1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Weighted index sampling
use crate::distributions::uniform::{SampleBorrow, SampleUniform, UniformSampler};
use crate::distributions::Distribution;
use crate::Rng;
use core::cmp::PartialOrd;
use core::fmt;
// Note that this whole module is only imported if feature="alloc" is enabled.
use alloc::vec::Vec;
#[cfg(feature = "serde1")]
use serde::{Serialize, Deserialize};
/// A distribution using weighted sampling of discrete items
///
/// Sampling a `WeightedIndex` distribution returns the index of a randomly
/// selected element from the iterator used when the `WeightedIndex` was
/// created. The chance of a given element being picked is proportional to the
/// value of the element. The weights can use any type `X` for which an
/// implementation of [`Uniform<X>`] exists.
///
/// # Performance
///
/// Time complexity of sampling from `WeightedIndex` is `O(log N)` where
/// `N` is the number of weights. As an alternative,
/// [`rand_distr::weighted_alias`](https://docs.rs/rand_distr/*/rand_distr/weighted_alias/index.html)
/// supports `O(1)` sampling, but with much higher initialisation cost.
///
/// A `WeightedIndex<X>` contains a `Vec<X>` and a [`Uniform<X>`] and so its
/// size is the sum of the size of those objects, possibly plus some alignment.
///
/// Creating a `WeightedIndex<X>` will allocate enough space to hold `N - 1`
/// weights of type `X`, where `N` is the number of weights. However, since
/// `Vec` doesn't guarantee a particular growth strategy, additional memory
/// might be allocated but not used. Since the `WeightedIndex` object also
/// contains, this might cause additional allocations, though for primitive
/// types, [`Uniform<X>`] doesn't allocate any memory.
///
/// Sampling from `WeightedIndex` will result in a single call to
/// `Uniform<X>::sample` (method of the [`Distribution`] trait), which typically
/// will request a single value from the underlying [`RngCore`], though the
/// exact number depends on the implementation of `Uniform<X>::sample`.
///
/// # Example
///
/// ```
/// use rand::prelude::*;
/// use rand::distributions::WeightedIndex;
///
/// let choices = ['a', 'b', 'c'];
/// let weights = [2, 1, 1];
/// let dist = WeightedIndex::new(&weights).unwrap();
/// let mut rng = thread_rng();
/// for _ in 0..100 {
/// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c'
/// println!("{}", choices[dist.sample(&mut rng)]);
/// }
///
/// let items = [('a', 0), ('b', 3), ('c', 7)];
/// let dist2 = WeightedIndex::new(items.iter().map(|item| item.1)).unwrap();
/// for _ in 0..100 {
/// // 0% chance to print 'a', 30% chance to print 'b', 70% chance to print 'c'
/// println!("{}", items[dist2.sample(&mut rng)].0);
/// }
/// ```
///
/// [`Uniform<X>`]: crate::distributions::Uniform
/// [`RngCore`]: crate::RngCore
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
pub struct WeightedIndex<X: SampleUniform + PartialOrd> {
cumulative_weights: Vec<X>,
total_weight: X,
weight_distribution: X::Sampler,
}
impl<X: SampleUniform + PartialOrd> WeightedIndex<X> {
/// Creates a new a `WeightedIndex` [`Distribution`] using the values
/// in `weights`. The weights can use any type `X` for which an
/// implementation of [`Uniform<X>`] exists.
///
/// Returns an error if the iterator is empty, if any weight is `< 0`, or
/// if its total value is 0.
///
/// [`Uniform<X>`]: crate::distributions::uniform::Uniform
pub fn new<I>(weights: I) -> Result<WeightedIndex<X>, WeightedError>
where
I: IntoIterator,
I::Item: SampleBorrow<X>,
X: for<'a> ::core::ops::AddAssign<&'a X> + Clone + Default,
{
let mut iter = weights.into_iter();
let mut total_weight: X = iter.next().ok_or(WeightedError::NoItem)?.borrow().clone();
let zero = <X as Default>::default();
if !(total_weight >= zero) {
return Err(WeightedError::InvalidWeight);
}
let mut weights = Vec::<X>::with_capacity(iter.size_hint().0);
for w in iter {
// Note that `!(w >= x)` is not equivalent to `w < x` for partially
// ordered types due to NaNs which are equal to nothing.
if !(w.borrow() >= &zero) {
return Err(WeightedError::InvalidWeight);
}
weights.push(total_weight.clone());
total_weight += w.borrow();
}
if total_weight == zero {
return Err(WeightedError::AllWeightsZero);
}
let distr = X::Sampler::new(zero, total_weight.clone());
Ok(WeightedIndex {
cumulative_weights: weights,
total_weight,
weight_distribution: distr,
})
}
/// Update a subset of weights, without changing the number of weights.
///
/// `new_weights` must be sorted by the index.
///
/// Using this method instead of `new` might be more efficient if only a small number of
/// weights is modified. No allocations are performed, unless the weight type `X` uses
/// allocation internally.
///
/// In case of error, `self` is not modified.
pub fn update_weights(&mut self, new_weights: &[(usize, &X)]) -> Result<(), WeightedError>
where X: for<'a> ::core::ops::AddAssign<&'a X>
+ for<'a> ::core::ops::SubAssign<&'a X>
+ Clone
+ Default {
if new_weights.is_empty() {
return Ok(());
}
let zero = <X as Default>::default();
let mut total_weight = self.total_weight.clone();
// Check for errors first, so we don't modify `self` in case something
// goes wrong.
let mut prev_i = None;
for &(i, w) in new_weights {
if let Some(old_i) = prev_i {
if old_i >= i {
return Err(WeightedError::InvalidWeight);
}
}
if !(*w >= zero) {
return Err(WeightedError::InvalidWeight);
}
if i > self.cumulative_weights.len() {
return Err(WeightedError::TooMany);
}
let mut old_w = if i < self.cumulative_weights.len() {
self.cumulative_weights[i].clone()
} else {
self.total_weight.clone()
};
if i > 0 {
old_w -= &self.cumulative_weights[i - 1];
}
total_weight -= &old_w;
total_weight += w;
prev_i = Some(i);
}
if total_weight <= zero {
return Err(WeightedError::AllWeightsZero);
}
// Update the weights. Because we checked all the preconditions in the
// previous loop, this should never panic.
let mut iter = new_weights.iter();
let mut prev_weight = zero.clone();
let mut next_new_weight = iter.next();
let &(first_new_index, _) = next_new_weight.unwrap();
let mut cumulative_weight = if first_new_index > 0 {
self.cumulative_weights[first_new_index - 1].clone()
} else {
zero.clone()
};
for i in first_new_index..self.cumulative_weights.len() {
match next_new_weight {
Some(&(j, w)) if i == j => {
cumulative_weight += w;
next_new_weight = iter.next();
}
_ => {
let mut tmp = self.cumulative_weights[i].clone();
tmp -= &prev_weight; // We know this is positive.
cumulative_weight += &tmp;
}
}
prev_weight = cumulative_weight.clone();
core::mem::swap(&mut prev_weight, &mut self.cumulative_weights[i]);
}
self.total_weight = total_weight;
self.weight_distribution = X::Sampler::new(zero, self.total_weight.clone());
Ok(())
}
}
impl<X> Distribution<usize> for WeightedIndex<X>
where X: SampleUniform + PartialOrd
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize {
use ::core::cmp::Ordering;
let chosen_weight = self.weight_distribution.sample(rng);
// Find the first item which has a weight *higher* than the chosen weight.
self.cumulative_weights
.binary_search_by(|w| {
if *w <= chosen_weight {
Ordering::Less
} else {
Ordering::Greater
}
})
.unwrap_err()
}
}
#[cfg(test)]
mod test {
use super::*;
#[cfg(feature = "serde1")]
#[test]
fn test_weightedindex_serde1() {
let weighted_index = WeightedIndex::new(&[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).unwrap();
let ser_weighted_index = bincode::serialize(&weighted_index).unwrap();
let de_weighted_index: WeightedIndex<i32> =
bincode::deserialize(&ser_weighted_index).unwrap();
assert_eq!(
de_weighted_index.cumulative_weights,
weighted_index.cumulative_weights
);
assert_eq!(de_weighted_index.total_weight, weighted_index.total_weight);
}
#[test]
fn test_accepting_nan(){
assert_eq!(
WeightedIndex::new(&[core::f32::NAN, 0.5]).unwrap_err(),
WeightedError::InvalidWeight,
);
assert_eq!(
WeightedIndex::new(&[core::f32::NAN]).unwrap_err(),
WeightedError::InvalidWeight,
);
assert_eq!(
WeightedIndex::new(&[0.5, core::f32::NAN]).unwrap_err(),
WeightedError::InvalidWeight,
);
assert_eq!(
WeightedIndex::new(&[0.5, 7.0])
.unwrap()
.update_weights(&[(0, &core::f32::NAN)])
.unwrap_err(),
WeightedError::InvalidWeight,
)
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_weightedindex() {
let mut r = crate::test::rng(700);
const N_REPS: u32 = 5000;
let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7];
let total_weight = weights.iter().sum::<u32>() as f32;
let verify = |result: [i32; 14]| {
for (i, count) in result.iter().enumerate() {
let exp = (weights[i] * N_REPS) as f32 / total_weight;
let mut err = (*count as f32 - exp).abs();
if err != 0.0 {
err /= exp;
}
assert!(err <= 0.25);
}
};
// WeightedIndex from vec
let mut chosen = [0i32; 14];
let distr = WeightedIndex::new(weights.to_vec()).unwrap();
for _ in 0..N_REPS {
chosen[distr.sample(&mut r)] += 1;
}
verify(chosen);
// WeightedIndex from slice
chosen = [0i32; 14];
let distr = WeightedIndex::new(&weights[..]).unwrap();
for _ in 0..N_REPS {
chosen[distr.sample(&mut r)] += 1;
}
verify(chosen);
// WeightedIndex from iterator
chosen = [0i32; 14];
let distr = WeightedIndex::new(weights.iter()).unwrap();
for _ in 0..N_REPS {
chosen[distr.sample(&mut r)] += 1;
}
verify(chosen);
for _ in 0..5 {
assert_eq!(WeightedIndex::new(&[0, 1]).unwrap().sample(&mut r), 1);
assert_eq!(WeightedIndex::new(&[1, 0]).unwrap().sample(&mut r), 0);
assert_eq!(
WeightedIndex::new(&[0, 0, 0, 0, 10, 0])
.unwrap()
.sample(&mut r),
4
);
}
assert_eq!(
WeightedIndex::new(&[10][0..0]).unwrap_err(),
WeightedError::NoItem
);
assert_eq!(
WeightedIndex::new(&[0]).unwrap_err(),
WeightedError::AllWeightsZero
);
assert_eq!(
WeightedIndex::new(&[10, 20, -1, 30]).unwrap_err(),
WeightedError::InvalidWeight
);
assert_eq!(
WeightedIndex::new(&[-10, 20, 1, 30]).unwrap_err(),
WeightedError::InvalidWeight
);
assert_eq!(
WeightedIndex::new(&[-10]).unwrap_err(),
WeightedError::InvalidWeight
);
}
#[test]
fn test_update_weights() {
let data = [
(
&[10u32, 2, 3, 4][..],
&[(1, &100), (2, &4)][..], // positive change
&[10, 100, 4, 4][..],
),
(
&[1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7][..],
&[(2, &1), (5, &1), (13, &100)][..], // negative change and last element
&[1u32, 2, 1, 0, 5, 1, 7, 1, 2, 3, 4, 5, 6, 100][..],
),
];
for (weights, update, expected_weights) in data.iter() {
let total_weight = weights.iter().sum::<u32>();
let mut distr = WeightedIndex::new(weights.to_vec()).unwrap();
assert_eq!(distr.total_weight, total_weight);
distr.update_weights(update).unwrap();
let expected_total_weight = expected_weights.iter().sum::<u32>();
let expected_distr = WeightedIndex::new(expected_weights.to_vec()).unwrap();
assert_eq!(distr.total_weight, expected_total_weight);
assert_eq!(distr.total_weight, expected_distr.total_weight);
assert_eq!(distr.cumulative_weights, expected_distr.cumulative_weights);
}
}
#[test]
fn value_stability() {
fn test_samples<X: SampleUniform + PartialOrd, I>(
weights: I, buf: &mut [usize], expected: &[usize],
) where
I: IntoIterator,
I::Item: SampleBorrow<X>,
X: for<'a> ::core::ops::AddAssign<&'a X> + Clone + Default,
{
assert_eq!(buf.len(), expected.len());
let distr = WeightedIndex::new(weights).unwrap();
let mut rng = crate::test::rng(701);
for r in buf.iter_mut() {
*r = rng.sample(&distr);
}
assert_eq!(buf, expected);
}
let mut buf = [0; 10];
test_samples(&[1i32, 1, 1, 1, 1, 1, 1, 1, 1], &mut buf, &[
0, 6, 2, 6, 3, 4, 7, 8, 2, 5,
]);
test_samples(&[0.7f32, 0.1, 0.1, 0.1], &mut buf, &[
0, 0, 0, 1, 0, 0, 2, 3, 0, 0,
]);
test_samples(&[1.0f64, 0.999, 0.998, 0.997], &mut buf, &[
2, 2, 1, 3, 2, 1, 3, 3, 2, 1,
]);
}
#[test]
fn weighted_index_distributions_can_be_compared() {
assert_eq!(WeightedIndex::new(&[1, 2]), WeightedIndex::new(&[1, 2]));
}
}
/// Error type returned from `WeightedIndex::new`.
#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum WeightedError {
/// The provided weight collection contains no items.
NoItem,
/// A weight is either less than zero, greater than the supported maximum,
/// NaN, or otherwise invalid.
InvalidWeight,
/// All items in the provided weight collection are zero.
AllWeightsZero,
/// Too many weights are provided (length greater than `u32::MAX`)
TooMany,
}
#[cfg(feature = "std")]
impl std::error::Error for WeightedError {}
impl fmt::Display for WeightedError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str(match *self {
WeightedError::NoItem => "No weights provided in distribution",
WeightedError::InvalidWeight => "A weight is invalid in distribution",
WeightedError::AllWeightsZero => "All weights are zero in distribution",
WeightedError::TooMany => "Too many weights (hit u32::MAX) in distribution",
})
}
}