -> Result<untrusted::Input<'a>, error::Unspecified> {
    nested(input, Tag::BitString, error::Unspecified, |value| {
        let unused_bits_at_end = value.read_byte().map_err(|_| error::Unspecified)?;
        if unused_bits_at_end != 0 {
            return Err(error::Unspecified);
        }
        Ok(value.read_bytes_to_end())
    })
}

// TODO: investigate taking decoder as a reference to reduce generated code
// size.
pub fn nested<'a, F, R, E: Copy>(
    input: &mut untrusted::Reader<'a>,
    tag: Tag,
    error: E,
    decoder: F,
) -> Result<R, E>
where
    F: FnOnce(&mut untrusted::Reader<'a>) -> Result<R, E>,
{
    let inner = expect_tag_and_get_value(input, tag).map_err(|_| error)?;
    inner.read_all(error, decoder)
}

fn nonnegative_integer<'a>(
    input: &mut untrusted::Reader<'a>,
    min_value: u8,
) -> Result<untrusted::Input<'a>, error::Unspecified> {
    // Verify that |input|, which has had any leading zero stripped off, is the
    // encoding of a value of at least |min_value|.
    fn check_minimum(input: untrusted::Input, min_value: u8) -> Result<(), error::Unspecified> {
        input.read_all(error::Unspecified, |input| {
            let first_byte = input.read_byte()?;
            if input.at_end() && first_byte < min_value {
                return Err(error::Unspecified);
            }
            let _ = input.read_bytes_to_end();
            Ok(())
        })
    }

    let value = expect_tag_and_get_value(input, Tag::Integer)?;

    value.read_all(error::Unspecified, |input| {
        // Empty encodings are not allowed.
        let first_byte = input.read_byte()?;

        if first_byte == 0 {
            if input.at_end() {
                // |value| is the legal encoding of zero.
                if min_value > 0 {
                    return Err(error::Unspecified);
                }
                return Ok(value);
            }

            let r = input.read_bytes_to_end();
            r.read_all(error::Unspecified, |input| {
                let second_byte = input.read_byte()?;
                if (second_byte & 0x80) == 0 {
                    // A leading zero is only allowed when the value's high bit
                    // is set.
                    return Err(error::Unspecified);
                }
                let _ = input.read_bytes_to_end();
                Ok(())
            })?;
            check_minimum(r, min_value)?;
            return Ok(r);
        }

        // Negative values are not allowed.
        if (first_byte & 0x80) != 0 {
            return Err(error::Unspecified);
        }

        let _ = input.read_bytes_to_end();
        check_minimum(value, min_value)?;
        Ok(value)
    })
}

/// Parse as integer with a value in the in the range [0, 255], returning its
/// numeric value. This is typically used for parsing version numbers.
#[inline]
pub fn small_nonnegative_integer(input: &mut untrusted::Reader) -> Result<u8, error::Unspecified> {
    let value = nonnegative_integer(input, 0)?;
    value.read_all(error::Unspecified, |input| {
        let r = input.read_byte()?;
        Ok(r)
    })
}

/// Parses a positive DER integer, returning the big-endian-encoded value,
/// sans any leading zero byte.
pub fn positive_integer<'a>(
    input: &mut untrusted::Reader<'a>,
) -> Result<Positive<'a>, error::Unspecified> {
    Ok(Positive::new_non_empty_without_leading_zeros(
        nonnegative_integer(input, 1)?,
    ))
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::error;

    fn with_good_i<F, R>(value: &[u8], f: F)
    where
        F: FnOnce(&mut untrusted::Reader) -> Result<R, error::Unspecified>,
    {
        let r = untrusted::Input::from(value).read_all(error::Unspecified, f);
        assert!(r.is_ok());
    }

    fn with_bad_i<F, R>(value: &[u8], f: F)
    where
        F: FnOnce(&mut untrusted::Reader) -> Result<R, error::Unspecified>,
    {
        let r = untrusted::Input::from(value).read_all(error::Unspecified, f);
        assert!(r.is_err());
    }

    static ZERO_INTEGER: &[u8] = &[0x02, 0x01, 0x00];

    static GOOD_POSITIVE_INTEGERS: &[(&[u8], u8)] = &[
        (&[0x02, 0x01, 0x01], 0x01),
        (&[0x02, 0x01, 0x02], 0x02),
        (&[0x02, 0x01, 0x7e], 0x7e),
        (&[0x02, 0x01, 0x7f], 0x7f),
        // Values that need to have an 0x00 prefix to disambiguate them from
        // them from negative values.
        (&[0x02, 0x02, 0x00, 0x80], 0x80),
        (&[0x02, 0x02, 0x00, 0x81], 0x81),
        (&[0x02, 0x02, 0x00, 0xfe], 0xfe),
        (&[0x02, 0x02, 0x00, 0xff], 0xff),
    ];

    static BAD_NONNEGATIVE_INTEGERS: &[&[u8]] = &[
        &[],           // At end of input
        &[0x02],       // Tag only
        &[0x02, 0x00], // Empty value
        // Length mismatch
        &[0x02, 0x00, 0x01],
        &[0x02, 0x01],
        &[0x02, 0x01, 0x00, 0x01],
        &[0x02, 0x01, 0x01, 0x00], // Would be valid if last byte is ignored.
        &[0x02, 0x02, 0x01],
        // Negative values
        &[0x02, 0x01, 0x80],
        &[0x02, 0x01, 0xfe],
        &[0x02, 0x01, 0xff],
        // Values that have an unnecessary leading 0x00
        &[0x02, 0x02, 0x00, 0x00],
        &[0x02, 0x02, 0x00, 0x01],
        &[0x02, 0x02, 0x00, 0x02],
        &[0x02, 0x02, 0x00, 0x7e],
        &[0x02, 0x02, 0x00, 0x7f],
    ];

    #[test]
    fn test_small_nonnegative_integer() {
        with_good_i(ZERO_INTEGER, |input| {
            assert_eq!(small_nonnegative_integer(input)?, 0x00);
            Ok(())
        });
        for &(test_in, test_out) in GOOD_POSITIVE_INTEGERS.iter() {
            with_good_i(test_in, |input| {
                assert_eq!(small_nonnegative_integer(input)?, test_out);
                Ok(())
            });
        }
        for &test_in in BAD_NONNEGATIVE_INTEGERS.iter() {
            with_bad_i(test_in, |input| {
                let _ = small_nonnegative_integer(input)?;
                Ok(())
            });
        }
    }

    #[test]
    fn test_positive_integer() {
        with_bad_i(ZERO_INTEGER, |input| {
            let _ = positive_integer(input)?;
            Ok(())
        });
        for &(test_in, test_out) in GOOD_POSITIVE_INTEGERS.iter() {
            with_good_i(test_in, |input| {
                let test_out = [test_out];
                assert_eq!(
                    positive_integer(input)?.big_endian_without_leading_zero_as_input(),
                    untrusted::Input::from(&test_out[..])
                );
                Ok(())
            });
        }
        for &test_in in BAD_NONNEGATIVE_INTEGERS.iter() {
            with_bad_i(test_in, |input| {
                let _ = positive_integer(input)?;
                Ok(())
            });
        }
    }
}