tinyvec/
tinyvec.rs

1#![cfg(feature = "alloc")]
2
3use super::*;
4
5use alloc::vec::{self, Vec};
6use core::convert::TryFrom;
7use tinyvec_macros::impl_mirrored;
8
9#[cfg(feature = "rustc_1_57")]
10use alloc::collections::TryReserveError;
11
12#[cfg(feature = "serde")]
13use core::marker::PhantomData;
14#[cfg(feature = "serde")]
15use serde::de::{Deserialize, Deserializer, SeqAccess, Visitor};
16#[cfg(feature = "serde")]
17use serde::ser::{Serialize, SerializeSeq, Serializer};
18
19/// Helper to make a `TinyVec`.
20///
21/// You specify the backing array type, and optionally give all the elements you
22/// want to initially place into the array.
23///
24/// ```rust
25/// use tinyvec::*;
26///
27/// // The backing array type can be specified in the macro call
28/// let empty_tv = tiny_vec!([u8; 16]);
29/// let some_ints = tiny_vec!([i32; 4] => 1, 2, 3);
30/// let many_ints = tiny_vec!([i32; 4] => 1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
31///
32/// // Or left to inference
33/// let empty_tv: TinyVec<[u8; 16]> = tiny_vec!();
34/// let some_ints: TinyVec<[i32; 4]> = tiny_vec!(1, 2, 3);
35/// let many_ints: TinyVec<[i32; 4]> = tiny_vec!(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
36/// ```
37#[macro_export]
38#[cfg_attr(docs_rs, doc(cfg(feature = "alloc")))]
39macro_rules! tiny_vec {
40  ($array_type:ty => $($elem:expr),* $(,)?) => {
41    {
42      // https://github.com/rust-lang/lang-team/issues/28
43      const INVOKED_ELEM_COUNT: usize = 0 $( + { let _ = stringify!($elem); 1 })*;
44      // If we have more `$elem` than the `CAPACITY` we will simply go directly
45      // to constructing on the heap.
46      match $crate::TinyVec::constructor_for_capacity(INVOKED_ELEM_COUNT) {
47        $crate::TinyVecConstructor::Inline(f) => {
48          f($crate::array_vec!($array_type => $($elem),*))
49        }
50        $crate::TinyVecConstructor::Heap(f) => {
51          f(vec!($($elem),*))
52        }
53      }
54    }
55  };
56  ($array_type:ty) => {
57    $crate::TinyVec::<$array_type>::default()
58  };
59  ($($elem:expr),*) => {
60    $crate::tiny_vec!(_ => $($elem),*)
61  };
62  ($elem:expr; $n:expr) => {
63    $crate::TinyVec::from([$elem; $n])
64  };
65  () => {
66    $crate::tiny_vec!(_)
67  };
68}
69
70#[doc(hidden)] // Internal implementation details of `tiny_vec!`
71pub enum TinyVecConstructor<A: Array> {
72  Inline(fn(ArrayVec<A>) -> TinyVec<A>),
73  Heap(fn(Vec<A::Item>) -> TinyVec<A>),
74}
75
76/// A vector that starts inline, but can automatically move to the heap.
77///
78/// * Requires the `alloc` feature
79///
80/// A `TinyVec` is either an Inline([`ArrayVec`](crate::ArrayVec::<A>)) or
81/// Heap([`Vec`](https://doc.rust-lang.org/alloc/vec/struct.Vec.html)). The
82/// interface for the type as a whole is a bunch of methods that just match on
83/// the enum variant and then call the same method on the inner vec.
84///
85/// ## Construction
86///
87/// Because it's an enum, you can construct a `TinyVec` simply by making an
88/// `ArrayVec` or `Vec` and then putting it into the enum.
89///
90/// There is also a macro
91///
92/// ```rust
93/// # use tinyvec::*;
94/// let empty_tv = tiny_vec!([u8; 16]);
95/// let some_ints = tiny_vec!([i32; 4] => 1, 2, 3);
96/// ```
97#[cfg_attr(docs_rs, doc(cfg(feature = "alloc")))]
98pub enum TinyVec<A: Array> {
99  #[allow(missing_docs)]
100  Inline(ArrayVec<A>),
101  #[allow(missing_docs)]
102  Heap(Vec<A::Item>),
103}
104
105impl<A> Clone for TinyVec<A>
106where
107  A: Array + Clone,
108  A::Item: Clone,
109{
110  #[inline]
111  fn clone(&self) -> Self {
112    match self {
113      TinyVec::Heap(v) => TinyVec::Heap(v.clone()),
114      TinyVec::Inline(v) => TinyVec::Inline(v.clone()),
115    }
116  }
117
118  #[inline]
119  fn clone_from(&mut self, o: &Self) {
120    if o.len() > self.len() {
121      self.reserve(o.len() - self.len());
122    } else {
123      self.truncate(o.len());
124    }
125    let (start, end) = o.split_at(self.len());
126    for (dst, src) in self.iter_mut().zip(start) {
127      dst.clone_from(src);
128    }
129    self.extend_from_slice(end);
130  }
131}
132
133impl<A: Array> Default for TinyVec<A> {
134  #[inline]
135  #[must_use]
136  fn default() -> Self {
137    TinyVec::Inline(ArrayVec::default())
138  }
139}
140
141impl<A: Array> Deref for TinyVec<A> {
142  type Target = [A::Item];
143
144  impl_mirrored! {
145    type Mirror = TinyVec;
146    #[inline(always)]
147    #[must_use]
148    fn deref(self: &Self) -> &Self::Target;
149  }
150}
151
152impl<A: Array> DerefMut for TinyVec<A> {
153  impl_mirrored! {
154    type Mirror = TinyVec;
155    #[inline(always)]
156    #[must_use]
157    fn deref_mut(self: &mut Self) -> &mut Self::Target;
158  }
159}
160
161impl<A: Array, I: SliceIndex<[A::Item]>> Index<I> for TinyVec<A> {
162  type Output = <I as SliceIndex<[A::Item]>>::Output;
163  #[inline(always)]
164  #[must_use]
165  fn index(&self, index: I) -> &Self::Output {
166    &self.deref()[index]
167  }
168}
169
170impl<A: Array, I: SliceIndex<[A::Item]>> IndexMut<I> for TinyVec<A> {
171  #[inline(always)]
172  #[must_use]
173  fn index_mut(&mut self, index: I) -> &mut Self::Output {
174    &mut self.deref_mut()[index]
175  }
176}
177
178#[cfg(feature = "std")]
179#[cfg_attr(docs_rs, doc(cfg(feature = "std")))]
180impl<A: Array<Item = u8>> std::io::Write for TinyVec<A> {
181  #[inline(always)]
182  fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
183    self.extend_from_slice(buf);
184    Ok(buf.len())
185  }
186
187  #[inline(always)]
188  fn flush(&mut self) -> std::io::Result<()> {
189    Ok(())
190  }
191}
192
193#[cfg(feature = "serde")]
194#[cfg_attr(docs_rs, doc(cfg(feature = "serde")))]
195impl<A: Array> Serialize for TinyVec<A>
196where
197  A::Item: Serialize,
198{
199  #[must_use]
200  fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
201  where
202    S: Serializer,
203  {
204    let mut seq = serializer.serialize_seq(Some(self.len()))?;
205    for element in self.iter() {
206      seq.serialize_element(element)?;
207    }
208    seq.end()
209  }
210}
211
212#[cfg(feature = "serde")]
213#[cfg_attr(docs_rs, doc(cfg(feature = "serde")))]
214impl<'de, A: Array> Deserialize<'de> for TinyVec<A>
215where
216  A::Item: Deserialize<'de>,
217{
218  fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
219  where
220    D: Deserializer<'de>,
221  {
222    deserializer.deserialize_seq(TinyVecVisitor(PhantomData))
223  }
224}
225
226#[cfg(feature = "arbitrary")]
227#[cfg_attr(docs_rs, doc(cfg(feature = "arbitrary")))]
228impl<'a, A> arbitrary::Arbitrary<'a> for TinyVec<A>
229where
230  A: Array,
231  A::Item: arbitrary::Arbitrary<'a>,
232{
233  fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {
234    let v = Vec::arbitrary(u)?;
235    let mut tv = TinyVec::Heap(v);
236    tv.shrink_to_fit();
237    Ok(tv)
238  }
239}
240
241impl<A: Array> TinyVec<A> {
242  /// Returns whether elements are on heap
243  #[inline(always)]
244  #[must_use]
245  pub fn is_heap(&self) -> bool {
246    match self {
247      TinyVec::Heap(_) => true,
248      TinyVec::Inline(_) => false,
249    }
250  }
251  /// Returns whether elements are on stack
252  #[inline(always)]
253  #[must_use]
254  pub fn is_inline(&self) -> bool {
255    !self.is_heap()
256  }
257
258  /// Shrinks the capacity of the vector as much as possible.\
259  /// It is inlined if length is less than `A::CAPACITY`.
260  /// ```rust
261  /// use tinyvec::*;
262  /// let mut tv = tiny_vec!([i32; 2] => 1, 2, 3);
263  /// assert!(tv.is_heap());
264  /// let _ = tv.pop();
265  /// assert!(tv.is_heap());
266  /// tv.shrink_to_fit();
267  /// assert!(tv.is_inline());
268  /// ```
269  pub fn shrink_to_fit(&mut self) {
270    let vec = match self {
271      TinyVec::Inline(_) => return,
272      TinyVec::Heap(h) => h,
273    };
274
275    if vec.len() > A::CAPACITY {
276      return vec.shrink_to_fit();
277    }
278
279    let moved_vec = core::mem::replace(vec, Vec::new());
280
281    let mut av = ArrayVec::default();
282    let mut rest = av.fill(moved_vec);
283    debug_assert!(rest.next().is_none());
284    *self = TinyVec::Inline(av);
285  }
286
287  /// Moves the content of the TinyVec to the heap, if it's inline.
288  /// ```rust
289  /// use tinyvec::*;
290  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
291  /// assert!(tv.is_inline());
292  /// tv.move_to_the_heap();
293  /// assert!(tv.is_heap());
294  /// ```
295  #[allow(clippy::missing_inline_in_public_items)]
296  pub fn move_to_the_heap(&mut self) {
297    let arr = match self {
298      TinyVec::Heap(_) => return,
299      TinyVec::Inline(a) => a,
300    };
301
302    let v = arr.drain_to_vec();
303    *self = TinyVec::Heap(v);
304  }
305
306  /// Tries to move the content of the TinyVec to the heap, if it's inline.
307  ///
308  /// # Errors
309  ///
310  /// If the allocator reports a failure, then an error is returned and the
311  /// content is kept on the stack.
312  ///
313  /// ```rust
314  /// use tinyvec::*;
315  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
316  /// assert!(tv.is_inline());
317  /// assert_eq!(Ok(()), tv.try_move_to_the_heap());
318  /// assert!(tv.is_heap());
319  /// ```
320  #[cfg(feature = "rustc_1_57")]
321  pub fn try_move_to_the_heap(&mut self) -> Result<(), TryReserveError> {
322    let arr = match self {
323      TinyVec::Heap(_) => return Ok(()),
324      TinyVec::Inline(a) => a,
325    };
326
327    let v = arr.try_drain_to_vec()?;
328    *self = TinyVec::Heap(v);
329    return Ok(());
330  }
331
332  /// If TinyVec is inline, moves the content of it to the heap.
333  /// Also reserves additional space.
334  /// ```rust
335  /// use tinyvec::*;
336  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
337  /// assert!(tv.is_inline());
338  /// tv.move_to_the_heap_and_reserve(32);
339  /// assert!(tv.is_heap());
340  /// assert!(tv.capacity() >= 35);
341  /// ```
342  pub fn move_to_the_heap_and_reserve(&mut self, n: usize) {
343    let arr = match self {
344      TinyVec::Heap(h) => return h.reserve(n),
345      TinyVec::Inline(a) => a,
346    };
347
348    let v = arr.drain_to_vec_and_reserve(n);
349    *self = TinyVec::Heap(v);
350  }
351
352  /// If TinyVec is inline, try to move the content of it to the heap.
353  /// Also reserves additional space.
354  ///
355  /// # Errors
356  ///
357  /// If the allocator reports a failure, then an error is returned.
358  ///
359  /// ```rust
360  /// use tinyvec::*;
361  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
362  /// assert!(tv.is_inline());
363  /// assert_eq!(Ok(()), tv.try_move_to_the_heap_and_reserve(32));
364  /// assert!(tv.is_heap());
365  /// assert!(tv.capacity() >= 35);
366  /// ```
367  #[cfg(feature = "rustc_1_57")]
368  pub fn try_move_to_the_heap_and_reserve(
369    &mut self, n: usize,
370  ) -> Result<(), TryReserveError> {
371    let arr = match self {
372      TinyVec::Heap(h) => return h.try_reserve(n),
373      TinyVec::Inline(a) => a,
374    };
375
376    let v = arr.try_drain_to_vec_and_reserve(n)?;
377    *self = TinyVec::Heap(v);
378    return Ok(());
379  }
380
381  /// Reserves additional space.
382  /// Moves to the heap if array can't hold `n` more items
383  /// ```rust
384  /// use tinyvec::*;
385  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3, 4);
386  /// assert!(tv.is_inline());
387  /// tv.reserve(1);
388  /// assert!(tv.is_heap());
389  /// assert!(tv.capacity() >= 5);
390  /// ```
391  pub fn reserve(&mut self, n: usize) {
392    let arr = match self {
393      TinyVec::Heap(h) => return h.reserve(n),
394      TinyVec::Inline(a) => a,
395    };
396
397    if n > arr.capacity() - arr.len() {
398      let v = arr.drain_to_vec_and_reserve(n);
399      *self = TinyVec::Heap(v);
400    }
401
402    /* In this place array has enough place, so no work is needed more */
403    return;
404  }
405
406  /// Tries to reserve additional space.
407  /// Moves to the heap if array can't hold `n` more items.
408  ///
409  /// # Errors
410  ///
411  /// If the allocator reports a failure, then an error is returned.
412  ///
413  /// ```rust
414  /// use tinyvec::*;
415  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3, 4);
416  /// assert!(tv.is_inline());
417  /// assert_eq!(Ok(()), tv.try_reserve(1));
418  /// assert!(tv.is_heap());
419  /// assert!(tv.capacity() >= 5);
420  /// ```
421  #[cfg(feature = "rustc_1_57")]
422  pub fn try_reserve(&mut self, n: usize) -> Result<(), TryReserveError> {
423    let arr = match self {
424      TinyVec::Heap(h) => return h.try_reserve(n),
425      TinyVec::Inline(a) => a,
426    };
427
428    if n > arr.capacity() - arr.len() {
429      let v = arr.try_drain_to_vec_and_reserve(n)?;
430      *self = TinyVec::Heap(v);
431    }
432
433    /* In this place array has enough place, so no work is needed more */
434    return Ok(());
435  }
436
437  /// Reserves additional space.
438  /// Moves to the heap if array can't hold `n` more items
439  ///
440  /// From [Vec::reserve_exact](https://doc.rust-lang.org/std/vec/struct.Vec.html#method.reserve_exact)
441  /// ```text
442  /// Note that the allocator may give the collection more space than it requests.
443  /// Therefore, capacity can not be relied upon to be precisely minimal.
444  /// Prefer `reserve` if future insertions are expected.
445  /// ```
446  /// ```rust
447  /// use tinyvec::*;
448  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3, 4);
449  /// assert!(tv.is_inline());
450  /// tv.reserve_exact(1);
451  /// assert!(tv.is_heap());
452  /// assert!(tv.capacity() >= 5);
453  /// ```
454  pub fn reserve_exact(&mut self, n: usize) {
455    let arr = match self {
456      TinyVec::Heap(h) => return h.reserve_exact(n),
457      TinyVec::Inline(a) => a,
458    };
459
460    if n > arr.capacity() - arr.len() {
461      let v = arr.drain_to_vec_and_reserve(n);
462      *self = TinyVec::Heap(v);
463    }
464
465    /* In this place array has enough place, so no work is needed more */
466    return;
467  }
468
469  /// Tries to reserve additional space.
470  /// Moves to the heap if array can't hold `n` more items
471  ///
472  /// # Errors
473  ///
474  /// If the allocator reports a failure, then an error is returned.
475  ///
476  /// From [Vec::try_reserve_exact](https://doc.rust-lang.org/std/vec/struct.Vec.html#method.try_reserve_exact)
477  /// ```text
478  /// Note that the allocator may give the collection more space than it requests.
479  /// Therefore, capacity can not be relied upon to be precisely minimal.
480  /// Prefer `reserve` if future insertions are expected.
481  /// ```
482  /// ```rust
483  /// use tinyvec::*;
484  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3, 4);
485  /// assert!(tv.is_inline());
486  /// assert_eq!(Ok(()), tv.try_reserve_exact(1));
487  /// assert!(tv.is_heap());
488  /// assert!(tv.capacity() >= 5);
489  /// ```
490  #[cfg(feature = "rustc_1_57")]
491  pub fn try_reserve_exact(&mut self, n: usize) -> Result<(), TryReserveError> {
492    let arr = match self {
493      TinyVec::Heap(h) => return h.try_reserve_exact(n),
494      TinyVec::Inline(a) => a,
495    };
496
497    if n > arr.capacity() - arr.len() {
498      let v = arr.try_drain_to_vec_and_reserve(n)?;
499      *self = TinyVec::Heap(v);
500    }
501
502    /* In this place array has enough place, so no work is needed more */
503    return Ok(());
504  }
505
506  /// Makes a new TinyVec with _at least_ the given capacity.
507  ///
508  /// If the requested capacity is less than or equal to the array capacity you
509  /// get an inline vec. If it's greater than you get a heap vec.
510  /// ```
511  /// # use tinyvec::*;
512  /// let t = TinyVec::<[u8; 10]>::with_capacity(5);
513  /// assert!(t.is_inline());
514  /// assert!(t.capacity() >= 5);
515  ///
516  /// let t = TinyVec::<[u8; 10]>::with_capacity(20);
517  /// assert!(t.is_heap());
518  /// assert!(t.capacity() >= 20);
519  /// ```
520  #[inline]
521  #[must_use]
522  pub fn with_capacity(cap: usize) -> Self {
523    if cap <= A::CAPACITY {
524      TinyVec::Inline(ArrayVec::default())
525    } else {
526      TinyVec::Heap(Vec::with_capacity(cap))
527    }
528  }
529}
530
531impl<A: Array> TinyVec<A> {
532  /// Move all values from `other` into this vec.
533  #[inline]
534  pub fn append(&mut self, other: &mut Self) {
535    self.reserve(other.len());
536
537    /* Doing append should be faster, because it is effectively a memcpy */
538    match (self, other) {
539      (TinyVec::Heap(sh), TinyVec::Heap(oh)) => sh.append(oh),
540      (TinyVec::Inline(a), TinyVec::Heap(h)) => a.extend(h.drain(..)),
541      (ref mut this, TinyVec::Inline(arr)) => this.extend(arr.drain(..)),
542    }
543  }
544
545  impl_mirrored! {
546    type Mirror = TinyVec;
547
548    /// Remove an element, swapping the end of the vec into its place.
549    ///
550    /// ## Panics
551    /// * If the index is out of bounds.
552    ///
553    /// ## Example
554    /// ```rust
555    /// use tinyvec::*;
556    /// let mut tv = tiny_vec!([&str; 4] => "foo", "bar", "quack", "zap");
557    ///
558    /// assert_eq!(tv.swap_remove(1), "bar");
559    /// assert_eq!(tv.as_slice(), &["foo", "zap", "quack"][..]);
560    ///
561    /// assert_eq!(tv.swap_remove(0), "foo");
562    /// assert_eq!(tv.as_slice(), &["quack", "zap"][..]);
563    /// ```
564    #[inline]
565    pub fn swap_remove(self: &mut Self, index: usize) -> A::Item;
566
567    /// Remove and return the last element of the vec, if there is one.
568    ///
569    /// ## Failure
570    /// * If the vec is empty you get `None`.
571    #[inline]
572    pub fn pop(self: &mut Self) -> Option<A::Item>;
573
574    /// Removes the item at `index`, shifting all others down by one index.
575    ///
576    /// Returns the removed element.
577    ///
578    /// ## Panics
579    ///
580    /// If the index is out of bounds.
581    ///
582    /// ## Example
583    ///
584    /// ```rust
585    /// use tinyvec::*;
586    /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
587    /// assert_eq!(tv.remove(1), 2);
588    /// assert_eq!(tv.as_slice(), &[1, 3][..]);
589    /// ```
590    #[inline]
591    pub fn remove(self: &mut Self, index: usize) -> A::Item;
592
593    /// The length of the vec (in elements).
594    #[inline(always)]
595    #[must_use]
596    pub fn len(self: &Self) -> usize;
597
598    /// The capacity of the `TinyVec`.
599    ///
600    /// When not heap allocated this is fixed based on the array type.
601    /// Otherwise its the result of the underlying Vec::capacity.
602    #[inline(always)]
603    #[must_use]
604    pub fn capacity(self: &Self) -> usize;
605
606    /// Reduces the vec's length to the given value.
607    ///
608    /// If the vec is already shorter than the input, nothing happens.
609    #[inline]
610    pub fn truncate(self: &mut Self, new_len: usize);
611
612    /// A mutable pointer to the backing array.
613    ///
614    /// ## Safety
615    ///
616    /// This pointer has provenance over the _entire_ backing array/buffer.
617    #[inline(always)]
618    #[must_use]
619    pub fn as_mut_ptr(self: &mut Self) -> *mut A::Item;
620
621    /// A const pointer to the backing array.
622    ///
623    /// ## Safety
624    ///
625    /// This pointer has provenance over the _entire_ backing array/buffer.
626    #[inline(always)]
627    #[must_use]
628    pub fn as_ptr(self: &Self) -> *const A::Item;
629  }
630
631  /// Walk the vec and keep only the elements that pass the predicate given.
632  ///
633  /// ## Example
634  ///
635  /// ```rust
636  /// use tinyvec::*;
637  ///
638  /// let mut tv = tiny_vec!([i32; 10] => 1, 2, 3, 4);
639  /// tv.retain(|&x| x % 2 == 0);
640  /// assert_eq!(tv.as_slice(), &[2, 4][..]);
641  /// ```
642  #[inline]
643  pub fn retain<F: FnMut(&A::Item) -> bool>(self: &mut Self, acceptable: F) {
644    match self {
645      TinyVec::Inline(i) => i.retain(acceptable),
646      TinyVec::Heap(h) => h.retain(acceptable),
647    }
648  }
649
650  /// Walk the vec and keep only the elements that pass the predicate given,
651  /// having the opportunity to modify the elements at the same time.
652  ///
653  /// ## Example
654  ///
655  /// ```rust
656  /// use tinyvec::*;
657  ///
658  /// let mut tv = tiny_vec!([i32; 10] => 1, 2, 3, 4);
659  /// tv.retain_mut(|x| if *x % 2 == 0 { *x *= 2; true } else { false });
660  /// assert_eq!(tv.as_slice(), &[4, 8][..]);
661  /// ```
662  #[inline]
663  #[cfg(feature = "rustc_1_61")]
664  pub fn retain_mut<F: FnMut(&mut A::Item) -> bool>(&mut self, acceptable: F) {
665    match self {
666      TinyVec::Inline(i) => i.retain_mut(acceptable),
667      TinyVec::Heap(h) => h.retain_mut(acceptable),
668    }
669  }
670
671  /// Helper for getting the mut slice.
672  #[inline(always)]
673  #[must_use]
674  pub fn as_mut_slice(self: &mut Self) -> &mut [A::Item] {
675    self.deref_mut()
676  }
677
678  /// Helper for getting the shared slice.
679  #[inline(always)]
680  #[must_use]
681  pub fn as_slice(self: &Self) -> &[A::Item] {
682    self.deref()
683  }
684
685  /// Removes all elements from the vec.
686  #[inline(always)]
687  pub fn clear(&mut self) {
688    self.truncate(0)
689  }
690
691  /// De-duplicates the vec.
692  #[cfg(feature = "nightly_slice_partition_dedup")]
693  #[inline(always)]
694  pub fn dedup(&mut self)
695  where
696    A::Item: PartialEq,
697  {
698    self.dedup_by(|a, b| a == b)
699  }
700
701  /// De-duplicates the vec according to the predicate given.
702  #[cfg(feature = "nightly_slice_partition_dedup")]
703  #[inline(always)]
704  pub fn dedup_by<F>(&mut self, same_bucket: F)
705  where
706    F: FnMut(&mut A::Item, &mut A::Item) -> bool,
707  {
708    let len = {
709      let (dedup, _) = self.as_mut_slice().partition_dedup_by(same_bucket);
710      dedup.len()
711    };
712    self.truncate(len);
713  }
714
715  /// De-duplicates the vec according to the key selector given.
716  #[cfg(feature = "nightly_slice_partition_dedup")]
717  #[inline(always)]
718  pub fn dedup_by_key<F, K>(&mut self, mut key: F)
719  where
720    F: FnMut(&mut A::Item) -> K,
721    K: PartialEq,
722  {
723    self.dedup_by(|a, b| key(a) == key(b))
724  }
725
726  /// Creates a draining iterator that removes the specified range in the vector
727  /// and yields the removed items.
728  ///
729  /// **Note: This method has significant performance issues compared to
730  /// matching on the TinyVec and then calling drain on the Inline or Heap value
731  /// inside. The draining iterator has to branch on every single access. It is
732  /// provided for simplicity and compatibility only.**
733  ///
734  /// ## Panics
735  /// * If the start is greater than the end
736  /// * If the end is past the edge of the vec.
737  ///
738  /// ## Example
739  /// ```rust
740  /// use tinyvec::*;
741  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
742  /// let tv2: TinyVec<[i32; 4]> = tv.drain(1..).collect();
743  /// assert_eq!(tv.as_slice(), &[1][..]);
744  /// assert_eq!(tv2.as_slice(), &[2, 3][..]);
745  ///
746  /// tv.drain(..);
747  /// assert_eq!(tv.as_slice(), &[]);
748  /// ```
749  #[inline]
750  pub fn drain<R: RangeBounds<usize>>(
751    &mut self, range: R,
752  ) -> TinyVecDrain<'_, A> {
753    match self {
754      TinyVec::Inline(i) => TinyVecDrain::Inline(i.drain(range)),
755      TinyVec::Heap(h) => TinyVecDrain::Heap(h.drain(range)),
756    }
757  }
758
759  /// Clone each element of the slice into this vec.
760  /// ```rust
761  /// use tinyvec::*;
762  /// let mut tv = tiny_vec!([i32; 4] => 1, 2);
763  /// tv.extend_from_slice(&[3, 4]);
764  /// assert_eq!(tv.as_slice(), [1, 2, 3, 4]);
765  /// ```
766  #[inline]
767  pub fn extend_from_slice(&mut self, sli: &[A::Item])
768  where
769    A::Item: Clone,
770  {
771    self.reserve(sli.len());
772    match self {
773      TinyVec::Inline(a) => a.extend_from_slice(sli),
774      TinyVec::Heap(h) => h.extend_from_slice(sli),
775    }
776  }
777
778  /// Wraps up an array and uses the given length as the initial length.
779  ///
780  /// Note that the `From` impl for arrays assumes the full length is used.
781  ///
782  /// ## Panics
783  ///
784  /// The length must be less than or equal to the capacity of the array.
785  #[inline]
786  #[must_use]
787  #[allow(clippy::match_wild_err_arm)]
788  pub fn from_array_len(data: A, len: usize) -> Self {
789    match Self::try_from_array_len(data, len) {
790      Ok(out) => out,
791      Err(_) => {
792        panic!("TinyVec: length {} exceeds capacity {}!", len, A::CAPACITY)
793      }
794    }
795  }
796
797  /// This is an internal implementation detail of the `tiny_vec!` macro, and
798  /// using it other than from that macro is not supported by this crate's
799  /// SemVer guarantee.
800  #[inline(always)]
801  #[doc(hidden)]
802  pub fn constructor_for_capacity(cap: usize) -> TinyVecConstructor<A> {
803    if cap <= A::CAPACITY {
804      TinyVecConstructor::Inline(TinyVec::Inline)
805    } else {
806      TinyVecConstructor::Heap(TinyVec::Heap)
807    }
808  }
809
810  /// Inserts an item at the position given, moving all following elements +1
811  /// index.
812  ///
813  /// ## Panics
814  /// * If `index` > `len`
815  ///
816  /// ## Example
817  /// ```rust
818  /// use tinyvec::*;
819  /// let mut tv = tiny_vec!([i32; 10] => 1, 2, 3);
820  /// tv.insert(1, 4);
821  /// assert_eq!(tv.as_slice(), &[1, 4, 2, 3]);
822  /// tv.insert(4, 5);
823  /// assert_eq!(tv.as_slice(), &[1, 4, 2, 3, 5]);
824  /// ```
825  #[inline]
826  pub fn insert(&mut self, index: usize, item: A::Item) {
827    assert!(
828      index <= self.len(),
829      "insertion index (is {}) should be <= len (is {})",
830      index,
831      self.len()
832    );
833
834    let arr = match self {
835      TinyVec::Heap(v) => return v.insert(index, item),
836      TinyVec::Inline(a) => a,
837    };
838
839    if let Some(x) = arr.try_insert(index, item) {
840      let mut v = Vec::with_capacity(arr.len() * 2);
841      let mut it =
842        arr.iter_mut().map(|r| core::mem::replace(r, Default::default()));
843      v.extend(it.by_ref().take(index));
844      v.push(x);
845      v.extend(it);
846      *self = TinyVec::Heap(v);
847    }
848  }
849
850  /// If the vec is empty.
851  #[inline(always)]
852  #[must_use]
853  pub fn is_empty(&self) -> bool {
854    self.len() == 0
855  }
856
857  /// Makes a new, empty vec.
858  #[inline(always)]
859  #[must_use]
860  pub fn new() -> Self {
861    Self::default()
862  }
863
864  /// Place an element onto the end of the vec.
865  #[inline]
866  pub fn push(&mut self, val: A::Item) {
867    // The code path for moving the inline contents to the heap produces a lot
868    // of instructions, but we have a strong guarantee that this is a cold
869    // path. LLVM doesn't know this, inlines it, and this tends to cause a
870    // cascade of other bad inlining decisions because the body of push looks
871    // huge even though nearly every call executes the same few instructions.
872    //
873    // Moving the logic out of line with #[cold] causes the hot code to  be
874    // inlined together, and we take the extra cost of a function call only
875    // in rare cases.
876    #[cold]
877    fn drain_to_heap_and_push<A: Array>(
878      arr: &mut ArrayVec<A>, val: A::Item,
879    ) -> TinyVec<A> {
880      /* Make the Vec twice the size to amortize the cost of draining */
881      let mut v = arr.drain_to_vec_and_reserve(arr.len());
882      v.push(val);
883      TinyVec::Heap(v)
884    }
885
886    match self {
887      TinyVec::Heap(v) => v.push(val),
888      TinyVec::Inline(arr) => {
889        if let Some(x) = arr.try_push(val) {
890          *self = drain_to_heap_and_push(arr, x);
891        }
892      }
893    }
894  }
895
896  /// Resize the vec to the new length.
897  ///
898  /// If it needs to be longer, it's filled with clones of the provided value.
899  /// If it needs to be shorter, it's truncated.
900  ///
901  /// ## Example
902  ///
903  /// ```rust
904  /// use tinyvec::*;
905  ///
906  /// let mut tv = tiny_vec!([&str; 10] => "hello");
907  /// tv.resize(3, "world");
908  /// assert_eq!(tv.as_slice(), &["hello", "world", "world"][..]);
909  ///
910  /// let mut tv = tiny_vec!([i32; 10] => 1, 2, 3, 4);
911  /// tv.resize(2, 0);
912  /// assert_eq!(tv.as_slice(), &[1, 2][..]);
913  /// ```
914  #[inline]
915  pub fn resize(&mut self, new_len: usize, new_val: A::Item)
916  where
917    A::Item: Clone,
918  {
919    self.resize_with(new_len, || new_val.clone());
920  }
921
922  /// Resize the vec to the new length.
923  ///
924  /// If it needs to be longer, it's filled with repeated calls to the provided
925  /// function. If it needs to be shorter, it's truncated.
926  ///
927  /// ## Example
928  ///
929  /// ```rust
930  /// use tinyvec::*;
931  ///
932  /// let mut tv = tiny_vec!([i32; 3] => 1, 2, 3);
933  /// tv.resize_with(5, Default::default);
934  /// assert_eq!(tv.as_slice(), &[1, 2, 3, 0, 0][..]);
935  ///
936  /// let mut tv = tiny_vec!([i32; 2]);
937  /// let mut p = 1;
938  /// tv.resize_with(4, || {
939  ///   p *= 2;
940  ///   p
941  /// });
942  /// assert_eq!(tv.as_slice(), &[2, 4, 8, 16][..]);
943  /// ```
944  #[inline]
945  pub fn resize_with<F: FnMut() -> A::Item>(&mut self, new_len: usize, f: F) {
946    match new_len.checked_sub(self.len()) {
947      None => return self.truncate(new_len),
948      Some(n) => self.reserve(n),
949    }
950
951    match self {
952      TinyVec::Inline(a) => a.resize_with(new_len, f),
953      TinyVec::Heap(v) => v.resize_with(new_len, f),
954    }
955  }
956
957  /// Splits the collection at the point given.
958  ///
959  /// * `[0, at)` stays in this vec
960  /// * `[at, len)` ends up in the new vec.
961  ///
962  /// ## Panics
963  /// * if at > len
964  ///
965  /// ## Example
966  ///
967  /// ```rust
968  /// use tinyvec::*;
969  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
970  /// let tv2 = tv.split_off(1);
971  /// assert_eq!(tv.as_slice(), &[1][..]);
972  /// assert_eq!(tv2.as_slice(), &[2, 3][..]);
973  /// ```
974  #[inline]
975  pub fn split_off(&mut self, at: usize) -> Self {
976    match self {
977      TinyVec::Inline(a) => TinyVec::Inline(a.split_off(at)),
978      TinyVec::Heap(v) => TinyVec::Heap(v.split_off(at)),
979    }
980  }
981
982  /// Creates a splicing iterator that removes the specified range in the
983  /// vector, yields the removed items, and replaces them with elements from
984  /// the provided iterator.
985  ///
986  /// `splice` fuses the provided iterator, so elements after the first `None`
987  /// are ignored.
988  ///
989  /// ## Panics
990  /// * If the start is greater than the end.
991  /// * If the end is past the edge of the vec.
992  /// * If the provided iterator panics.
993  ///
994  /// ## Example
995  /// ```rust
996  /// use tinyvec::*;
997  /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
998  /// let tv2: TinyVec<[i32; 4]> = tv.splice(1.., 4..=6).collect();
999  /// assert_eq!(tv.as_slice(), &[1, 4, 5, 6][..]);
1000  /// assert_eq!(tv2.as_slice(), &[2, 3][..]);
1001  ///
1002  /// tv.splice(.., None);
1003  /// assert_eq!(tv.as_slice(), &[]);
1004  /// ```
1005  #[inline]
1006  pub fn splice<R, I>(
1007    &mut self, range: R, replacement: I,
1008  ) -> TinyVecSplice<'_, A, core::iter::Fuse<I::IntoIter>>
1009  where
1010    R: RangeBounds<usize>,
1011    I: IntoIterator<Item = A::Item>,
1012  {
1013    use core::ops::Bound;
1014    let start = match range.start_bound() {
1015      Bound::Included(x) => *x,
1016      Bound::Excluded(x) => x.saturating_add(1),
1017      Bound::Unbounded => 0,
1018    };
1019    let end = match range.end_bound() {
1020      Bound::Included(x) => x.saturating_add(1),
1021      Bound::Excluded(x) => *x,
1022      Bound::Unbounded => self.len(),
1023    };
1024    assert!(
1025      start <= end,
1026      "TinyVec::splice> Illegal range, {} to {}",
1027      start,
1028      end
1029    );
1030    assert!(
1031      end <= self.len(),
1032      "TinyVec::splice> Range ends at {} but length is only {}!",
1033      end,
1034      self.len()
1035    );
1036
1037    TinyVecSplice {
1038      removal_start: start,
1039      removal_end: end,
1040      parent: self,
1041      replacement: replacement.into_iter().fuse(),
1042    }
1043  }
1044
1045  /// Wraps an array, using the given length as the starting length.
1046  ///
1047  /// If you want to use the whole length of the array, you can just use the
1048  /// `From` impl.
1049  ///
1050  /// ## Failure
1051  ///
1052  /// If the given length is greater than the capacity of the array this will
1053  /// error, and you'll get the array back in the `Err`.
1054  #[inline]
1055  pub fn try_from_array_len(data: A, len: usize) -> Result<Self, A> {
1056    let arr = ArrayVec::try_from_array_len(data, len)?;
1057    Ok(TinyVec::Inline(arr))
1058  }
1059}
1060
1061/// Draining iterator for `TinyVecDrain`
1062///
1063/// See [`TinyVecDrain::drain`](TinyVecDrain::<A>::drain)
1064#[cfg_attr(docs_rs, doc(cfg(feature = "alloc")))]
1065pub enum TinyVecDrain<'p, A: Array> {
1066  #[allow(missing_docs)]
1067  Inline(ArrayVecDrain<'p, A::Item>),
1068  #[allow(missing_docs)]
1069  Heap(vec::Drain<'p, A::Item>),
1070}
1071
1072impl<'p, A: Array> Iterator for TinyVecDrain<'p, A> {
1073  type Item = A::Item;
1074
1075  impl_mirrored! {
1076    type Mirror = TinyVecDrain;
1077
1078    #[inline]
1079    fn next(self: &mut Self) -> Option<Self::Item>;
1080    #[inline]
1081    fn nth(self: &mut Self, n: usize) -> Option<Self::Item>;
1082    #[inline]
1083    fn size_hint(self: &Self) -> (usize, Option<usize>);
1084    #[inline]
1085    fn last(self: Self) -> Option<Self::Item>;
1086    #[inline]
1087    fn count(self: Self) -> usize;
1088  }
1089
1090  #[inline]
1091  fn for_each<F: FnMut(Self::Item)>(self, f: F) {
1092    match self {
1093      TinyVecDrain::Inline(i) => i.for_each(f),
1094      TinyVecDrain::Heap(h) => h.for_each(f),
1095    }
1096  }
1097}
1098
1099impl<'p, A: Array> DoubleEndedIterator for TinyVecDrain<'p, A> {
1100  impl_mirrored! {
1101    type Mirror = TinyVecDrain;
1102
1103    #[inline]
1104    fn next_back(self: &mut Self) -> Option<Self::Item>;
1105
1106    #[inline]
1107    fn nth_back(self: &mut Self, n: usize) -> Option<Self::Item>;
1108  }
1109}
1110
1111/// Splicing iterator for `TinyVec`
1112/// See [`TinyVec::splice`](TinyVec::<A>::splice)
1113#[cfg_attr(docs_rs, doc(cfg(feature = "alloc")))]
1114pub struct TinyVecSplice<'p, A: Array, I: Iterator<Item = A::Item>> {
1115  parent: &'p mut TinyVec<A>,
1116  removal_start: usize,
1117  removal_end: usize,
1118  replacement: I,
1119}
1120
1121impl<'p, A, I> Iterator for TinyVecSplice<'p, A, I>
1122where
1123  A: Array,
1124  I: Iterator<Item = A::Item>,
1125{
1126  type Item = A::Item;
1127
1128  #[inline]
1129  fn next(&mut self) -> Option<A::Item> {
1130    if self.removal_start < self.removal_end {
1131      match self.replacement.next() {
1132        Some(replacement) => {
1133          let removed = core::mem::replace(
1134            &mut self.parent[self.removal_start],
1135            replacement,
1136          );
1137          self.removal_start += 1;
1138          Some(removed)
1139        }
1140        None => {
1141          let removed = self.parent.remove(self.removal_start);
1142          self.removal_end -= 1;
1143          Some(removed)
1144        }
1145      }
1146    } else {
1147      None
1148    }
1149  }
1150
1151  #[inline]
1152  fn size_hint(&self) -> (usize, Option<usize>) {
1153    let len = self.len();
1154    (len, Some(len))
1155  }
1156}
1157
1158impl<'p, A, I> ExactSizeIterator for TinyVecSplice<'p, A, I>
1159where
1160  A: Array,
1161  I: Iterator<Item = A::Item>,
1162{
1163  #[inline]
1164  fn len(&self) -> usize {
1165    self.removal_end - self.removal_start
1166  }
1167}
1168
1169impl<'p, A, I> FusedIterator for TinyVecSplice<'p, A, I>
1170where
1171  A: Array,
1172  I: Iterator<Item = A::Item>,
1173{
1174}
1175
1176impl<'p, A, I> DoubleEndedIterator for TinyVecSplice<'p, A, I>
1177where
1178  A: Array,
1179  I: Iterator<Item = A::Item> + DoubleEndedIterator,
1180{
1181  #[inline]
1182  fn next_back(&mut self) -> Option<A::Item> {
1183    if self.removal_start < self.removal_end {
1184      match self.replacement.next_back() {
1185        Some(replacement) => {
1186          let removed = core::mem::replace(
1187            &mut self.parent[self.removal_end - 1],
1188            replacement,
1189          );
1190          self.removal_end -= 1;
1191          Some(removed)
1192        }
1193        None => {
1194          let removed = self.parent.remove(self.removal_end - 1);
1195          self.removal_end -= 1;
1196          Some(removed)
1197        }
1198      }
1199    } else {
1200      None
1201    }
1202  }
1203}
1204
1205impl<'p, A: Array, I: Iterator<Item = A::Item>> Drop
1206  for TinyVecSplice<'p, A, I>
1207{
1208  fn drop(&mut self) {
1209    for _ in self.by_ref() {}
1210
1211    let (lower_bound, _) = self.replacement.size_hint();
1212    self.parent.reserve(lower_bound);
1213
1214    for replacement in self.replacement.by_ref() {
1215      self.parent.insert(self.removal_end, replacement);
1216      self.removal_end += 1;
1217    }
1218  }
1219}
1220
1221impl<A: Array> AsMut<[A::Item]> for TinyVec<A> {
1222  #[inline(always)]
1223  #[must_use]
1224  fn as_mut(&mut self) -> &mut [A::Item] {
1225    &mut *self
1226  }
1227}
1228
1229impl<A: Array> AsRef<[A::Item]> for TinyVec<A> {
1230  #[inline(always)]
1231  #[must_use]
1232  fn as_ref(&self) -> &[A::Item] {
1233    &*self
1234  }
1235}
1236
1237impl<A: Array> Borrow<[A::Item]> for TinyVec<A> {
1238  #[inline(always)]
1239  #[must_use]
1240  fn borrow(&self) -> &[A::Item] {
1241    &*self
1242  }
1243}
1244
1245impl<A: Array> BorrowMut<[A::Item]> for TinyVec<A> {
1246  #[inline(always)]
1247  #[must_use]
1248  fn borrow_mut(&mut self) -> &mut [A::Item] {
1249    &mut *self
1250  }
1251}
1252
1253impl<A: Array> Extend<A::Item> for TinyVec<A> {
1254  #[inline]
1255  fn extend<T: IntoIterator<Item = A::Item>>(&mut self, iter: T) {
1256    let iter = iter.into_iter();
1257    let (lower_bound, _) = iter.size_hint();
1258    self.reserve(lower_bound);
1259
1260    let a = match self {
1261      TinyVec::Heap(h) => return h.extend(iter),
1262      TinyVec::Inline(a) => a,
1263    };
1264
1265    let mut iter = a.fill(iter);
1266    let maybe = iter.next();
1267
1268    let surely = match maybe {
1269      Some(x) => x,
1270      None => return,
1271    };
1272
1273    let mut v = a.drain_to_vec_and_reserve(a.len());
1274    v.push(surely);
1275    v.extend(iter);
1276    *self = TinyVec::Heap(v);
1277  }
1278}
1279
1280impl<A: Array> From<ArrayVec<A>> for TinyVec<A> {
1281  #[inline(always)]
1282  #[must_use]
1283  fn from(arr: ArrayVec<A>) -> Self {
1284    TinyVec::Inline(arr)
1285  }
1286}
1287
1288impl<A: Array> From<A> for TinyVec<A> {
1289  fn from(array: A) -> Self {
1290    TinyVec::Inline(ArrayVec::from(array))
1291  }
1292}
1293
1294impl<T, A> From<&'_ [T]> for TinyVec<A>
1295where
1296  T: Clone + Default,
1297  A: Array<Item = T>,
1298{
1299  #[inline]
1300  #[must_use]
1301  fn from(slice: &[T]) -> Self {
1302    if let Ok(arr) = ArrayVec::try_from(slice) {
1303      TinyVec::Inline(arr)
1304    } else {
1305      TinyVec::Heap(slice.into())
1306    }
1307  }
1308}
1309
1310impl<T, A> From<&'_ mut [T]> for TinyVec<A>
1311where
1312  T: Clone + Default,
1313  A: Array<Item = T>,
1314{
1315  #[inline]
1316  #[must_use]
1317  fn from(slice: &mut [T]) -> Self {
1318    Self::from(&*slice)
1319  }
1320}
1321
1322impl<A: Array> FromIterator<A::Item> for TinyVec<A> {
1323  #[inline]
1324  #[must_use]
1325  fn from_iter<T: IntoIterator<Item = A::Item>>(iter: T) -> Self {
1326    let mut av = Self::default();
1327    av.extend(iter);
1328    av
1329  }
1330}
1331
1332/// Iterator for consuming an `TinyVec` and returning owned elements.
1333#[cfg_attr(docs_rs, doc(cfg(feature = "alloc")))]
1334pub enum TinyVecIterator<A: Array> {
1335  #[allow(missing_docs)]
1336  Inline(ArrayVecIterator<A>),
1337  #[allow(missing_docs)]
1338  Heap(alloc::vec::IntoIter<A::Item>),
1339}
1340
1341impl<A: Array> TinyVecIterator<A> {
1342  impl_mirrored! {
1343    type Mirror = TinyVecIterator;
1344    /// Returns the remaining items of this iterator as a slice.
1345    #[inline]
1346    #[must_use]
1347    pub fn as_slice(self: &Self) -> &[A::Item];
1348  }
1349}
1350
1351impl<A: Array> FusedIterator for TinyVecIterator<A> {}
1352
1353impl<A: Array> Iterator for TinyVecIterator<A> {
1354  type Item = A::Item;
1355
1356  impl_mirrored! {
1357    type Mirror = TinyVecIterator;
1358
1359    #[inline]
1360    fn next(self: &mut Self) -> Option<Self::Item>;
1361
1362    #[inline(always)]
1363    #[must_use]
1364    fn size_hint(self: &Self) -> (usize, Option<usize>);
1365
1366    #[inline(always)]
1367    fn count(self: Self) -> usize;
1368
1369    #[inline]
1370    fn last(self: Self) -> Option<Self::Item>;
1371
1372    #[inline]
1373    fn nth(self: &mut Self, n: usize) -> Option<A::Item>;
1374  }
1375}
1376
1377impl<A: Array> DoubleEndedIterator for TinyVecIterator<A> {
1378  impl_mirrored! {
1379    type Mirror = TinyVecIterator;
1380
1381    #[inline]
1382    fn next_back(self: &mut Self) -> Option<Self::Item>;
1383
1384    #[inline]
1385    fn nth_back(self: &mut Self, n: usize) -> Option<Self::Item>;
1386  }
1387}
1388
1389impl<A: Array> ExactSizeIterator for TinyVecIterator<A> {
1390  impl_mirrored! {
1391    type Mirror = TinyVecIterator;
1392    #[inline]
1393    fn len(self: &Self) -> usize;
1394  }
1395}
1396
1397impl<A: Array> Debug for TinyVecIterator<A>
1398where
1399  A::Item: Debug,
1400{
1401  #[allow(clippy::missing_inline_in_public_items)]
1402  fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
1403    f.debug_tuple("TinyVecIterator").field(&self.as_slice()).finish()
1404  }
1405}
1406
1407impl<A: Array> IntoIterator for TinyVec<A> {
1408  type Item = A::Item;
1409  type IntoIter = TinyVecIterator<A>;
1410  #[inline(always)]
1411  #[must_use]
1412  fn into_iter(self) -> Self::IntoIter {
1413    match self {
1414      TinyVec::Inline(a) => TinyVecIterator::Inline(a.into_iter()),
1415      TinyVec::Heap(v) => TinyVecIterator::Heap(v.into_iter()),
1416    }
1417  }
1418}
1419
1420impl<'a, A: Array> IntoIterator for &'a mut TinyVec<A> {
1421  type Item = &'a mut A::Item;
1422  type IntoIter = core::slice::IterMut<'a, A::Item>;
1423  #[inline(always)]
1424  #[must_use]
1425  fn into_iter(self) -> Self::IntoIter {
1426    self.iter_mut()
1427  }
1428}
1429
1430impl<'a, A: Array> IntoIterator for &'a TinyVec<A> {
1431  type Item = &'a A::Item;
1432  type IntoIter = core::slice::Iter<'a, A::Item>;
1433  #[inline(always)]
1434  #[must_use]
1435  fn into_iter(self) -> Self::IntoIter {
1436    self.iter()
1437  }
1438}
1439
1440impl<A: Array> PartialEq for TinyVec<A>
1441where
1442  A::Item: PartialEq,
1443{
1444  #[inline]
1445  #[must_use]
1446  fn eq(&self, other: &Self) -> bool {
1447    self.as_slice().eq(other.as_slice())
1448  }
1449}
1450impl<A: Array> Eq for TinyVec<A> where A::Item: Eq {}
1451
1452impl<A: Array> PartialOrd for TinyVec<A>
1453where
1454  A::Item: PartialOrd,
1455{
1456  #[inline]
1457  #[must_use]
1458  fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
1459    self.as_slice().partial_cmp(other.as_slice())
1460  }
1461}
1462impl<A: Array> Ord for TinyVec<A>
1463where
1464  A::Item: Ord,
1465{
1466  #[inline]
1467  #[must_use]
1468  fn cmp(&self, other: &Self) -> core::cmp::Ordering {
1469    self.as_slice().cmp(other.as_slice())
1470  }
1471}
1472
1473impl<A: Array> PartialEq<&A> for TinyVec<A>
1474where
1475  A::Item: PartialEq,
1476{
1477  #[inline]
1478  #[must_use]
1479  fn eq(&self, other: &&A) -> bool {
1480    self.as_slice().eq(other.as_slice())
1481  }
1482}
1483
1484impl<A: Array> PartialEq<&[A::Item]> for TinyVec<A>
1485where
1486  A::Item: PartialEq,
1487{
1488  #[inline]
1489  #[must_use]
1490  fn eq(&self, other: &&[A::Item]) -> bool {
1491    self.as_slice().eq(*other)
1492  }
1493}
1494
1495impl<A: Array> Hash for TinyVec<A>
1496where
1497  A::Item: Hash,
1498{
1499  #[inline]
1500  fn hash<H: Hasher>(&self, state: &mut H) {
1501    self.as_slice().hash(state)
1502  }
1503}
1504
1505// // // // // // // //
1506// Formatting impls
1507// // // // // // // //
1508
1509impl<A: Array> Binary for TinyVec<A>
1510where
1511  A::Item: Binary,
1512{
1513  #[allow(clippy::missing_inline_in_public_items)]
1514  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1515    write!(f, "[")?;
1516    if f.alternate() {
1517      write!(f, "\n    ")?;
1518    }
1519    for (i, elem) in self.iter().enumerate() {
1520      if i > 0 {
1521        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1522      }
1523      Binary::fmt(elem, f)?;
1524    }
1525    if f.alternate() {
1526      write!(f, ",\n")?;
1527    }
1528    write!(f, "]")
1529  }
1530}
1531
1532impl<A: Array> Debug for TinyVec<A>
1533where
1534  A::Item: Debug,
1535{
1536  #[allow(clippy::missing_inline_in_public_items)]
1537  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1538    write!(f, "[")?;
1539    if f.alternate() && !self.is_empty() {
1540      write!(f, "\n    ")?;
1541    }
1542    for (i, elem) in self.iter().enumerate() {
1543      if i > 0 {
1544        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1545      }
1546      Debug::fmt(elem, f)?;
1547    }
1548    if f.alternate() && !self.is_empty() {
1549      write!(f, ",\n")?;
1550    }
1551    write!(f, "]")
1552  }
1553}
1554
1555impl<A: Array> Display for TinyVec<A>
1556where
1557  A::Item: Display,
1558{
1559  #[allow(clippy::missing_inline_in_public_items)]
1560  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1561    write!(f, "[")?;
1562    if f.alternate() {
1563      write!(f, "\n    ")?;
1564    }
1565    for (i, elem) in self.iter().enumerate() {
1566      if i > 0 {
1567        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1568      }
1569      Display::fmt(elem, f)?;
1570    }
1571    if f.alternate() {
1572      write!(f, ",\n")?;
1573    }
1574    write!(f, "]")
1575  }
1576}
1577
1578impl<A: Array> LowerExp for TinyVec<A>
1579where
1580  A::Item: LowerExp,
1581{
1582  #[allow(clippy::missing_inline_in_public_items)]
1583  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1584    write!(f, "[")?;
1585    if f.alternate() {
1586      write!(f, "\n    ")?;
1587    }
1588    for (i, elem) in self.iter().enumerate() {
1589      if i > 0 {
1590        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1591      }
1592      LowerExp::fmt(elem, f)?;
1593    }
1594    if f.alternate() {
1595      write!(f, ",\n")?;
1596    }
1597    write!(f, "]")
1598  }
1599}
1600
1601impl<A: Array> LowerHex for TinyVec<A>
1602where
1603  A::Item: LowerHex,
1604{
1605  #[allow(clippy::missing_inline_in_public_items)]
1606  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1607    write!(f, "[")?;
1608    if f.alternate() {
1609      write!(f, "\n    ")?;
1610    }
1611    for (i, elem) in self.iter().enumerate() {
1612      if i > 0 {
1613        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1614      }
1615      LowerHex::fmt(elem, f)?;
1616    }
1617    if f.alternate() {
1618      write!(f, ",\n")?;
1619    }
1620    write!(f, "]")
1621  }
1622}
1623
1624impl<A: Array> Octal for TinyVec<A>
1625where
1626  A::Item: Octal,
1627{
1628  #[allow(clippy::missing_inline_in_public_items)]
1629  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1630    write!(f, "[")?;
1631    if f.alternate() {
1632      write!(f, "\n    ")?;
1633    }
1634    for (i, elem) in self.iter().enumerate() {
1635      if i > 0 {
1636        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1637      }
1638      Octal::fmt(elem, f)?;
1639    }
1640    if f.alternate() {
1641      write!(f, ",\n")?;
1642    }
1643    write!(f, "]")
1644  }
1645}
1646
1647impl<A: Array> Pointer for TinyVec<A>
1648where
1649  A::Item: Pointer,
1650{
1651  #[allow(clippy::missing_inline_in_public_items)]
1652  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1653    write!(f, "[")?;
1654    if f.alternate() {
1655      write!(f, "\n    ")?;
1656    }
1657    for (i, elem) in self.iter().enumerate() {
1658      if i > 0 {
1659        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1660      }
1661      Pointer::fmt(elem, f)?;
1662    }
1663    if f.alternate() {
1664      write!(f, ",\n")?;
1665    }
1666    write!(f, "]")
1667  }
1668}
1669
1670impl<A: Array> UpperExp for TinyVec<A>
1671where
1672  A::Item: UpperExp,
1673{
1674  #[allow(clippy::missing_inline_in_public_items)]
1675  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1676    write!(f, "[")?;
1677    if f.alternate() {
1678      write!(f, "\n    ")?;
1679    }
1680    for (i, elem) in self.iter().enumerate() {
1681      if i > 0 {
1682        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1683      }
1684      UpperExp::fmt(elem, f)?;
1685    }
1686    if f.alternate() {
1687      write!(f, ",\n")?;
1688    }
1689    write!(f, "]")
1690  }
1691}
1692
1693impl<A: Array> UpperHex for TinyVec<A>
1694where
1695  A::Item: UpperHex,
1696{
1697  #[allow(clippy::missing_inline_in_public_items)]
1698  fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
1699    write!(f, "[")?;
1700    if f.alternate() {
1701      write!(f, "\n    ")?;
1702    }
1703    for (i, elem) in self.iter().enumerate() {
1704      if i > 0 {
1705        write!(f, ",{}", if f.alternate() { "\n    " } else { " " })?;
1706      }
1707      UpperHex::fmt(elem, f)?;
1708    }
1709    if f.alternate() {
1710      write!(f, ",\n")?;
1711    }
1712    write!(f, "]")
1713  }
1714}
1715
1716#[cfg(feature = "serde")]
1717#[cfg_attr(docs_rs, doc(cfg(feature = "alloc")))]
1718struct TinyVecVisitor<A: Array>(PhantomData<A>);
1719
1720#[cfg(feature = "serde")]
1721impl<'de, A: Array> Visitor<'de> for TinyVecVisitor<A>
1722where
1723  A::Item: Deserialize<'de>,
1724{
1725  type Value = TinyVec<A>;
1726
1727  fn expecting(
1728    &self, formatter: &mut core::fmt::Formatter,
1729  ) -> core::fmt::Result {
1730    formatter.write_str("a sequence")
1731  }
1732
1733  fn visit_seq<S>(self, mut seq: S) -> Result<Self::Value, S::Error>
1734  where
1735    S: SeqAccess<'de>,
1736  {
1737    let mut new_tinyvec = match seq.size_hint() {
1738      Some(expected_size) => TinyVec::with_capacity(expected_size),
1739      None => Default::default(),
1740    };
1741
1742    while let Some(value) = seq.next_element()? {
1743      new_tinyvec.push(value);
1744    }
1745
1746    Ok(new_tinyvec)
1747  }
1748}