1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
//! Elliptic Curve
//!
//! Cryptography relies on the difficulty of solving mathematical problems, such as the factor
//! of large integers composed of two large prime numbers and the discrete logarithm of a
//! random elliptic curve.  This module provides low-level features of the latter.
//! Elliptic Curve protocols can provide the same security with smaller keys.
//!
//! There are 2 forms of elliptic curves, `Fp` and `F2^m`.  These curves use irreducible
//! trinomial or pentanomial.  Being a generic interface to a wide range of algorithms,
//! the curves are generally referenced by [`EcGroup`].  There are many built-in groups
//! found in [`Nid`].
//!
//! OpenSSL Wiki explains the fields and curves in detail at [Elliptic Curve Cryptography].
//!
//! [`EcGroup`]: struct.EcGroup.html
//! [`Nid`]: ../nid/struct.Nid.html
//! [Elliptic Curve Cryptography]: https://wiki.openssl.org/index.php/Elliptic_Curve_Cryptography
use cfg_if::cfg_if;
use foreign_types::{ForeignType, ForeignTypeRef};
use libc::c_int;
use std::fmt;
use std::ptr;

use crate::bn::{BigNum, BigNumContextRef, BigNumRef};
use crate::error::ErrorStack;
use crate::nid::Nid;
use crate::pkey::{HasParams, HasPrivate, HasPublic, Params, Private, Public};
use crate::util::ForeignTypeRefExt;
use crate::{cvt, cvt_n, cvt_p, init};
use openssl_macros::corresponds;

cfg_if! {
    if #[cfg(not(boringssl))] {
        use std::ffi::CString;
        use crate::string::OpensslString;
    }
}

/// Compressed or Uncompressed conversion
///
/// Conversion from the binary value of the point on the curve is performed in one of
/// compressed, uncompressed, or hybrid conversions.  The default is compressed, except
/// for binary curves.
///
/// Further documentation is available in the [X9.62] standard.
///
/// [X9.62]: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.202.2977&rep=rep1&type=pdf
#[derive(Copy, Clone)]
pub struct PointConversionForm(ffi::point_conversion_form_t);

impl PointConversionForm {
    /// Compressed conversion from point value.
    pub const COMPRESSED: PointConversionForm =
        PointConversionForm(ffi::point_conversion_form_t::POINT_CONVERSION_COMPRESSED);

    /// Uncompressed conversion from point value.
    pub const UNCOMPRESSED: PointConversionForm =
        PointConversionForm(ffi::point_conversion_form_t::POINT_CONVERSION_UNCOMPRESSED);

    /// Performs both compressed and uncompressed conversions.
    pub const HYBRID: PointConversionForm =
        PointConversionForm(ffi::point_conversion_form_t::POINT_CONVERSION_HYBRID);
}

/// Named Curve or Explicit
///
/// This type acts as a boolean as to whether the `EcGroup` is named or explicit.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct Asn1Flag(c_int);

impl Asn1Flag {
    /// Curve defined using polynomial parameters
    ///
    /// Most applications use a named EC_GROUP curve, however, support
    /// is included to explicitly define the curve used to calculate keys
    /// This information would need to be known by both endpoint to make communication
    /// effective.
    ///
    /// OPENSSL_EC_EXPLICIT_CURVE, but that was only added in 1.1.
    /// Man page documents that 0 can be used in older versions.
    ///
    /// OpenSSL documentation at [`EC_GROUP`]
    ///
    /// [`EC_GROUP`]: https://www.openssl.org/docs/manmaster/crypto/EC_GROUP_get_seed_len.html
    pub const EXPLICIT_CURVE: Asn1Flag = Asn1Flag(0);

    /// Standard Curves
    ///
    /// Curves that make up the typical encryption use cases.  The collection of curves
    /// are well known but extensible.
    ///
    /// OpenSSL documentation at [`EC_GROUP`]
    ///
    /// [`EC_GROUP`]: https://www.openssl.org/docs/manmaster/man3/EC_GROUP_order_bits.html
    pub const NAMED_CURVE: Asn1Flag = Asn1Flag(ffi::OPENSSL_EC_NAMED_CURVE);
}

foreign_type_and_impl_send_sync! {
    type CType = ffi::EC_GROUP;
    fn drop = ffi::EC_GROUP_free;

    /// Describes the curve
    ///
    /// A curve can be of the named curve type.  These curves can be discovered
    /// using openssl binary `openssl ecparam -list_curves`.  Other operations
    /// are available in the [wiki].  These named curves are available in the
    /// [`Nid`] module.
    ///
    /// Curves can also be generated using prime field parameters or a binary field.
    ///
    /// Prime fields use the formula `y^2 mod p = x^3 + ax + b mod p`.  Binary
    /// fields use the formula `y^2 + xy = x^3 + ax^2 + b`.  Named curves have
    /// assured security.  To prevent accidental vulnerabilities, they should
    /// be preferred.
    ///
    /// [wiki]: https://wiki.openssl.org/index.php/Command_Line_Elliptic_Curve_Operations
    /// [`Nid`]: ../nid/index.html
    pub struct EcGroup;
    /// Reference to [`EcGroup`]
    ///
    /// [`EcGroup`]: struct.EcGroup.html
    pub struct EcGroupRef;
}

impl EcGroup {
    /// Returns the group of a standard named curve.
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// use openssl::nid::Nid;
    /// use openssl::ec::{EcGroup, EcKey};
    ///
    /// let nid = Nid::X9_62_PRIME256V1; // NIST P-256 curve
    /// let group = EcGroup::from_curve_name(nid)?;
    /// let key = EcKey::generate(&group)?;
    /// # Ok(()) }
    /// ```
    #[corresponds(EC_GROUP_new_by_curve_name)]
    pub fn from_curve_name(nid: Nid) -> Result<EcGroup, ErrorStack> {
        unsafe {
            init();
            cvt_p(ffi::EC_GROUP_new_by_curve_name(nid.as_raw())).map(EcGroup)
        }
    }

    /// Returns the group for given parameters
    #[corresponds(EC_GROUP_new_curve_GFp)]
    pub fn from_components(
        p: BigNum,
        a: BigNum,
        b: BigNum,
        ctx: &mut BigNumContextRef,
    ) -> Result<EcGroup, ErrorStack> {
        unsafe {
            cvt_p(ffi::EC_GROUP_new_curve_GFp(
                p.as_ptr(),
                a.as_ptr(),
                b.as_ptr(),
                ctx.as_ptr(),
            ))
            .map(EcGroup)
        }
    }
}

impl EcGroupRef {
    /// Places the components of a curve over a prime field in the provided `BigNum`s.
    /// The components make up the formula `y^2 mod p = x^3 + ax + b mod p`.
    #[corresponds(EC_GROUP_get_curve_GFp)]
    pub fn components_gfp(
        &self,
        p: &mut BigNumRef,
        a: &mut BigNumRef,
        b: &mut BigNumRef,
        ctx: &mut BigNumContextRef,
    ) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EC_GROUP_get_curve_GFp(
                self.as_ptr(),
                p.as_ptr(),
                a.as_ptr(),
                b.as_ptr(),
                ctx.as_ptr(),
            ))
            .map(|_| ())
        }
    }

    /// Places the components of a curve over a binary field in the provided `BigNum`s.
    /// The components make up the formula `y^2 + xy = x^3 + ax^2 + b`.
    ///
    /// In this form `p` relates to the irreducible polynomial.  Each bit represents
    /// a term in the polynomial.  It will be set to 3 `1`s or 5 `1`s depending on
    /// using a trinomial or pentanomial.
    #[corresponds(EC_GROUP_get_curve_GF2m)]
    #[cfg(not(osslconf = "OPENSSL_NO_EC2M"))]
    pub fn components_gf2m(
        &self,
        p: &mut BigNumRef,
        a: &mut BigNumRef,
        b: &mut BigNumRef,
        ctx: &mut BigNumContextRef,
    ) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EC_GROUP_get_curve_GF2m(
                self.as_ptr(),
                p.as_ptr(),
                a.as_ptr(),
                b.as_ptr(),
                ctx.as_ptr(),
            ))
            .map(|_| ())
        }
    }

    /// Places the cofactor of the group in the provided `BigNum`.
    #[corresponds(EC_GROUP_get_cofactor)]
    pub fn cofactor(
        &self,
        cofactor: &mut BigNumRef,
        ctx: &mut BigNumContextRef,
    ) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EC_GROUP_get_cofactor(
                self.as_ptr(),
                cofactor.as_ptr(),
                ctx.as_ptr(),
            ))
            .map(|_| ())
        }
    }

    /// Returns the degree of the curve.
    #[corresponds(EC_GROUP_get_degree)]
    pub fn degree(&self) -> u32 {
        unsafe { ffi::EC_GROUP_get_degree(self.as_ptr()) as u32 }
    }

    /// Returns the number of bits in the group order.
    #[corresponds(EC_GROUP_order_bits)]
    #[cfg(ossl110)]
    pub fn order_bits(&self) -> u32 {
        unsafe { ffi::EC_GROUP_order_bits(self.as_ptr()) as u32 }
    }

    /// Returns the generator for the given curve as an [`EcPoint`].
    #[corresponds(EC_GROUP_get0_generator)]
    pub fn generator(&self) -> &EcPointRef {
        unsafe {
            let ptr = ffi::EC_GROUP_get0_generator(self.as_ptr());
            EcPointRef::from_const_ptr(ptr)
        }
    }

    /// Sets the generator point for the given curve
    #[corresponds(EC_GROUP_set_generator)]
    pub fn set_generator(
        &mut self,
        generator: EcPoint,
        order: BigNum,
        cofactor: BigNum,
    ) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EC_GROUP_set_generator(
                self.as_ptr(),
                generator.as_ptr(),
                order.as_ptr(),
                cofactor.as_ptr(),
            ))
            .map(|_| ())
        }
    }

    /// Places the order of the curve in the provided `BigNum`.
    #[corresponds(EC_GROUP_get_order)]
    pub fn order(
        &self,
        order: &mut BigNumRef,
        ctx: &mut BigNumContextRef,
    ) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EC_GROUP_get_order(
                self.as_ptr(),
                order.as_ptr(),
                ctx.as_ptr(),
            ))
            .map(|_| ())
        }
    }

    /// Sets the flag determining if the group corresponds to a named curve or must be explicitly
    /// parameterized.
    ///
    /// This defaults to `EXPLICIT_CURVE` in OpenSSL 1.0.1 and 1.0.2, but `NAMED_CURVE` in OpenSSL
    /// 1.1.0.
    #[corresponds(EC_GROUP_set_asn1_flag)]
    pub fn set_asn1_flag(&mut self, flag: Asn1Flag) {
        unsafe {
            ffi::EC_GROUP_set_asn1_flag(self.as_ptr(), flag.0);
        }
    }

    /// Gets the flag determining if the group corresponds to a named curve.
    #[corresponds(EC_GROUP_get_asn1_flag)]
    pub fn asn1_flag(&self) -> Asn1Flag {
        unsafe { Asn1Flag(ffi::EC_GROUP_get_asn1_flag(self.as_ptr())) }
    }

    /// Returns the name of the curve, if a name is associated.
    #[corresponds(EC_GROUP_get_curve_name)]
    pub fn curve_name(&self) -> Option<Nid> {
        let nid = unsafe { ffi::EC_GROUP_get_curve_name(self.as_ptr()) };
        if nid > 0 {
            Some(Nid::from_raw(nid))
        } else {
            None
        }
    }
}

foreign_type_and_impl_send_sync! {
    type CType = ffi::EC_POINT;
    fn drop = ffi::EC_POINT_free;

    /// Represents a point on the curve
    pub struct EcPoint;
    /// A reference a borrowed [`EcPoint`].
    pub struct EcPointRef;
}

impl EcPointRef {
    /// Computes `a + b`, storing the result in `self`.
    #[corresponds(EC_POINT_add)]
    pub fn add(
        &mut self,
        group: &EcGroupRef,
        a: &EcPointRef,
        b: &EcPointRef,
        ctx: &mut BigNumContextRef,
    ) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EC_POINT_add(
                group.as_ptr(),
                self.as_ptr(),
                a.as_ptr(),
                b.as_ptr(),
                ctx.as_ptr(),
            ))
            .map(|_| ())
        }
    }

    /// Computes `q * m`, storing the result in `self`.
    #[corresponds(EC_POINT_mul)]
    pub fn mul(
        &mut self,
        group: &EcGroupRef,
        q: &EcPointRef,
        m: &BigNumRef,
        // FIXME should be &mut
        ctx: &BigNumContextRef,
    ) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EC_POINT_mul(
                group.as_ptr(),
                self.as_ptr(),
                ptr::null(),
                q.as_ptr(),
                m.as_ptr(),
                ctx.as_ptr(),
            ))
            .map(|_| ())
        }
    }

    /// Computes `generator * n`, storing the result in `self`.
    #[corresponds(EC_POINT_mul)]
    pub fn mul_generator(
        &mut self,
        group: &EcGroupRef,
        n: &BigNumRef,
        // FIXME should be &mut
        ctx: &BigNumContextRef,
    ) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EC_POINT_mul(
                group.as_ptr(),
                self.as_ptr(),
                n.as_ptr(),
                ptr::null(),
                ptr::null(),
                ctx.as_ptr(),
            ))
            .map(|_| ())
        }
    }

    /// Computes `generator * n + q * m`, storing the result in `self`.
    #[corresponds(EC_POINT_mul)]
    pub fn mul_full(
        &mut self,
        group: &EcGroupRef,
        n: &BigNumRef,
        q: &EcPointRef,
        m: &BigNumRef,
        ctx: &mut BigNumContextRef,
    ) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EC_POINT_mul(
                group.as_ptr(),
                self.as_ptr(),
                n.as_ptr(),
                q.as_ptr(),
                m.as_ptr(),
                ctx.as_ptr(),
            ))
            .map(|_| ())
        }
    }

    /// Inverts `self`.
    #[corresponds(EC_POINT_invert)]
    // FIXME should be mutable
    pub fn invert(&mut self, group: &EcGroupRef, ctx: &BigNumContextRef) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EC_POINT_invert(
                group.as_ptr(),
                self.as_ptr(),
                ctx.as_ptr(),
            ))
            .map(|_| ())
        }
    }

    /// Serializes the point to a binary representation.
    #[corresponds(EC_POINT_point2oct)]
    pub fn to_bytes(
        &self,
        group: &EcGroupRef,
        form: PointConversionForm,
        ctx: &mut BigNumContextRef,
    ) -> Result<Vec<u8>, ErrorStack> {
        unsafe {
            let len = ffi::EC_POINT_point2oct(
                group.as_ptr(),
                self.as_ptr(),
                form.0,
                ptr::null_mut(),
                0,
                ctx.as_ptr(),
            );
            if len == 0 {
                return Err(ErrorStack::get());
            }
            let mut buf = vec![0; len];
            let len = ffi::EC_POINT_point2oct(
                group.as_ptr(),
                self.as_ptr(),
                form.0,
                buf.as_mut_ptr(),
                len,
                ctx.as_ptr(),
            );
            if len == 0 {
                Err(ErrorStack::get())
            } else {
                Ok(buf)
            }
        }
    }

    /// Serializes the point to a hexadecimal string representation.
    #[corresponds(EC_POINT_point2hex)]
    #[cfg(not(boringssl))]
    pub fn to_hex_str(
        &self,
        group: &EcGroupRef,
        form: PointConversionForm,
        ctx: &mut BigNumContextRef,
    ) -> Result<OpensslString, ErrorStack> {
        unsafe {
            let buf = cvt_p(ffi::EC_POINT_point2hex(
                group.as_ptr(),
                self.as_ptr(),
                form.0,
                ctx.as_ptr(),
            ))?;
            Ok(OpensslString::from_ptr(buf))
        }
    }

    /// Creates a new point on the specified curve with the same value.
    #[corresponds(EC_POINT_dup)]
    pub fn to_owned(&self, group: &EcGroupRef) -> Result<EcPoint, ErrorStack> {
        unsafe { cvt_p(ffi::EC_POINT_dup(self.as_ptr(), group.as_ptr())).map(EcPoint) }
    }

    /// Determines if this point is equal to another.
    #[corresponds(EC_POINT_cmp)]
    pub fn eq(
        &self,
        group: &EcGroupRef,
        other: &EcPointRef,
        ctx: &mut BigNumContextRef,
    ) -> Result<bool, ErrorStack> {
        unsafe {
            let res = cvt_n(ffi::EC_POINT_cmp(
                group.as_ptr(),
                self.as_ptr(),
                other.as_ptr(),
                ctx.as_ptr(),
            ))?;
            Ok(res == 0)
        }
    }

    /// Places affine coordinates of a curve over a prime field in the provided
    /// `x` and `y` `BigNum`s.
    #[corresponds(EC_POINT_get_affine_coordinates)]
    #[cfg(any(ossl111, boringssl, libressl350))]
    pub fn affine_coordinates(
        &self,
        group: &EcGroupRef,
        x: &mut BigNumRef,
        y: &mut BigNumRef,
        ctx: &mut BigNumContextRef,
    ) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EC_POINT_get_affine_coordinates(
                group.as_ptr(),
                self.as_ptr(),
                x.as_ptr(),
                y.as_ptr(),
                ctx.as_ptr(),
            ))
            .map(|_| ())
        }
    }

    /// Places affine coordinates of a curve over a prime field in the provided
    /// `x` and `y` `BigNum`s
    #[corresponds(EC_POINT_get_affine_coordinates_GFp)]
    pub fn affine_coordinates_gfp(
        &self,
        group: &EcGroupRef,
        x: &mut BigNumRef,
        y: &mut BigNumRef,
        ctx: &mut BigNumContextRef,
    ) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EC_POINT_get_affine_coordinates_GFp(
                group.as_ptr(),
                self.as_ptr(),
                x.as_ptr(),
                y.as_ptr(),
                ctx.as_ptr(),
            ))
            .map(|_| ())
        }
    }

    /// Sets affine coordinates of a curve over a prime field using the provided
    /// `x` and `y` `BigNum`s
    #[corresponds(EC_POINT_set_affine_coordinates_GFp)]
    pub fn set_affine_coordinates_gfp(
        &mut self,
        group: &EcGroupRef,
        x: &BigNumRef,
        y: &BigNumRef,
        ctx: &mut BigNumContextRef,
    ) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EC_POINT_set_affine_coordinates_GFp(
                group.as_ptr(),
                self.as_ptr(),
                x.as_ptr(),
                y.as_ptr(),
                ctx.as_ptr(),
            ))
            .map(|_| ())
        }
    }

    /// Places affine coordinates of a curve over a binary field in the provided
    /// `x` and `y` `BigNum`s
    #[corresponds(EC_POINT_get_affine_coordinates_GF2m)]
    #[cfg(not(osslconf = "OPENSSL_NO_EC2M"))]
    pub fn affine_coordinates_gf2m(
        &self,
        group: &EcGroupRef,
        x: &mut BigNumRef,
        y: &mut BigNumRef,
        ctx: &mut BigNumContextRef,
    ) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EC_POINT_get_affine_coordinates_GF2m(
                group.as_ptr(),
                self.as_ptr(),
                x.as_ptr(),
                y.as_ptr(),
                ctx.as_ptr(),
            ))
            .map(|_| ())
        }
    }

    /// Checks if point is infinity
    #[corresponds(EC_POINT_is_at_infinity)]
    pub fn is_infinity(&self, group: &EcGroupRef) -> bool {
        unsafe {
            let res = ffi::EC_POINT_is_at_infinity(group.as_ptr(), self.as_ptr());
            res == 1
        }
    }

    /// Checks if point is on a given curve
    #[corresponds(EC_POINT_is_on_curve)]
    pub fn is_on_curve(
        &self,
        group: &EcGroupRef,
        ctx: &mut BigNumContextRef,
    ) -> Result<bool, ErrorStack> {
        unsafe {
            let res = cvt_n(ffi::EC_POINT_is_on_curve(
                group.as_ptr(),
                self.as_ptr(),
                ctx.as_ptr(),
            ))?;
            Ok(res == 1)
        }
    }
}

impl EcPoint {
    /// Creates a new point on the specified curve.
    #[corresponds(EC_POINT_new)]
    pub fn new(group: &EcGroupRef) -> Result<EcPoint, ErrorStack> {
        unsafe { cvt_p(ffi::EC_POINT_new(group.as_ptr())).map(EcPoint) }
    }

    /// Creates point from a binary representation
    #[corresponds(EC_POINT_oct2point)]
    pub fn from_bytes(
        group: &EcGroupRef,
        buf: &[u8],
        ctx: &mut BigNumContextRef,
    ) -> Result<EcPoint, ErrorStack> {
        let point = EcPoint::new(group)?;
        unsafe {
            cvt(ffi::EC_POINT_oct2point(
                group.as_ptr(),
                point.as_ptr(),
                buf.as_ptr(),
                buf.len(),
                ctx.as_ptr(),
            ))?;
        }
        Ok(point)
    }

    /// Creates point from a hexadecimal string representation
    #[corresponds(EC_POINT_hex2point)]
    #[cfg(not(boringssl))]
    pub fn from_hex_str(
        group: &EcGroupRef,
        s: &str,
        ctx: &mut BigNumContextRef,
    ) -> Result<EcPoint, ErrorStack> {
        let point = EcPoint::new(group)?;
        unsafe {
            let c_str = CString::new(s.as_bytes()).unwrap();
            cvt_p(ffi::EC_POINT_hex2point(
                group.as_ptr(),
                c_str.as_ptr() as *const _,
                point.as_ptr(),
                ctx.as_ptr(),
            ))?;
        }
        Ok(point)
    }
}

generic_foreign_type_and_impl_send_sync! {
    type CType = ffi::EC_KEY;
    fn drop = ffi::EC_KEY_free;

    /// Public and optional private key on the given curve.
    pub struct EcKey<T>;
    /// A reference to an [`EcKey`].
    pub struct EcKeyRef<T>;
}

impl<T> EcKeyRef<T>
where
    T: HasPrivate,
{
    private_key_to_pem! {
        /// Serializes the private key to a PEM-encoded ECPrivateKey structure.
        ///
        /// The output will have a header of `-----BEGIN EC PRIVATE KEY-----`.
        #[corresponds(PEM_write_bio_ECPrivateKey)]
        private_key_to_pem,
        /// Serializes the private key to a PEM-encoded encrypted ECPrivateKey structure.
        ///
        /// The output will have a header of `-----BEGIN EC PRIVATE KEY-----`.
        #[corresponds(PEM_write_bio_ECPrivateKey)]
        private_key_to_pem_passphrase,
        ffi::PEM_write_bio_ECPrivateKey
    }

    to_der! {
        /// Serializes the private key into a DER-encoded ECPrivateKey structure.
        #[corresponds(i2d_ECPrivateKey)]
        private_key_to_der,
        ffi::i2d_ECPrivateKey
    }

    /// Returns the private key value.
    #[corresponds(EC_KEY_get0_private_key)]
    pub fn private_key(&self) -> &BigNumRef {
        unsafe {
            let ptr = ffi::EC_KEY_get0_private_key(self.as_ptr());
            BigNumRef::from_const_ptr(ptr)
        }
    }
}

impl<T> EcKeyRef<T>
where
    T: HasPublic,
{
    /// Returns the public key.
    #[corresponds(EC_KEY_get0_public_key)]
    pub fn public_key(&self) -> &EcPointRef {
        unsafe {
            let ptr = ffi::EC_KEY_get0_public_key(self.as_ptr());
            EcPointRef::from_const_ptr(ptr)
        }
    }

    to_pem! {
        /// Serializes the public key into a PEM-encoded SubjectPublicKeyInfo structure.
        ///
        /// The output will have a header of `-----BEGIN PUBLIC KEY-----`.
        #[corresponds(PEM_write_bio_EC_PUBKEY)]
        public_key_to_pem,
        ffi::PEM_write_bio_EC_PUBKEY
    }

    to_der! {
        /// Serializes the public key into a DER-encoded SubjectPublicKeyInfo structure.
        #[corresponds(i2d_EC_PUBKEY)]
        public_key_to_der,
        ffi::i2d_EC_PUBKEY
    }
}

impl<T> EcKeyRef<T>
where
    T: HasParams,
{
    /// Returns the key's group.
    #[corresponds(EC_KEY_get0_group)]
    pub fn group(&self) -> &EcGroupRef {
        unsafe {
            let ptr = ffi::EC_KEY_get0_group(self.as_ptr());
            EcGroupRef::from_const_ptr(ptr)
        }
    }

    /// Checks the key for validity.
    #[corresponds(EC_KEY_check_key)]
    pub fn check_key(&self) -> Result<(), ErrorStack> {
        unsafe { cvt(ffi::EC_KEY_check_key(self.as_ptr())).map(|_| ()) }
    }
}

impl<T> ToOwned for EcKeyRef<T> {
    type Owned = EcKey<T>;

    fn to_owned(&self) -> EcKey<T> {
        unsafe {
            let r = ffi::EC_KEY_up_ref(self.as_ptr());
            assert!(r == 1);
            EcKey::from_ptr(self.as_ptr())
        }
    }
}

impl EcKey<Params> {
    /// Constructs an `EcKey` corresponding to a known curve.
    ///
    /// It will not have an associated public or private key. This kind of key is primarily useful
    /// to be provided to the `set_tmp_ecdh` methods on `Ssl` and `SslContextBuilder`.
    #[corresponds(EC_KEY_new_by_curve_name)]
    pub fn from_curve_name(nid: Nid) -> Result<EcKey<Params>, ErrorStack> {
        unsafe {
            init();
            cvt_p(ffi::EC_KEY_new_by_curve_name(nid.as_raw())).map(|p| EcKey::from_ptr(p))
        }
    }

    /// Constructs an `EcKey` corresponding to a curve.
    #[corresponds(EC_KEY_set_group)]
    pub fn from_group(group: &EcGroupRef) -> Result<EcKey<Params>, ErrorStack> {
        unsafe {
            cvt_p(ffi::EC_KEY_new())
                .map(|p| EcKey::from_ptr(p))
                .and_then(|key| {
                    cvt(ffi::EC_KEY_set_group(key.as_ptr(), group.as_ptr())).map(|_| key)
                })
        }
    }
}

impl EcKey<Public> {
    /// Constructs an `EcKey` from the specified group with the associated [`EcPoint`]: `public_key`.
    ///
    /// This will only have the associated `public_key`.
    ///
    /// # Example
    ///
    /// ```
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// use openssl::bn::BigNumContext;
    /// use openssl::ec::*;
    /// use openssl::nid::Nid;
    /// use openssl::pkey::PKey;
    ///
    /// let group = EcGroup::from_curve_name(Nid::SECP384R1)?;
    /// let mut ctx = BigNumContext::new()?;
    ///
    /// // get bytes from somewhere
    /// let public_key = // ...
    /// # EcKey::generate(&group)?.public_key().to_bytes(&group,
    /// # PointConversionForm::COMPRESSED, &mut ctx)?;
    ///
    /// // create an EcKey from the binary form of a EcPoint
    /// let point = EcPoint::from_bytes(&group, &public_key, &mut ctx)?;
    /// let key = EcKey::from_public_key(&group, &point)?;
    /// key.check_key()?;
    /// # Ok(()) }
    /// ```
    #[corresponds(EC_KEY_set_public_key)]
    pub fn from_public_key(
        group: &EcGroupRef,
        public_key: &EcPointRef,
    ) -> Result<EcKey<Public>, ErrorStack> {
        unsafe {
            cvt_p(ffi::EC_KEY_new())
                .map(|p| EcKey::from_ptr(p))
                .and_then(|key| {
                    cvt(ffi::EC_KEY_set_group(key.as_ptr(), group.as_ptr())).map(|_| key)
                })
                .and_then(|key| {
                    cvt(ffi::EC_KEY_set_public_key(
                        key.as_ptr(),
                        public_key.as_ptr(),
                    ))
                    .map(|_| key)
                })
        }
    }

    /// Constructs a public key from its affine coordinates.
    #[corresponds(EC_KEY_set_public_key_affine_coordinates)]
    pub fn from_public_key_affine_coordinates(
        group: &EcGroupRef,
        x: &BigNumRef,
        y: &BigNumRef,
    ) -> Result<EcKey<Public>, ErrorStack> {
        unsafe {
            cvt_p(ffi::EC_KEY_new())
                .map(|p| EcKey::from_ptr(p))
                .and_then(|key| {
                    cvt(ffi::EC_KEY_set_group(key.as_ptr(), group.as_ptr())).map(|_| key)
                })
                .and_then(|key| {
                    cvt(ffi::EC_KEY_set_public_key_affine_coordinates(
                        key.as_ptr(),
                        x.as_ptr(),
                        y.as_ptr(),
                    ))
                    .map(|_| key)
                })
        }
    }

    from_pem! {
        /// Decodes a PEM-encoded SubjectPublicKeyInfo structure containing a EC key.
        ///
        /// The input should have a header of `-----BEGIN PUBLIC KEY-----`.
        #[corresponds(PEM_read_bio_EC_PUBKEY)]
        public_key_from_pem,
        EcKey<Public>,
        ffi::PEM_read_bio_EC_PUBKEY
    }

    from_der! {
        /// Decodes a DER-encoded SubjectPublicKeyInfo structure containing a EC key.
        #[corresponds(d2i_EC_PUBKEY)]
        public_key_from_der,
        EcKey<Public>,
        ffi::d2i_EC_PUBKEY
    }
}

impl EcKey<Private> {
    /// Generates a new public/private key pair on the specified curve.
    ///
    /// # Examples
    ///
    /// ```
    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
    /// use openssl::bn::BigNumContext;
    /// use openssl::nid::Nid;
    /// use openssl::ec::{EcGroup, EcKey, PointConversionForm};
    ///
    /// let nid = Nid::X9_62_PRIME256V1; // NIST P-256 curve
    /// let group = EcGroup::from_curve_name(nid)?;
    /// let key = EcKey::generate(&group)?;
    ///
    /// let mut ctx = BigNumContext::new()?;
    ///
    /// let public_key = &key.public_key().to_bytes(
    ///     &group,
    ///     PointConversionForm::COMPRESSED,
    ///     &mut ctx,
    /// )?;
    /// assert_eq!(public_key.len(), 33);
    /// assert_ne!(public_key[0], 0x04);
    ///
    /// let private_key = key.private_key().to_vec();
    /// assert!(private_key.len() >= 31);
    /// # Ok(()) }
    /// ```
    #[corresponds(EC_KEY_generate_key)]
    pub fn generate(group: &EcGroupRef) -> Result<EcKey<Private>, ErrorStack> {
        unsafe {
            cvt_p(ffi::EC_KEY_new())
                .map(|p| EcKey::from_ptr(p))
                .and_then(|key| {
                    cvt(ffi::EC_KEY_set_group(key.as_ptr(), group.as_ptr())).map(|_| key)
                })
                .and_then(|key| cvt(ffi::EC_KEY_generate_key(key.as_ptr())).map(|_| key))
        }
    }

    /// Constructs an public/private key pair given a curve, a private key and a public key point.
    #[corresponds(EC_KEY_set_private_key)]
    pub fn from_private_components(
        group: &EcGroupRef,
        private_number: &BigNumRef,
        public_key: &EcPointRef,
    ) -> Result<EcKey<Private>, ErrorStack> {
        unsafe {
            cvt_p(ffi::EC_KEY_new())
                .map(|p| EcKey::from_ptr(p))
                .and_then(|key| {
                    cvt(ffi::EC_KEY_set_group(key.as_ptr(), group.as_ptr())).map(|_| key)
                })
                .and_then(|key| {
                    cvt(ffi::EC_KEY_set_private_key(
                        key.as_ptr(),
                        private_number.as_ptr(),
                    ))
                    .map(|_| key)
                })
                .and_then(|key| {
                    cvt(ffi::EC_KEY_set_public_key(
                        key.as_ptr(),
                        public_key.as_ptr(),
                    ))
                    .map(|_| key)
                })
        }
    }

    private_key_from_pem! {
        /// Deserializes a private key from a PEM-encoded ECPrivateKey structure.
        ///
        /// The input should have a header of `-----BEGIN EC PRIVATE KEY-----`.
        #[corresponds(PEM_read_bio_ECPrivateKey)]
        private_key_from_pem,

        /// Deserializes a private key from a PEM-encoded encrypted ECPrivateKey structure.
        ///
        /// The input should have a header of `-----BEGIN EC PRIVATE KEY-----`.
        #[corresponds(PEM_read_bio_ECPrivateKey)]
        private_key_from_pem_passphrase,

        /// Deserializes a private key from a PEM-encoded encrypted ECPrivateKey structure.
        ///
        /// The callback should fill the password into the provided buffer and return its length.
        ///
        /// The input should have a header of `-----BEGIN EC PRIVATE KEY-----`.
        #[corresponds(PEM_read_bio_ECPrivateKey)]
        private_key_from_pem_callback,
        EcKey<Private>,
        ffi::PEM_read_bio_ECPrivateKey
    }

    from_der! {
        /// Decodes a DER-encoded elliptic curve private key structure.
        #[corresponds(d2i_ECPrivateKey)]
        private_key_from_der,
        EcKey<Private>,
        ffi::d2i_ECPrivateKey
    }
}

impl<T> Clone for EcKey<T> {
    fn clone(&self) -> EcKey<T> {
        (**self).to_owned()
    }
}

impl<T> fmt::Debug for EcKey<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "EcKey")
    }
}

#[cfg(test)]
mod test {
    use hex::FromHex;

    use super::*;
    use crate::bn::{BigNum, BigNumContext};
    use crate::nid::Nid;

    #[test]
    fn key_new_by_curve_name() {
        EcKey::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
    }

    #[test]
    fn generate() {
        let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
        EcKey::generate(&group).unwrap();
    }

    #[test]
    fn ec_group_from_components() {
        // parameters are from secp256r1
        let p = BigNum::from_hex_str(
            "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF",
        )
        .unwrap();
        let a = BigNum::from_hex_str(
            "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC",
        )
        .unwrap();
        let b = BigNum::from_hex_str(
            "5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B",
        )
        .unwrap();
        let mut ctx = BigNumContext::new().unwrap();

        let _curve = EcGroup::from_components(p, a, b, &mut ctx).unwrap();
    }

    #[test]
    fn ec_point_set_affine() {
        // parameters are from secp256r1
        let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
        let mut ctx = BigNumContext::new().unwrap();
        let mut gen_point = EcPoint::new(&group).unwrap();
        let gen_x = BigNum::from_hex_str(
            "6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296",
        )
        .unwrap();
        let gen_y = BigNum::from_hex_str(
            "4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5",
        )
        .unwrap();
        gen_point
            .set_affine_coordinates_gfp(&group, &gen_x, &gen_y, &mut ctx)
            .unwrap();
        assert!(gen_point.is_on_curve(&group, &mut ctx).unwrap());
    }

    #[test]
    fn ec_group_set_generator() {
        // parameters are from secp256r1
        let mut ctx = BigNumContext::new().unwrap();
        let p = BigNum::from_hex_str(
            "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF",
        )
        .unwrap();
        let a = BigNum::from_hex_str(
            "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC",
        )
        .unwrap();
        let b = BigNum::from_hex_str(
            "5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B",
        )
        .unwrap();

        let mut group = EcGroup::from_components(p, a, b, &mut ctx).unwrap();

        let mut gen_point = EcPoint::new(&group).unwrap();
        let gen_x = BigNum::from_hex_str(
            "6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296",
        )
        .unwrap();
        let gen_y = BigNum::from_hex_str(
            "4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5",
        )
        .unwrap();
        gen_point
            .set_affine_coordinates_gfp(&group, &gen_x, &gen_y, &mut ctx)
            .unwrap();

        let order = BigNum::from_hex_str(
            "FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551",
        )
        .unwrap();
        let cofactor = BigNum::from_hex_str("01").unwrap();
        group.set_generator(gen_point, order, cofactor).unwrap();
        let mut constructed_order = BigNum::new().unwrap();
        group.order(&mut constructed_order, &mut ctx).unwrap();

        let named_group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
        let mut named_order = BigNum::new().unwrap();
        named_group.order(&mut named_order, &mut ctx).unwrap();

        assert_eq!(
            constructed_order.ucmp(&named_order),
            std::cmp::Ordering::Equal
        );
    }

    #[test]
    fn cofactor() {
        let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
        let mut ctx = BigNumContext::new().unwrap();
        let mut cofactor = BigNum::new().unwrap();
        group.cofactor(&mut cofactor, &mut ctx).unwrap();
        let one = BigNum::from_u32(1).unwrap();
        assert_eq!(cofactor, one);
    }

    #[test]
    #[allow(clippy::redundant_clone)]
    fn dup() {
        let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
        let key = EcKey::generate(&group).unwrap();
        drop(key.clone());
    }

    #[test]
    fn point_new() {
        let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
        EcPoint::new(&group).unwrap();
    }

    #[test]
    fn point_bytes() {
        let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
        let key = EcKey::generate(&group).unwrap();
        let point = key.public_key();
        let mut ctx = BigNumContext::new().unwrap();
        let bytes = point
            .to_bytes(&group, PointConversionForm::COMPRESSED, &mut ctx)
            .unwrap();
        let point2 = EcPoint::from_bytes(&group, &bytes, &mut ctx).unwrap();
        assert!(point.eq(&group, &point2, &mut ctx).unwrap());
    }

    #[test]
    #[cfg(not(boringssl))]
    fn point_hex_str() {
        let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
        let key = EcKey::generate(&group).unwrap();
        let point = key.public_key();
        let mut ctx = BigNumContext::new().unwrap();
        let hex = point
            .to_hex_str(&group, PointConversionForm::COMPRESSED, &mut ctx)
            .unwrap();
        let point2 = EcPoint::from_hex_str(&group, &hex, &mut ctx).unwrap();
        assert!(point.eq(&group, &point2, &mut ctx).unwrap());
    }

    #[test]
    fn point_owned() {
        let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
        let key = EcKey::generate(&group).unwrap();
        let point = key.public_key();
        let owned = point.to_owned(&group).unwrap();
        let mut ctx = BigNumContext::new().unwrap();
        assert!(owned.eq(&group, point, &mut ctx).unwrap());
    }

    #[test]
    fn mul_generator() {
        let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
        let key = EcKey::generate(&group).unwrap();
        let mut ctx = BigNumContext::new().unwrap();
        let mut public_key = EcPoint::new(&group).unwrap();
        public_key
            .mul_generator(&group, key.private_key(), &ctx)
            .unwrap();
        assert!(public_key.eq(&group, key.public_key(), &mut ctx).unwrap());
    }

    #[test]
    fn generator() {
        let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
        let gen = group.generator();
        let one = BigNum::from_u32(1).unwrap();
        let mut ctx = BigNumContext::new().unwrap();
        let mut ecp = EcPoint::new(&group).unwrap();
        ecp.mul_generator(&group, &one, &ctx).unwrap();
        assert!(ecp.eq(&group, gen, &mut ctx).unwrap());
    }

    #[test]
    fn key_from_public_key() {
        let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
        let key = EcKey::generate(&group).unwrap();
        let mut ctx = BigNumContext::new().unwrap();
        let bytes = key
            .public_key()
            .to_bytes(&group, PointConversionForm::COMPRESSED, &mut ctx)
            .unwrap();

        drop(key);
        let public_key = EcPoint::from_bytes(&group, &bytes, &mut ctx).unwrap();
        let ec_key = EcKey::from_public_key(&group, &public_key).unwrap();
        assert!(ec_key.check_key().is_ok());
    }

    #[test]
    fn key_from_private_components() {
        let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
        let key = EcKey::generate(&group).unwrap();

        let dup_key =
            EcKey::from_private_components(&group, key.private_key(), key.public_key()).unwrap();
        dup_key.check_key().unwrap();

        assert!(key.private_key() == dup_key.private_key());
    }

    #[test]
    fn key_from_affine_coordinates() {
        let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
        let x = Vec::from_hex("30a0424cd21c2944838a2d75c92b37e76ea20d9f00893a3b4eee8a3c0aafec3e")
            .unwrap();
        let y = Vec::from_hex("e04b65e92456d9888b52b379bdfbd51ee869ef1f0fc65b6659695b6cce081723")
            .unwrap();

        let xbn = BigNum::from_slice(&x).unwrap();
        let ybn = BigNum::from_slice(&y).unwrap();

        let ec_key = EcKey::from_public_key_affine_coordinates(&group, &xbn, &ybn).unwrap();
        assert!(ec_key.check_key().is_ok());
    }

    #[cfg(any(ossl111, boringssl, libressl350))]
    #[test]
    fn get_affine_coordinates() {
        let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
        let x = Vec::from_hex("30a0424cd21c2944838a2d75c92b37e76ea20d9f00893a3b4eee8a3c0aafec3e")
            .unwrap();
        let y = Vec::from_hex("e04b65e92456d9888b52b379bdfbd51ee869ef1f0fc65b6659695b6cce081723")
            .unwrap();

        let xbn = BigNum::from_slice(&x).unwrap();
        let ybn = BigNum::from_slice(&y).unwrap();

        let ec_key = EcKey::from_public_key_affine_coordinates(&group, &xbn, &ybn).unwrap();

        let mut xbn2 = BigNum::new().unwrap();
        let mut ybn2 = BigNum::new().unwrap();
        let mut ctx = BigNumContext::new().unwrap();
        let ec_key_pk = ec_key.public_key();
        ec_key_pk
            .affine_coordinates(&group, &mut xbn2, &mut ybn2, &mut ctx)
            .unwrap();
        assert_eq!(xbn2, xbn);
        assert_eq!(ybn2, ybn);
    }

    #[test]
    fn get_affine_coordinates_gfp() {
        let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
        let x = Vec::from_hex("30a0424cd21c2944838a2d75c92b37e76ea20d9f00893a3b4eee8a3c0aafec3e")
            .unwrap();
        let y = Vec::from_hex("e04b65e92456d9888b52b379bdfbd51ee869ef1f0fc65b6659695b6cce081723")
            .unwrap();

        let xbn = BigNum::from_slice(&x).unwrap();
        let ybn = BigNum::from_slice(&y).unwrap();

        let ec_key = EcKey::from_public_key_affine_coordinates(&group, &xbn, &ybn).unwrap();

        let mut xbn2 = BigNum::new().unwrap();
        let mut ybn2 = BigNum::new().unwrap();
        let mut ctx = BigNumContext::new().unwrap();
        let ec_key_pk = ec_key.public_key();
        ec_key_pk
            .affine_coordinates_gfp(&group, &mut xbn2, &mut ybn2, &mut ctx)
            .unwrap();
        assert_eq!(xbn2, xbn);
        assert_eq!(ybn2, ybn);
    }

    #[test]
    fn is_infinity() {
        let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
        let mut ctx = BigNumContext::new().unwrap();
        let g = group.generator();
        assert!(!g.is_infinity(&group));

        let mut order = BigNum::new().unwrap();
        group.order(&mut order, &mut ctx).unwrap();
        let mut inf = EcPoint::new(&group).unwrap();
        inf.mul_generator(&group, &order, &ctx).unwrap();
        assert!(inf.is_infinity(&group));
    }

    #[test]
    #[cfg(not(osslconf = "OPENSSL_NO_EC2M"))]
    fn is_on_curve() {
        let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
        let mut ctx = BigNumContext::new().unwrap();
        let g = group.generator();
        assert!(g.is_on_curve(&group, &mut ctx).unwrap());

        let group2 = EcGroup::from_curve_name(Nid::X9_62_PRIME239V3).unwrap();
        assert!(!g.is_on_curve(&group2, &mut ctx).unwrap());
    }

    #[test]
    #[cfg(any(boringssl, ossl111, libressl350))]
    fn asn1_flag() {
        let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
        let flag = group.asn1_flag();
        assert_eq!(flag, Asn1Flag::NAMED_CURVE);
    }
}