1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
use core::{fmt, mem};
use alloc::{boxed::Box, format, string::String, sync::Arc, vec, vec::Vec};
#[cfg(feature = "syntax")]
use crate::nfa::thompson::{
compiler::{Compiler, Config},
error::BuildError,
};
use crate::{
nfa::thompson::builder::Builder,
util::{
alphabet::{self, ByteClassSet, ByteClasses},
captures::{GroupInfo, GroupInfoError},
look::{Look, LookMatcher, LookSet},
primitives::{
IteratorIndexExt, PatternID, PatternIDIter, SmallIndex, StateID,
},
sparse_set::SparseSet,
},
};
/// A byte oriented Thompson non-deterministic finite automaton (NFA).
///
/// A Thompson NFA is a finite state machine that permits unconditional epsilon
/// transitions, but guarantees that there exists at most one non-epsilon
/// transition for each element in the alphabet for each state.
///
/// An NFA may be used directly for searching, for analysis or to build
/// a deterministic finite automaton (DFA).
///
/// # Cheap clones
///
/// Since an NFA is a core data type in this crate that many other regex
/// engines are based on top of, it is convenient to give ownership of an NFA
/// to said regex engines. Because of this, an NFA uses reference counting
/// internally. Therefore, it is cheap to clone and it is encouraged to do so.
///
/// # Capabilities
///
/// Using an NFA for searching via the
/// [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM) provides the most amount
/// of "power" of any regex engine in this crate. Namely, it supports the
/// following in all cases:
///
/// 1. Detection of a match.
/// 2. Location of a match, including both the start and end offset, in a
/// single pass of the haystack.
/// 3. Location of matching capturing groups.
/// 4. Handles multiple patterns, including (1)-(3) when multiple patterns are
/// present.
///
/// # Capturing Groups
///
/// Groups refer to parenthesized expressions inside a regex pattern. They look
/// like this, where `exp` is an arbitrary regex:
///
/// * `(exp)` - An unnamed capturing group.
/// * `(?P<name>exp)` or `(?<name>exp)` - A named capturing group.
/// * `(?:exp)` - A non-capturing group.
/// * `(?i:exp)` - A non-capturing group that sets flags.
///
/// Only the first two forms are said to be _capturing_. Capturing
/// means that the last position at which they match is reportable. The
/// [`Captures`](crate::util::captures::Captures) type provides convenient
/// access to the match positions of capturing groups, which includes looking
/// up capturing groups by their name.
///
/// # Byte oriented
///
/// This NFA is byte oriented, which means that all of its transitions are
/// defined on bytes. In other words, the alphabet of an NFA consists of the
/// 256 different byte values.
///
/// While DFAs nearly demand that they be byte oriented for performance
/// reasons, an NFA could conceivably be *Unicode codepoint* oriented. Indeed,
/// a previous version of this NFA supported both byte and codepoint oriented
/// modes. A codepoint oriented mode can work because an NFA fundamentally uses
/// a sparse representation of transitions, which works well with the large
/// sparse space of Unicode codepoints.
///
/// Nevertheless, this NFA is only byte oriented. This choice is primarily
/// driven by implementation simplicity, and also in part memory usage. In
/// practice, performance between the two is roughly comparable. However,
/// building a DFA (including a hybrid DFA) really wants a byte oriented NFA.
/// So if we do have a codepoint oriented NFA, then we also need to generate
/// byte oriented NFA in order to build an hybrid NFA/DFA. Thus, by only
/// generating byte oriented NFAs, we can produce one less NFA. In other words,
/// if we made our NFA codepoint oriented, we'd need to *also* make it support
/// a byte oriented mode, which is more complicated. But a byte oriented mode
/// can support everything.
///
/// # Differences with DFAs
///
/// At the theoretical level, the precise difference between an NFA and a DFA
/// is that, in a DFA, for every state, an input symbol unambiguously refers
/// to a single transition _and_ that an input symbol is required for each
/// transition. At a practical level, this permits DFA implementations to be
/// implemented at their core with a small constant number of CPU instructions
/// for each byte of input searched. In practice, this makes them quite a bit
/// faster than NFAs _in general_. Namely, in order to execute a search for any
/// Thompson NFA, one needs to keep track of a _set_ of states, and execute
/// the possible transitions on all of those states for each input symbol.
/// Overall, this results in much more overhead. To a first approximation, one
/// can expect DFA searches to be about an order of magnitude faster.
///
/// So why use an NFA at all? The main advantage of an NFA is that it takes
/// linear time (in the size of the pattern string after repetitions have been
/// expanded) to build and linear memory usage. A DFA, on the other hand, may
/// take exponential time and/or space to build. Even in non-pathological
/// cases, DFAs often take quite a bit more memory than their NFA counterparts,
/// _especially_ if large Unicode character classes are involved. Of course,
/// an NFA also provides additional capabilities. For example, it can match
/// Unicode word boundaries on non-ASCII text and resolve the positions of
/// capturing groups.
///
/// Note that a [`hybrid::regex::Regex`](crate::hybrid::regex::Regex) strikes a
/// good balance between an NFA and a DFA. It avoids the exponential build time
/// of a DFA while maintaining its fast search time. The downside of a hybrid
/// NFA/DFA is that in some cases it can be slower at search time than the NFA.
/// (It also has less functionality than a pure NFA. It cannot handle Unicode
/// word boundaries on non-ASCII text and cannot resolve capturing groups.)
///
/// # Example
///
/// This shows how to build an NFA with the default configuration and execute a
/// search using the Pike VM.
///
/// ```
/// use regex_automata::{nfa::thompson::pikevm::PikeVM, Match};
///
/// let re = PikeVM::new(r"foo[0-9]+")?;
/// let mut cache = re.create_cache();
/// let mut caps = re.create_captures();
///
/// let expected = Some(Match::must(0, 0..8));
/// re.captures(&mut cache, b"foo12345", &mut caps);
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: resolving capturing groups
///
/// This example shows how to parse some simple dates and extract the
/// components of each date via capturing groups.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
/// nfa::thompson::pikevm::PikeVM,
/// util::captures::Captures,
/// };
///
/// let vm = PikeVM::new(r"(?P<y>\d{4})-(?P<m>\d{2})-(?P<d>\d{2})")?;
/// let mut cache = vm.create_cache();
///
/// let haystack = "2012-03-14, 2013-01-01 and 2014-07-05";
/// let all: Vec<Captures> = vm.captures_iter(
/// &mut cache, haystack.as_bytes()
/// ).collect();
/// // There should be a total of 3 matches.
/// assert_eq!(3, all.len());
/// // The year from the second match is '2013'.
/// let span = all[1].get_group_by_name("y").unwrap();
/// assert_eq!("2013", &haystack[span]);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// This example shows that only the last match of a capturing group is
/// reported, even if it had to match multiple times for an overall match
/// to occur.
///
/// ```
/// use regex_automata::{nfa::thompson::pikevm::PikeVM, Span};
///
/// let re = PikeVM::new(r"([a-z]){4}")?;
/// let mut cache = re.create_cache();
/// let mut caps = re.create_captures();
///
/// let haystack = b"quux";
/// re.captures(&mut cache, haystack, &mut caps);
/// assert!(caps.is_match());
/// assert_eq!(Some(Span::from(3..4)), caps.get_group(1));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone)]
pub struct NFA(
// We make NFAs reference counted primarily for two reasons. First is that
// the NFA type itself is quite large (at least 0.5KB), and so it makes
// sense to put it on the heap by default anyway. Second is that, for Arc
// specifically, this enables cheap clones. This tends to be useful because
// several structures (the backtracker, the Pike VM, the hybrid NFA/DFA)
// all want to hang on to an NFA for use during search time. We could
// provide the NFA at search time via a function argument, but this makes
// for an unnecessarily annoying API. Instead, we just let each structure
// share ownership of the NFA. Using a deep clone would not be smart, since
// the NFA can use quite a bit of heap space.
Arc<Inner>,
);
impl NFA {
/// Parse the given regular expression using a default configuration and
/// build an NFA from it.
///
/// If you want a non-default configuration, then use the NFA
/// [`Compiler`] with a [`Config`].
///
/// # Example
///
/// ```
/// use regex_automata::{nfa::thompson::pikevm::PikeVM, Match};
///
/// let re = PikeVM::new(r"foo[0-9]+")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// let expected = Some(Match::must(0, 0..8));
/// re.captures(&mut cache, b"foo12345", &mut caps);
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "syntax")]
pub fn new(pattern: &str) -> Result<NFA, BuildError> {
NFA::compiler().build(pattern)
}
/// Parse the given regular expressions using a default configuration and
/// build a multi-NFA from them.
///
/// If you want a non-default configuration, then use the NFA
/// [`Compiler`] with a [`Config`].
///
/// # Example
///
/// ```
/// use regex_automata::{nfa::thompson::pikevm::PikeVM, Match};
///
/// let re = PikeVM::new_many(&["[0-9]+", "[a-z]+"])?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// let expected = Some(Match::must(1, 0..3));
/// re.captures(&mut cache, b"foo12345bar", &mut caps);
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "syntax")]
pub fn new_many<P: AsRef<str>>(patterns: &[P]) -> Result<NFA, BuildError> {
NFA::compiler().build_many(patterns)
}
/// Returns an NFA with a single regex pattern that always matches at every
/// position.
///
/// # Example
///
/// ```
/// use regex_automata::{nfa::thompson::{NFA, pikevm::PikeVM}, Match};
///
/// let re = PikeVM::new_from_nfa(NFA::always_match())?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// let expected = Some(Match::must(0, 0..0));
/// re.captures(&mut cache, b"", &mut caps);
/// assert_eq!(expected, caps.get_match());
/// re.captures(&mut cache, b"foo", &mut caps);
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn always_match() -> NFA {
// We could use NFA::new("") here and we'd get the same semantics, but
// hand-assembling the NFA (as below) does the same thing with a fewer
// number of states. It also avoids needing the 'syntax' feature
// enabled.
//
// Technically all we need is the "match" state, but we add the
// "capture" states so that the PikeVM can use this NFA.
//
// The unwraps below are OK because we add so few states that they will
// never exhaust any default limits in any environment.
let mut builder = Builder::new();
let pid = builder.start_pattern().unwrap();
assert_eq!(pid.as_usize(), 0);
let start_id =
builder.add_capture_start(StateID::ZERO, 0, None).unwrap();
let end_id = builder.add_capture_end(StateID::ZERO, 0).unwrap();
let match_id = builder.add_match().unwrap();
builder.patch(start_id, end_id).unwrap();
builder.patch(end_id, match_id).unwrap();
let pid = builder.finish_pattern(start_id).unwrap();
assert_eq!(pid.as_usize(), 0);
builder.build(start_id, start_id).unwrap()
}
/// Returns an NFA that never matches at any position.
///
/// This is a convenience routine for creating an NFA with zero patterns.
///
/// # Example
///
/// ```
/// use regex_automata::nfa::thompson::{NFA, pikevm::PikeVM};
///
/// let re = PikeVM::new_from_nfa(NFA::never_match())?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// re.captures(&mut cache, b"", &mut caps);
/// assert!(!caps.is_match());
/// re.captures(&mut cache, b"foo", &mut caps);
/// assert!(!caps.is_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn never_match() -> NFA {
// This always succeeds because it only requires one NFA state, which
// will never exhaust any (default) limits.
let mut builder = Builder::new();
let sid = builder.add_fail().unwrap();
builder.build(sid, sid).unwrap()
}
/// Return a default configuration for an `NFA`.
///
/// This is a convenience routine to avoid needing to import the `Config`
/// type when customizing the construction of an NFA.
///
/// # Example
///
/// This example shows how to build an NFA with a small size limit that
/// results in a compilation error for any regex that tries to use more
/// heap memory than the configured limit.
///
/// ```
/// use regex_automata::nfa::thompson::{NFA, pikevm::PikeVM};
///
/// let result = PikeVM::builder()
/// .thompson(NFA::config().nfa_size_limit(Some(1_000)))
/// // Remember, \w is Unicode-aware by default and thus huge.
/// .build(r"\w+");
/// assert!(result.is_err());
/// ```
#[cfg(feature = "syntax")]
pub fn config() -> Config {
Config::new()
}
/// Return a compiler for configuring the construction of an `NFA`.
///
/// This is a convenience routine to avoid needing to import the
/// [`Compiler`] type in common cases.
///
/// # Example
///
/// This example shows how to build an NFA that is permitted match invalid
/// UTF-8. Without the additional syntax configuration here, compilation of
/// `(?-u:.)` would fail because it is permitted to match invalid UTF-8.
///
/// ```
/// use regex_automata::{
/// nfa::thompson::pikevm::PikeVM,
/// util::syntax,
/// Match,
/// };
///
/// let re = PikeVM::builder()
/// .syntax(syntax::Config::new().utf8(false))
/// .build(r"[a-z]+(?-u:.)")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// let expected = Some(Match::must(0, 1..5));
/// re.captures(&mut cache, b"\xFFabc\xFF", &mut caps);
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "syntax")]
pub fn compiler() -> Compiler {
Compiler::new()
}
/// Returns an iterator over all pattern identifiers in this NFA.
///
/// Pattern IDs are allocated in sequential order starting from zero,
/// where the order corresponds to the order of patterns provided to the
/// [`NFA::new_many`] constructor.
///
/// # Example
///
/// ```
/// use regex_automata::{nfa::thompson::NFA, PatternID};
///
/// let nfa = NFA::new_many(&["[0-9]+", "[a-z]+", "[A-Z]+"])?;
/// let pids: Vec<PatternID> = nfa.patterns().collect();
/// assert_eq!(pids, vec![
/// PatternID::must(0),
/// PatternID::must(1),
/// PatternID::must(2),
/// ]);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn patterns(&self) -> PatternIter<'_> {
PatternIter {
it: PatternID::iter(self.pattern_len()),
_marker: core::marker::PhantomData,
}
}
/// Returns the total number of regex patterns in this NFA.
///
/// This may return zero if the NFA was constructed with no patterns. In
/// this case, the NFA can never produce a match for any input.
///
/// This is guaranteed to be no bigger than [`PatternID::LIMIT`] because
/// NFA construction will fail if too many patterns are added.
///
/// It is always true that `nfa.patterns().count() == nfa.pattern_len()`.
///
/// # Example
///
/// ```
/// use regex_automata::nfa::thompson::NFA;
///
/// let nfa = NFA::new_many(&["[0-9]+", "[a-z]+", "[A-Z]+"])?;
/// assert_eq!(3, nfa.pattern_len());
///
/// let nfa = NFA::never_match();
/// assert_eq!(0, nfa.pattern_len());
///
/// let nfa = NFA::always_match();
/// assert_eq!(1, nfa.pattern_len());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn pattern_len(&self) -> usize {
self.0.start_pattern.len()
}
/// Return the state identifier of the initial anchored state of this NFA.
///
/// The returned identifier is guaranteed to be a valid index into the
/// slice returned by [`NFA::states`], and is also a valid argument to
/// [`NFA::state`].
///
/// # Example
///
/// This example shows a somewhat contrived example where we can easily
/// predict the anchored starting state.
///
/// ```
/// use regex_automata::nfa::thompson::{NFA, State, WhichCaptures};
///
/// let nfa = NFA::compiler()
/// .configure(NFA::config().which_captures(WhichCaptures::None))
/// .build("a")?;
/// let state = nfa.state(nfa.start_anchored());
/// match *state {
/// State::ByteRange { trans } => {
/// assert_eq!(b'a', trans.start);
/// assert_eq!(b'a', trans.end);
/// }
/// _ => unreachable!("unexpected state"),
/// }
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn start_anchored(&self) -> StateID {
self.0.start_anchored
}
/// Return the state identifier of the initial unanchored state of this
/// NFA.
///
/// This is equivalent to the identifier returned by
/// [`NFA::start_anchored`] when the NFA has no unanchored starting state.
///
/// The returned identifier is guaranteed to be a valid index into the
/// slice returned by [`NFA::states`], and is also a valid argument to
/// [`NFA::state`].
///
/// # Example
///
/// This example shows that the anchored and unanchored starting states
/// are equivalent when an anchored NFA is built.
///
/// ```
/// use regex_automata::nfa::thompson::NFA;
///
/// let nfa = NFA::new("^a")?;
/// assert_eq!(nfa.start_anchored(), nfa.start_unanchored());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn start_unanchored(&self) -> StateID {
self.0.start_unanchored
}
/// Return the state identifier of the initial anchored state for the given
/// pattern, or `None` if there is no pattern corresponding to the given
/// identifier.
///
/// If one uses the starting state for a particular pattern, then the only
/// match that can be returned is for the corresponding pattern.
///
/// The returned identifier is guaranteed to be a valid index into the
/// slice returned by [`NFA::states`], and is also a valid argument to
/// [`NFA::state`].
///
/// # Errors
///
/// If the pattern doesn't exist in this NFA, then this returns an error.
/// This occurs when `pid.as_usize() >= nfa.pattern_len()`.
///
/// # Example
///
/// This example shows that the anchored and unanchored starting states
/// are equivalent when an anchored NFA is built.
///
/// ```
/// use regex_automata::{nfa::thompson::NFA, PatternID};
///
/// let nfa = NFA::new_many(&["^a", "^b"])?;
/// // The anchored and unanchored states for the entire NFA are the same,
/// // since all of the patterns are anchored.
/// assert_eq!(nfa.start_anchored(), nfa.start_unanchored());
/// // But the anchored starting states for each pattern are distinct,
/// // because these starting states can only lead to matches for the
/// // corresponding pattern.
/// let anchored = Some(nfa.start_anchored());
/// assert_ne!(anchored, nfa.start_pattern(PatternID::must(0)));
/// assert_ne!(anchored, nfa.start_pattern(PatternID::must(1)));
/// // Requesting a pattern not in the NFA will result in None:
/// assert_eq!(None, nfa.start_pattern(PatternID::must(2)));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn start_pattern(&self, pid: PatternID) -> Option<StateID> {
self.0.start_pattern.get(pid.as_usize()).copied()
}
/// Get the byte class set for this NFA.
///
/// A byte class set is a partitioning of this NFA's alphabet into
/// equivalence classes. Any two bytes in the same equivalence class are
/// guaranteed to never discriminate between a match or a non-match. (The
/// partitioning may not be minimal.)
///
/// Byte classes are used internally by this crate when building DFAs.
/// Namely, among other optimizations, they enable a space optimization
/// where the DFA's internal alphabet is defined over the equivalence
/// classes of bytes instead of all possible byte values. The former is
/// often quite a bit smaller than the latter, which permits the DFA to use
/// less space for its transition table.
#[inline]
pub(crate) fn byte_class_set(&self) -> &ByteClassSet {
&self.0.byte_class_set
}
/// Get the byte classes for this NFA.
///
/// Byte classes represent a partitioning of this NFA's alphabet into
/// equivalence classes. Any two bytes in the same equivalence class are
/// guaranteed to never discriminate between a match or a non-match. (The
/// partitioning may not be minimal.)
///
/// Byte classes are used internally by this crate when building DFAs.
/// Namely, among other optimizations, they enable a space optimization
/// where the DFA's internal alphabet is defined over the equivalence
/// classes of bytes instead of all possible byte values. The former is
/// often quite a bit smaller than the latter, which permits the DFA to use
/// less space for its transition table.
///
/// # Example
///
/// This example shows how to query the class of various bytes.
///
/// ```
/// use regex_automata::nfa::thompson::NFA;
///
/// let nfa = NFA::new("[a-z]+")?;
/// let classes = nfa.byte_classes();
/// // 'a' and 'z' are in the same class for this regex.
/// assert_eq!(classes.get(b'a'), classes.get(b'z'));
/// // But 'a' and 'A' are not.
/// assert_ne!(classes.get(b'a'), classes.get(b'A'));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn byte_classes(&self) -> &ByteClasses {
&self.0.byte_classes
}
/// Return a reference to the NFA state corresponding to the given ID.
///
/// This is a convenience routine for `nfa.states()[id]`.
///
/// # Panics
///
/// This panics when the given identifier does not reference a valid state.
/// That is, when `id.as_usize() >= nfa.states().len()`.
///
/// # Example
///
/// The anchored state for a pattern will typically correspond to a
/// capturing state for that pattern. (Although, this is not an API
/// guarantee!)
///
/// ```
/// use regex_automata::{nfa::thompson::{NFA, State}, PatternID};
///
/// let nfa = NFA::new("a")?;
/// let state = nfa.state(nfa.start_pattern(PatternID::ZERO).unwrap());
/// match *state {
/// State::Capture { slot, .. } => {
/// assert_eq!(0, slot.as_usize());
/// }
/// _ => unreachable!("unexpected state"),
/// }
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn state(&self, id: StateID) -> &State {
&self.states()[id]
}
/// Returns a slice of all states in this NFA.
///
/// The slice returned is indexed by `StateID`. This provides a convenient
/// way to access states while following transitions among those states.
///
/// # Example
///
/// This demonstrates that disabling UTF-8 mode can shrink the size of the
/// NFA considerably in some cases, especially when using Unicode character
/// classes.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::nfa::thompson::NFA;
///
/// let nfa_unicode = NFA::new(r"\w")?;
/// let nfa_ascii = NFA::new(r"(?-u)\w")?;
/// // Yes, a factor of 45 difference. No lie.
/// assert!(40 * nfa_ascii.states().len() < nfa_unicode.states().len());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn states(&self) -> &[State] {
&self.0.states
}
/// Returns the capturing group info for this NFA.
///
/// The [`GroupInfo`] provides a way to map to and from capture index
/// and capture name for each pattern. It also provides a mapping from
/// each of the capturing groups in every pattern to their corresponding
/// slot offsets encoded in [`State::Capture`] states.
///
/// Note that `GroupInfo` uses reference counting internally, such that
/// cloning a `GroupInfo` is very cheap.
///
/// # Example
///
/// This example shows how to get a list of all capture group names for
/// a particular pattern.
///
/// ```
/// use regex_automata::{nfa::thompson::NFA, PatternID};
///
/// let nfa = NFA::new(r"(a)(?P<foo>b)(c)(d)(?P<bar>e)")?;
/// // The first is the implicit group that is always unnammed. The next
/// // 5 groups are the explicit groups found in the concrete syntax above.
/// let expected = vec![None, None, Some("foo"), None, None, Some("bar")];
/// let got: Vec<Option<&str>> =
/// nfa.group_info().pattern_names(PatternID::ZERO).collect();
/// assert_eq!(expected, got);
///
/// // Using an invalid pattern ID will result in nothing yielded.
/// let got = nfa.group_info().pattern_names(PatternID::must(999)).count();
/// assert_eq!(0, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn group_info(&self) -> &GroupInfo {
&self.0.group_info()
}
/// Returns true if and only if this NFA has at least one
/// [`Capture`](State::Capture) in its sequence of states.
///
/// This is useful as a way to perform a quick test before attempting
/// something that does or does not require capture states. For example,
/// some regex engines (like the PikeVM) require capture states in order to
/// work at all.
///
/// # Example
///
/// This example shows a few different NFAs and whether they have captures
/// or not.
///
/// ```
/// use regex_automata::nfa::thompson::{NFA, WhichCaptures};
///
/// // Obviously has capture states.
/// let nfa = NFA::new("(a)")?;
/// assert!(nfa.has_capture());
///
/// // Less obviously has capture states, because every pattern has at
/// // least one anonymous capture group corresponding to the match for the
/// // entire pattern.
/// let nfa = NFA::new("a")?;
/// assert!(nfa.has_capture());
///
/// // Other than hand building your own NFA, this is the only way to build
/// // an NFA without capturing groups. In general, you should only do this
/// // if you don't intend to use any of the NFA-oriented regex engines.
/// // Overall, capturing groups don't have many downsides. Although they
/// // can add a bit of noise to simple NFAs, so it can be nice to disable
/// // them for debugging purposes.
/// //
/// // Notice that 'has_capture' is false here even when we have an
/// // explicit capture group in the pattern.
/// let nfa = NFA::compiler()
/// .configure(NFA::config().which_captures(WhichCaptures::None))
/// .build("(a)")?;
/// assert!(!nfa.has_capture());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn has_capture(&self) -> bool {
self.0.has_capture
}
/// Returns true if and only if this NFA can match the empty string.
/// When it returns false, all possible matches are guaranteed to have a
/// non-zero length.
///
/// This is useful as cheap way to know whether code needs to handle the
/// case of a zero length match. This is particularly important when UTF-8
/// modes are enabled, as when UTF-8 mode is enabled, empty matches that
/// split a codepoint must never be reported. This extra handling can
/// sometimes be costly, and since regexes matching an empty string are
/// somewhat rare, it can be beneficial to treat such regexes specially.
///
/// # Example
///
/// This example shows a few different NFAs and whether they match the
/// empty string or not. Notice the empty string isn't merely a matter
/// of a string of length literally `0`, but rather, whether a match can
/// occur between specific pairs of bytes.
///
/// ```
/// use regex_automata::{nfa::thompson::NFA, util::syntax};
///
/// // The empty regex matches the empty string.
/// let nfa = NFA::new("")?;
/// assert!(nfa.has_empty(), "empty matches empty");
/// // The '+' repetition operator requires at least one match, and so
/// // does not match the empty string.
/// let nfa = NFA::new("a+")?;
/// assert!(!nfa.has_empty(), "+ does not match empty");
/// // But the '*' repetition operator does.
/// let nfa = NFA::new("a*")?;
/// assert!(nfa.has_empty(), "* does match empty");
/// // And wrapping '+' in an operator that can match an empty string also
/// // causes it to match the empty string too.
/// let nfa = NFA::new("(a+)*")?;
/// assert!(nfa.has_empty(), "+ inside of * matches empty");
///
/// // If a regex is just made of a look-around assertion, even if the
/// // assertion requires some kind of non-empty string around it (such as
/// // \b), then it is still treated as if it matches the empty string.
/// // Namely, if a match occurs of just a look-around assertion, then the
/// // match returned is empty.
/// let nfa = NFA::compiler()
/// .syntax(syntax::Config::new().utf8(false))
/// .build(r"^$\A\z\b\B(?-u:\b\B)")?;
/// assert!(nfa.has_empty(), "assertions match empty");
/// // Even when an assertion is wrapped in a '+', it still matches the
/// // empty string.
/// let nfa = NFA::new(r"\b+")?;
/// assert!(nfa.has_empty(), "+ of an assertion matches empty");
///
/// // An alternation with even one branch that can match the empty string
/// // is also said to match the empty string overall.
/// let nfa = NFA::new("foo|(bar)?|quux")?;
/// assert!(nfa.has_empty(), "alternations can match empty");
///
/// // An NFA that matches nothing does not match the empty string.
/// let nfa = NFA::new("[a&&b]")?;
/// assert!(!nfa.has_empty(), "never matching means not matching empty");
/// // But if it's wrapped in something that doesn't require a match at
/// // all, then it can match the empty string!
/// let nfa = NFA::new("[a&&b]*")?;
/// assert!(nfa.has_empty(), "* on never-match still matches empty");
/// // Since a '+' requires a match, using it on something that can never
/// // match will itself produce a regex that can never match anything,
/// // and thus does not match the empty string.
/// let nfa = NFA::new("[a&&b]+")?;
/// assert!(!nfa.has_empty(), "+ on never-match still matches nothing");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn has_empty(&self) -> bool {
self.0.has_empty
}
/// Whether UTF-8 mode is enabled for this NFA or not.
///
/// When UTF-8 mode is enabled, all matches reported by a regex engine
/// derived from this NFA are guaranteed to correspond to spans of valid
/// UTF-8. This includes zero-width matches. For example, the regex engine
/// must guarantee that the empty regex will not match at the positions
/// between code units in the UTF-8 encoding of a single codepoint.
///
/// See [`Config::utf8`] for more information.
///
/// This is enabled by default.
///
/// # Example
///
/// This example shows how UTF-8 mode can impact the match spans that may
/// be reported in certain cases.
///
/// ```
/// use regex_automata::{
/// nfa::thompson::{self, pikevm::PikeVM},
/// Match, Input,
/// };
///
/// let re = PikeVM::new("")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// // UTF-8 mode is enabled by default.
/// let mut input = Input::new("☃");
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(Some(Match::must(0, 0..0)), caps.get_match());
///
/// // Even though an empty regex matches at 1..1, our next match is
/// // 3..3 because 1..1 and 2..2 split the snowman codepoint (which is
/// // three bytes long).
/// input.set_start(1);
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(Some(Match::must(0, 3..3)), caps.get_match());
///
/// // But if we disable UTF-8, then we'll get matches at 1..1 and 2..2:
/// let re = PikeVM::builder()
/// .thompson(thompson::Config::new().utf8(false))
/// .build("")?;
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(Some(Match::must(0, 1..1)), caps.get_match());
///
/// input.set_start(2);
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(Some(Match::must(0, 2..2)), caps.get_match());
///
/// input.set_start(3);
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(Some(Match::must(0, 3..3)), caps.get_match());
///
/// input.set_start(4);
/// re.search(&mut cache, &input, &mut caps);
/// assert_eq!(None, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn is_utf8(&self) -> bool {
self.0.utf8
}
/// Returns true when this NFA is meant to be matched in reverse.
///
/// Generally speaking, when this is true, it means the NFA is supposed to
/// be used in conjunction with moving backwards through the haystack. That
/// is, from a higher memory address to a lower memory address.
///
/// It is often the case that lower level routines dealing with an NFA
/// don't need to care about whether it is "meant" to be matched in reverse
/// or not. However, there are some specific cases where it matters. For
/// example, the implementation of CRLF-aware `^` and `$` line anchors
/// needs to know whether the search is in the forward or reverse
/// direction. In the forward direction, neither `^` nor `$` should match
/// when a `\r` has been seen previously and a `\n` is next. However, in
/// the reverse direction, neither `^` nor `$` should match when a `\n`
/// has been seen previously and a `\r` is next. This fundamentally changes
/// how the state machine is constructed, and thus needs to be altered
/// based on the direction of the search.
///
/// This is automatically set when using a [`Compiler`] with a configuration
/// where [`Config::reverse`] is enabled. If you're building your own NFA
/// by hand via a [`Builder`]
#[inline]
pub fn is_reverse(&self) -> bool {
self.0.reverse
}
/// Returns true if and only if all starting states for this NFA correspond
/// to the beginning of an anchored search.
///
/// Typically, an NFA will have both an anchored and an unanchored starting
/// state. Namely, because it tends to be useful to have both and the cost
/// of having an unanchored starting state is almost zero (for an NFA).
/// However, if all patterns in the NFA are themselves anchored, then even
/// the unanchored starting state will correspond to an anchored search
/// since the pattern doesn't permit anything else.
///
/// # Example
///
/// This example shows a few different scenarios where this method's
/// return value varies.
///
/// ```
/// use regex_automata::nfa::thompson::NFA;
///
/// // The unanchored starting state permits matching this pattern anywhere
/// // in a haystack, instead of just at the beginning.
/// let nfa = NFA::new("a")?;
/// assert!(!nfa.is_always_start_anchored());
///
/// // In this case, the pattern is itself anchored, so there is no way
/// // to run an unanchored search.
/// let nfa = NFA::new("^a")?;
/// assert!(nfa.is_always_start_anchored());
///
/// // When multiline mode is enabled, '^' can match at the start of a line
/// // in addition to the start of a haystack, so an unanchored search is
/// // actually possible.
/// let nfa = NFA::new("(?m)^a")?;
/// assert!(!nfa.is_always_start_anchored());
///
/// // Weird cases also work. A pattern is only considered anchored if all
/// // matches may only occur at the start of a haystack.
/// let nfa = NFA::new("(^a)|a")?;
/// assert!(!nfa.is_always_start_anchored());
///
/// // When multiple patterns are present, if they are all anchored, then
/// // the NFA is always anchored too.
/// let nfa = NFA::new_many(&["^a", "^b", "^c"])?;
/// assert!(nfa.is_always_start_anchored());
///
/// // But if one pattern is unanchored, then the NFA must permit an
/// // unanchored search.
/// let nfa = NFA::new_many(&["^a", "b", "^c"])?;
/// assert!(!nfa.is_always_start_anchored());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn is_always_start_anchored(&self) -> bool {
self.start_anchored() == self.start_unanchored()
}
/// Returns the look-around matcher associated with this NFA.
///
/// A look-around matcher determines how to match look-around assertions.
/// In particular, some assertions are configurable. For example, the
/// `(?m:^)` and `(?m:$)` assertions can have their line terminator changed
/// from the default of `\n` to any other byte.
///
/// If the NFA was built using a [`Compiler`], then this matcher
/// can be set via the [`Config::look_matcher`] configuration
/// knob. Otherwise, if you've built an NFA by hand, it is set via
/// [`Builder::set_look_matcher`].
///
/// # Example
///
/// This shows how to change the line terminator for multi-line assertions.
///
/// ```
/// use regex_automata::{
/// nfa::thompson::{self, pikevm::PikeVM},
/// util::look::LookMatcher,
/// Match, Input,
/// };
///
/// let mut lookm = LookMatcher::new();
/// lookm.set_line_terminator(b'\x00');
///
/// let re = PikeVM::builder()
/// .thompson(thompson::Config::new().look_matcher(lookm))
/// .build(r"(?m)^[a-z]+$")?;
/// let mut cache = re.create_cache();
///
/// // Multi-line assertions now use NUL as a terminator.
/// assert_eq!(
/// Some(Match::must(0, 1..4)),
/// re.find(&mut cache, b"\x00abc\x00"),
/// );
/// // ... and \n is no longer recognized as a terminator.
/// assert_eq!(
/// None,
/// re.find(&mut cache, b"\nabc\n"),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn look_matcher(&self) -> &LookMatcher {
&self.0.look_matcher
}
/// Returns the union of all look-around assertions used throughout this
/// NFA. When the returned set is empty, it implies that the NFA has no
/// look-around assertions and thus zero conditional epsilon transitions.
///
/// This is useful in some cases enabling optimizations. It is not
/// unusual, for example, for optimizations to be of the form, "for any
/// regex with zero conditional epsilon transitions, do ..." where "..."
/// is some kind of optimization.
///
/// This isn't only helpful for optimizations either. Sometimes look-around
/// assertions are difficult to support. For example, many of the DFAs in
/// this crate don't support Unicode word boundaries or handle them using
/// heuristics. Handling that correctly typically requires some kind of
/// cheap check of whether the NFA has a Unicode word boundary in the first
/// place.
///
/// # Example
///
/// This example shows how this routine varies based on the regex pattern:
///
/// ```
/// use regex_automata::{nfa::thompson::NFA, util::look::Look};
///
/// // No look-around at all.
/// let nfa = NFA::new("a")?;
/// assert!(nfa.look_set_any().is_empty());
///
/// // When multiple patterns are present, since this returns the union,
/// // it will include look-around assertions that only appear in one
/// // pattern.
/// let nfa = NFA::new_many(&["a", "b", "a^b", "c"])?;
/// assert!(nfa.look_set_any().contains(Look::Start));
///
/// // Some groups of assertions have various shortcuts. For example:
/// let nfa = NFA::new(r"(?-u:\b)")?;
/// assert!(nfa.look_set_any().contains_word());
/// assert!(!nfa.look_set_any().contains_word_unicode());
/// assert!(nfa.look_set_any().contains_word_ascii());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn look_set_any(&self) -> LookSet {
self.0.look_set_any
}
/// Returns the union of all prefix look-around assertions for every
/// pattern in this NFA. When the returned set is empty, it implies none of
/// the patterns require moving through a conditional epsilon transition
/// before inspecting the first byte in the haystack.
///
/// This can be useful for determining what kinds of assertions need to be
/// satisfied at the beginning of a search. For example, typically DFAs
/// in this crate will build a distinct starting state for each possible
/// starting configuration that might result in look-around assertions
/// being satisfied differently. However, if the set returned here is
/// empty, then you know that the start state is invariant because there
/// are no conditional epsilon transitions to consider.
///
/// # Example
///
/// This example shows how this routine varies based on the regex pattern:
///
/// ```
/// use regex_automata::{nfa::thompson::NFA, util::look::Look};
///
/// // No look-around at all.
/// let nfa = NFA::new("a")?;
/// assert!(nfa.look_set_prefix_any().is_empty());
///
/// // When multiple patterns are present, since this returns the union,
/// // it will include look-around assertions that only appear in one
/// // pattern. But it will only include assertions that are in the prefix
/// // of a pattern. For example, this includes '^' but not '$' even though
/// // '$' does appear.
/// let nfa = NFA::new_many(&["a", "b", "^ab$", "c"])?;
/// assert!(nfa.look_set_prefix_any().contains(Look::Start));
/// assert!(!nfa.look_set_prefix_any().contains(Look::End));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn look_set_prefix_any(&self) -> LookSet {
self.0.look_set_prefix_any
}
// FIXME: The `look_set_prefix_all` computation was not correct, and it
// seemed a little tricky to fix it. Since I wasn't actually using it for
// anything, I just decided to remove it in the run up to the regex 1.9
// release. If you need this, please file an issue.
/*
/// Returns the intersection of all prefix look-around assertions for every
/// pattern in this NFA. When the returned set is empty, it implies at
/// least one of the patterns does not require moving through a conditional
/// epsilon transition before inspecting the first byte in the haystack.
/// Conversely, when the set contains an assertion, it implies that every
/// pattern in the NFA also contains that assertion in its prefix.
///
/// This can be useful for determining what kinds of assertions need to be
/// satisfied at the beginning of a search. For example, if you know that
/// [`Look::Start`] is in the prefix intersection set returned here, then
/// you know that all searches, regardless of input configuration, will be
/// anchored.
///
/// # Example
///
/// This example shows how this routine varies based on the regex pattern:
///
/// ```
/// use regex_automata::{nfa::thompson::NFA, util::look::Look};
///
/// // No look-around at all.
/// let nfa = NFA::new("a")?;
/// assert!(nfa.look_set_prefix_all().is_empty());
///
/// // When multiple patterns are present, since this returns the
/// // intersection, it will only include assertions present in every
/// // prefix, and only the prefix.
/// let nfa = NFA::new_many(&["^a$", "^b$", "$^ab$", "^c$"])?;
/// assert!(nfa.look_set_prefix_all().contains(Look::Start));
/// assert!(!nfa.look_set_prefix_all().contains(Look::End));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn look_set_prefix_all(&self) -> LookSet {
self.0.look_set_prefix_all
}
*/
/// Returns the memory usage, in bytes, of this NFA.
///
/// This does **not** include the stack size used up by this NFA. To
/// compute that, use `std::mem::size_of::<NFA>()`.
///
/// # Example
///
/// This example shows that large Unicode character classes can use quite
/// a bit of memory.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::nfa::thompson::NFA;
///
/// let nfa_unicode = NFA::new(r"\w")?;
/// let nfa_ascii = NFA::new(r"(?-u:\w)")?;
///
/// assert!(10 * nfa_ascii.memory_usage() < nfa_unicode.memory_usage());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn memory_usage(&self) -> usize {
use core::mem::size_of;
size_of::<Inner>() // allocated on the heap via Arc
+ self.0.states.len() * size_of::<State>()
+ self.0.start_pattern.len() * size_of::<StateID>()
+ self.0.group_info.memory_usage()
+ self.0.memory_extra
}
}
impl fmt::Debug for NFA {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
/// The "inner" part of the NFA. We split this part out so that we can easily
/// wrap it in an `Arc` above in the definition of `NFA`.
///
/// See builder.rs for the code that actually builds this type. This module
/// does provide (internal) mutable methods for adding things to this
/// NFA before finalizing it, but the high level construction process is
/// controlled by the builder abstraction. (Which is complicated enough to
/// get its own module.)
#[derive(Default)]
pub(super) struct Inner {
/// The state sequence. This sequence is guaranteed to be indexable by all
/// starting state IDs, and it is also guaranteed to contain at most one
/// `Match` state for each pattern compiled into this NFA. (A pattern may
/// not have a corresponding `Match` state if a `Match` state is impossible
/// to reach.)
states: Vec<State>,
/// The anchored starting state of this NFA.
start_anchored: StateID,
/// The unanchored starting state of this NFA.
start_unanchored: StateID,
/// The starting states for each individual pattern. Starting at any
/// of these states will result in only an anchored search for the
/// corresponding pattern. The vec is indexed by pattern ID. When the NFA
/// contains a single regex, then `start_pattern[0]` and `start_anchored`
/// are always equivalent.
start_pattern: Vec<StateID>,
/// Info about the capturing groups in this NFA. This is responsible for
/// mapping groups to slots, mapping groups to names and names to groups.
group_info: GroupInfo,
/// A representation of equivalence classes over the transitions in this
/// NFA. Two bytes in the same equivalence class must not discriminate
/// between a match or a non-match. This map can be used to shrink the
/// total size of a DFA's transition table with a small match-time cost.
///
/// Note that the NFA's transitions are *not* defined in terms of these
/// equivalence classes. The NFA's transitions are defined on the original
/// byte values. For the most part, this is because they wouldn't really
/// help the NFA much since the NFA already uses a sparse representation
/// to represent transitions. Byte classes are most effective in a dense
/// representation.
byte_class_set: ByteClassSet,
/// This is generated from `byte_class_set`, and essentially represents the
/// same thing but supports different access patterns. Namely, this permits
/// looking up the equivalence class of a byte very cheaply.
///
/// Ideally we would just store this, but because of annoying code
/// structure reasons, we keep both this and `byte_class_set` around for
/// now. I think I would prefer that `byte_class_set` were computed in the
/// `Builder`, but right now, we compute it as states are added to the
/// `NFA`.
byte_classes: ByteClasses,
/// Whether this NFA has a `Capture` state anywhere.
has_capture: bool,
/// When the empty string is in the language matched by this NFA.
has_empty: bool,
/// Whether UTF-8 mode is enabled for this NFA. Briefly, this means that
/// all non-empty matches produced by this NFA correspond to spans of valid
/// UTF-8, and any empty matches produced by this NFA that split a UTF-8
/// encoded codepoint should be filtered out by the corresponding regex
/// engine.
utf8: bool,
/// Whether this NFA is meant to be matched in reverse or not.
reverse: bool,
/// The matcher to be used for look-around assertions.
look_matcher: LookMatcher,
/// The union of all look-around assertions that occur anywhere within
/// this NFA. If this set is empty, then it means there are precisely zero
/// conditional epsilon transitions in the NFA.
look_set_any: LookSet,
/// The union of all look-around assertions that occur as a zero-length
/// prefix for any of the patterns in this NFA.
look_set_prefix_any: LookSet,
/*
/// The intersection of all look-around assertions that occur as a
/// zero-length prefix for any of the patterns in this NFA.
look_set_prefix_all: LookSet,
*/
/// Heap memory used indirectly by NFA states and other things (like the
/// various capturing group representations above). Since each state
/// might use a different amount of heap, we need to keep track of this
/// incrementally.
memory_extra: usize,
}
impl Inner {
/// Runs any last finalization bits and turns this into a full NFA.
pub(super) fn into_nfa(mut self) -> NFA {
self.byte_classes = self.byte_class_set.byte_classes();
// Do epsilon closure from the start state of every pattern in order
// to compute various properties such as look-around assertions and
// whether the empty string can be matched.
let mut stack = vec![];
let mut seen = SparseSet::new(self.states.len());
for &start_id in self.start_pattern.iter() {
stack.push(start_id);
seen.clear();
// let mut prefix_all = LookSet::full();
let mut prefix_any = LookSet::empty();
while let Some(sid) = stack.pop() {
if !seen.insert(sid) {
continue;
}
match self.states[sid] {
State::ByteRange { .. }
| State::Dense { .. }
| State::Fail => continue,
State::Sparse(_) => {
// This snippet below will rewrite this sparse state
// as a dense state. By doing it here, we apply this
// optimization to all hot "sparse" states since these
// are the states that are reachable from the start
// state via an epsilon closure.
//
// Unfortunately, this optimization did not seem to
// help much in some very limited ad hoc benchmarking.
//
// I left the 'Dense' state type in place in case we
// want to revisit this, but I suspect the real way
// to make forward progress is a more fundamental
// rearchitecting of how data in the NFA is laid out.
// I think we should consider a single contiguous
// allocation instead of all this indirection and
// potential heap allocations for every state. But this
// is a large re-design and will require API breaking
// changes.
// self.memory_extra -= self.states[sid].memory_usage();
// let trans = DenseTransitions::from_sparse(sparse);
// self.states[sid] = State::Dense(trans);
// self.memory_extra += self.states[sid].memory_usage();
continue;
}
State::Match { .. } => self.has_empty = true,
State::Look { look, next } => {
prefix_any = prefix_any.insert(look);
stack.push(next);
}
State::Union { ref alternates } => {
// Order doesn't matter here, since we're just dealing
// with look-around sets. But if we do richer analysis
// here that needs to care about preference order, then
// this should be done in reverse.
stack.extend(alternates.iter());
}
State::BinaryUnion { alt1, alt2 } => {
stack.push(alt2);
stack.push(alt1);
}
State::Capture { next, .. } => {
stack.push(next);
}
}
}
self.look_set_prefix_any =
self.look_set_prefix_any.union(prefix_any);
}
NFA(Arc::new(self))
}
/// Returns the capturing group info for this NFA.
pub(super) fn group_info(&self) -> &GroupInfo {
&self.group_info
}
/// Add the given state to this NFA after allocating a fresh identifier for
/// it.
///
/// This panics if too many states are added such that a fresh identifier
/// could not be created. (Currently, the only caller of this routine is
/// a `Builder`, and it upholds this invariant.)
pub(super) fn add(&mut self, state: State) -> StateID {
match state {
State::ByteRange { ref trans } => {
self.byte_class_set.set_range(trans.start, trans.end);
}
State::Sparse(ref sparse) => {
for trans in sparse.transitions.iter() {
self.byte_class_set.set_range(trans.start, trans.end);
}
}
State::Dense { .. } => unreachable!(),
State::Look { look, .. } => {
self.look_matcher
.add_to_byteset(look, &mut self.byte_class_set);
self.look_set_any = self.look_set_any.insert(look);
}
State::Capture { .. } => {
self.has_capture = true;
}
State::Union { .. }
| State::BinaryUnion { .. }
| State::Fail
| State::Match { .. } => {}
}
let id = StateID::new(self.states.len()).unwrap();
self.memory_extra += state.memory_usage();
self.states.push(state);
id
}
/// Set the starting state identifiers for this NFA.
///
/// `start_anchored` and `start_unanchored` may be equivalent. When they
/// are, then the NFA can only execute anchored searches. This might
/// occur, for example, for patterns that are unconditionally anchored.
/// e.g., `^foo`.
pub(super) fn set_starts(
&mut self,
start_anchored: StateID,
start_unanchored: StateID,
start_pattern: &[StateID],
) {
self.start_anchored = start_anchored;
self.start_unanchored = start_unanchored;
self.start_pattern = start_pattern.to_vec();
}
/// Sets the UTF-8 mode of this NFA.
pub(super) fn set_utf8(&mut self, yes: bool) {
self.utf8 = yes;
}
/// Sets the reverse mode of this NFA.
pub(super) fn set_reverse(&mut self, yes: bool) {
self.reverse = yes;
}
/// Sets the look-around assertion matcher for this NFA.
pub(super) fn set_look_matcher(&mut self, m: LookMatcher) {
self.look_matcher = m;
}
/// Set the capturing groups for this NFA.
///
/// The given slice should contain the capturing groups for each pattern,
/// The capturing groups in turn should correspond to the total number of
/// capturing groups in the pattern, including the anonymous first capture
/// group for each pattern. If a capturing group does have a name, then it
/// should be provided as a Arc<str>.
///
/// This returns an error if a corresponding `GroupInfo` could not be
/// built.
pub(super) fn set_captures(
&mut self,
captures: &[Vec<Option<Arc<str>>>],
) -> Result<(), GroupInfoError> {
self.group_info = GroupInfo::new(
captures.iter().map(|x| x.iter().map(|y| y.as_ref())),
)?;
Ok(())
}
/// Remap the transitions in every state of this NFA using the given map.
/// The given map should be indexed according to state ID namespace used by
/// the transitions of the states currently in this NFA.
///
/// This is particularly useful to the NFA builder, since it is convenient
/// to add NFA states in order to produce their final IDs. Then, after all
/// of the intermediate "empty" states (unconditional epsilon transitions)
/// have been removed from the builder's representation, we can re-map all
/// of the transitions in the states already added to their final IDs.
pub(super) fn remap(&mut self, old_to_new: &[StateID]) {
for state in &mut self.states {
state.remap(old_to_new);
}
self.start_anchored = old_to_new[self.start_anchored];
self.start_unanchored = old_to_new[self.start_unanchored];
for id in self.start_pattern.iter_mut() {
*id = old_to_new[*id];
}
}
}
impl fmt::Debug for Inner {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
writeln!(f, "thompson::NFA(")?;
for (sid, state) in self.states.iter().with_state_ids() {
let status = if sid == self.start_anchored {
'^'
} else if sid == self.start_unanchored {
'>'
} else {
' '
};
writeln!(f, "{}{:06?}: {:?}", status, sid.as_usize(), state)?;
}
let pattern_len = self.start_pattern.len();
if pattern_len > 1 {
writeln!(f, "")?;
for pid in 0..pattern_len {
let sid = self.start_pattern[pid];
writeln!(f, "START({:06?}): {:?}", pid, sid.as_usize())?;
}
}
writeln!(f, "")?;
writeln!(
f,
"transition equivalence classes: {:?}",
self.byte_classes,
)?;
writeln!(f, ")")?;
Ok(())
}
}
/// A state in an NFA.
///
/// In theory, it can help to conceptualize an `NFA` as a graph consisting of
/// `State`s. Each `State` contains its complete set of outgoing transitions.
///
/// In practice, it can help to conceptualize an `NFA` as a sequence of
/// instructions for a virtual machine. Each `State` says what to do and where
/// to go next.
///
/// Strictly speaking, the practical interpretation is the most correct one,
/// because of the [`Capture`](State::Capture) state. Namely, a `Capture`
/// state always forwards execution to another state unconditionally. Its only
/// purpose is to cause a side effect: the recording of the current input
/// position at a particular location in memory. In this sense, an `NFA`
/// has more power than a theoretical non-deterministic finite automaton.
///
/// For most uses of this crate, it is likely that one may never even need to
/// be aware of this type at all. The main use cases for looking at `State`s
/// directly are if you need to write your own search implementation or if you
/// need to do some kind of analysis on the NFA.
#[derive(Clone, Eq, PartialEq)]
pub enum State {
/// A state with a single transition that can only be taken if the current
/// input symbol is in a particular range of bytes.
ByteRange {
/// The transition from this state to the next.
trans: Transition,
},
/// A state with possibly many transitions represented in a sparse fashion.
/// Transitions are non-overlapping and ordered lexicographically by input
/// range.
///
/// In practice, this is used for encoding UTF-8 automata. Its presence is
/// primarily an optimization that avoids many additional unconditional
/// epsilon transitions (via [`Union`](State::Union) states), and thus
/// decreases the overhead of traversing the NFA. This can improve both
/// matching time and DFA construction time.
Sparse(SparseTransitions),
/// A dense representation of a state with multiple transitions.
Dense(DenseTransitions),
/// A conditional epsilon transition satisfied via some sort of
/// look-around. Look-around is limited to anchor and word boundary
/// assertions.
///
/// Look-around states are meant to be evaluated while performing epsilon
/// closure (computing the set of states reachable from a particular state
/// via only epsilon transitions). If the current position in the haystack
/// satisfies the look-around assertion, then you're permitted to follow
/// that epsilon transition.
Look {
/// The look-around assertion that must be satisfied before moving
/// to `next`.
look: Look,
/// The state to transition to if the look-around assertion is
/// satisfied.
next: StateID,
},
/// An alternation such that there exists an epsilon transition to all
/// states in `alternates`, where matches found via earlier transitions
/// are preferred over later transitions.
Union {
/// An ordered sequence of unconditional epsilon transitions to other
/// states. Transitions earlier in the sequence are preferred over
/// transitions later in the sequence.
alternates: Box<[StateID]>,
},
/// An alternation such that there exists precisely two unconditional
/// epsilon transitions, where matches found via `alt1` are preferred over
/// matches found via `alt2`.
///
/// This state exists as a common special case of Union where there are
/// only two alternates. In this case, we don't need any allocations to
/// represent the state. This saves a bit of memory and also saves an
/// additional memory access when traversing the NFA.
BinaryUnion {
/// An unconditional epsilon transition to another NFA state. This
/// is preferred over `alt2`.
alt1: StateID,
/// An unconditional epsilon transition to another NFA state. Matches
/// reported via this transition should only be reported if no matches
/// were found by following `alt1`.
alt2: StateID,
},
/// An empty state that records a capture location.
///
/// From the perspective of finite automata, this is precisely equivalent
/// to an unconditional epsilon transition, but serves the purpose of
/// instructing NFA simulations to record additional state when the finite
/// state machine passes through this epsilon transition.
///
/// `slot` in this context refers to the specific capture group slot
/// offset that is being recorded. Each capturing group has two slots
/// corresponding to the start and end of the matching portion of that
/// group.
///
/// The pattern ID and capture group index are also included in this state
/// in case they are useful. But mostly, all you'll need is `next` and
/// `slot`.
Capture {
/// The state to transition to, unconditionally.
next: StateID,
/// The pattern ID that this capture belongs to.
pattern_id: PatternID,
/// The capture group index that this capture belongs to. Capture group
/// indices are local to each pattern. For example, when capturing
/// groups are enabled, every pattern has a capture group at index
/// `0`.
group_index: SmallIndex,
/// The slot index for this capture. Every capturing group has two
/// slots: one for the start haystack offset and one for the end
/// haystack offset. Unlike capture group indices, slot indices are
/// global across all patterns in this NFA. That is, each slot belongs
/// to a single pattern, but there is only one slot at index `i`.
slot: SmallIndex,
},
/// A state that cannot be transitioned out of. This is useful for cases
/// where you want to prevent matching from occurring. For example, if your
/// regex parser permits empty character classes, then one could choose
/// a `Fail` state to represent them. (An empty character class can be
/// thought of as an empty set. Since nothing is in an empty set, they can
/// never match anything.)
Fail,
/// A match state. There is at least one such occurrence of this state for
/// each regex that can match that is in this NFA.
Match {
/// The matching pattern ID.
pattern_id: PatternID,
},
}
impl State {
/// Returns true if and only if this state contains one or more epsilon
/// transitions.
///
/// In practice, a state has no outgoing transitions (like `Match`), has
/// only non-epsilon transitions (like `ByteRange`) or has only epsilon
/// transitions (like `Union`).
///
/// # Example
///
/// ```
/// use regex_automata::{
/// nfa::thompson::{State, Transition},
/// util::primitives::{PatternID, StateID, SmallIndex},
/// };
///
/// // Capture states are epsilon transitions.
/// let state = State::Capture {
/// next: StateID::ZERO,
/// pattern_id: PatternID::ZERO,
/// group_index: SmallIndex::ZERO,
/// slot: SmallIndex::ZERO,
/// };
/// assert!(state.is_epsilon());
///
/// // ByteRange states are not.
/// let state = State::ByteRange {
/// trans: Transition { start: b'a', end: b'z', next: StateID::ZERO },
/// };
/// assert!(!state.is_epsilon());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn is_epsilon(&self) -> bool {
match *self {
State::ByteRange { .. }
| State::Sparse { .. }
| State::Dense { .. }
| State::Fail
| State::Match { .. } => false,
State::Look { .. }
| State::Union { .. }
| State::BinaryUnion { .. }
| State::Capture { .. } => true,
}
}
/// Returns the heap memory usage of this NFA state in bytes.
fn memory_usage(&self) -> usize {
match *self {
State::ByteRange { .. }
| State::Look { .. }
| State::BinaryUnion { .. }
| State::Capture { .. }
| State::Match { .. }
| State::Fail => 0,
State::Sparse(SparseTransitions { ref transitions }) => {
transitions.len() * mem::size_of::<Transition>()
}
State::Dense { .. } => 256 * mem::size_of::<StateID>(),
State::Union { ref alternates } => {
alternates.len() * mem::size_of::<StateID>()
}
}
}
/// Remap the transitions in this state using the given map. Namely, the
/// given map should be indexed according to the transitions currently
/// in this state.
///
/// This is used during the final phase of the NFA compiler, which turns
/// its intermediate NFA into the final NFA.
fn remap(&mut self, remap: &[StateID]) {
match *self {
State::ByteRange { ref mut trans } => {
trans.next = remap[trans.next]
}
State::Sparse(SparseTransitions { ref mut transitions }) => {
for t in transitions.iter_mut() {
t.next = remap[t.next];
}
}
State::Dense(DenseTransitions { ref mut transitions }) => {
for sid in transitions.iter_mut() {
*sid = remap[*sid];
}
}
State::Look { ref mut next, .. } => *next = remap[*next],
State::Union { ref mut alternates } => {
for alt in alternates.iter_mut() {
*alt = remap[*alt];
}
}
State::BinaryUnion { ref mut alt1, ref mut alt2 } => {
*alt1 = remap[*alt1];
*alt2 = remap[*alt2];
}
State::Capture { ref mut next, .. } => *next = remap[*next],
State::Fail => {}
State::Match { .. } => {}
}
}
}
impl fmt::Debug for State {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
State::ByteRange { ref trans } => trans.fmt(f),
State::Sparse(SparseTransitions { ref transitions }) => {
let rs = transitions
.iter()
.map(|t| format!("{:?}", t))
.collect::<Vec<String>>()
.join(", ");
write!(f, "sparse({})", rs)
}
State::Dense(ref dense) => {
write!(f, "dense(")?;
for (i, t) in dense.iter().enumerate() {
if i > 0 {
write!(f, ", ")?;
}
write!(f, "{:?}", t)?;
}
write!(f, ")")
}
State::Look { ref look, next } => {
write!(f, "{:?} => {:?}", look, next.as_usize())
}
State::Union { ref alternates } => {
let alts = alternates
.iter()
.map(|id| format!("{:?}", id.as_usize()))
.collect::<Vec<String>>()
.join(", ");
write!(f, "union({})", alts)
}
State::BinaryUnion { alt1, alt2 } => {
write!(
f,
"binary-union({}, {})",
alt1.as_usize(),
alt2.as_usize()
)
}
State::Capture { next, pattern_id, group_index, slot } => {
write!(
f,
"capture(pid={:?}, group={:?}, slot={:?}) => {:?}",
pattern_id.as_usize(),
group_index.as_usize(),
slot.as_usize(),
next.as_usize(),
)
}
State::Fail => write!(f, "FAIL"),
State::Match { pattern_id } => {
write!(f, "MATCH({:?})", pattern_id.as_usize())
}
}
}
}
/// A sequence of transitions used to represent a sparse state.
///
/// This is the primary representation of a [`Sparse`](State::Sparse) state.
/// It corresponds to a sorted sequence of transitions with non-overlapping
/// byte ranges. If the byte at the current position in the haystack matches
/// one of the byte ranges, then the finite state machine should take the
/// corresponding transition.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct SparseTransitions {
/// The sorted sequence of non-overlapping transitions.
pub transitions: Box<[Transition]>,
}
impl SparseTransitions {
/// This follows the matching transition for a particular byte.
///
/// The matching transition is found by looking for a matching byte
/// range (there is at most one) corresponding to the position `at` in
/// `haystack`.
///
/// If `at >= haystack.len()`, then this returns `None`.
#[inline]
pub fn matches(&self, haystack: &[u8], at: usize) -> Option<StateID> {
haystack.get(at).and_then(|&b| self.matches_byte(b))
}
/// This follows the matching transition for any member of the alphabet.
///
/// The matching transition is found by looking for a matching byte
/// range (there is at most one) corresponding to the position `at` in
/// `haystack`. If the given alphabet unit is [`EOI`](alphabet::Unit::eoi),
/// then this always returns `None`.
#[inline]
pub(crate) fn matches_unit(
&self,
unit: alphabet::Unit,
) -> Option<StateID> {
unit.as_u8().map_or(None, |byte| self.matches_byte(byte))
}
/// This follows the matching transition for a particular byte.
///
/// The matching transition is found by looking for a matching byte range
/// (there is at most one) corresponding to the byte given.
#[inline]
pub fn matches_byte(&self, byte: u8) -> Option<StateID> {
for t in self.transitions.iter() {
if t.start > byte {
break;
} else if t.matches_byte(byte) {
return Some(t.next);
}
}
None
/*
// This is an alternative implementation that uses binary search. In
// some ad hoc experiments, like
//
// regex-cli find match pikevm -b -p '\b\w+\b' non-ascii-file
//
// I could not observe any improvement, and in fact, things seemed to
// be a bit slower. I can see an improvement in at least one benchmark:
//
// regex-cli find match pikevm -b -p '\pL{100}' all-codepoints-utf8
//
// Where total search time goes from 3.2s to 2.4s when using binary
// search.
self.transitions
.binary_search_by(|t| {
if t.end < byte {
core::cmp::Ordering::Less
} else if t.start > byte {
core::cmp::Ordering::Greater
} else {
core::cmp::Ordering::Equal
}
})
.ok()
.map(|i| self.transitions[i].next)
*/
}
}
/// A sequence of transitions used to represent a dense state.
///
/// This is the primary representation of a [`Dense`](State::Dense) state. It
/// provides constant time matching. That is, given a byte in a haystack and
/// a `DenseTransitions`, one can determine if the state matches in constant
/// time.
///
/// This is in contrast to `SparseTransitions`, whose time complexity is
/// necessarily bigger than constant time. Also in contrast, `DenseTransitions`
/// usually requires (much) more heap memory.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct DenseTransitions {
/// A dense representation of this state's transitions on the heap. This
/// always has length 256.
pub transitions: Box<[StateID]>,
}
impl DenseTransitions {
/// This follows the matching transition for a particular byte.
///
/// The matching transition is found by looking for a transition that
/// doesn't correspond to `StateID::ZERO` for the byte `at` the given
/// position in `haystack`.
///
/// If `at >= haystack.len()`, then this returns `None`.
#[inline]
pub fn matches(&self, haystack: &[u8], at: usize) -> Option<StateID> {
haystack.get(at).and_then(|&b| self.matches_byte(b))
}
/// This follows the matching transition for any member of the alphabet.
///
/// The matching transition is found by looking for a transition that
/// doesn't correspond to `StateID::ZERO` for the byte `at` the given
/// position in `haystack`.
///
/// If `at >= haystack.len()` or if the given alphabet unit is
/// [`EOI`](alphabet::Unit::eoi), then this returns `None`.
#[inline]
pub(crate) fn matches_unit(
&self,
unit: alphabet::Unit,
) -> Option<StateID> {
unit.as_u8().map_or(None, |byte| self.matches_byte(byte))
}
/// This follows the matching transition for a particular byte.
///
/// The matching transition is found by looking for a transition that
/// doesn't correspond to `StateID::ZERO` for the given `byte`.
///
/// If `at >= haystack.len()`, then this returns `None`.
#[inline]
pub fn matches_byte(&self, byte: u8) -> Option<StateID> {
let next = self.transitions[usize::from(byte)];
if next == StateID::ZERO {
None
} else {
Some(next)
}
}
/*
/// The dense state optimization isn't currently enabled, so permit a
/// little bit of dead code.
pub(crate) fn from_sparse(sparse: &SparseTransitions) -> DenseTransitions {
let mut dense = vec![StateID::ZERO; 256];
for t in sparse.transitions.iter() {
for b in t.start..=t.end {
dense[usize::from(b)] = t.next;
}
}
DenseTransitions { transitions: dense.into_boxed_slice() }
}
*/
/// Returns an iterator over all transitions that don't point to
/// `StateID::ZERO`.
pub(crate) fn iter(&self) -> impl Iterator<Item = Transition> + '_ {
use crate::util::int::Usize;
self.transitions
.iter()
.enumerate()
.filter(|&(_, &sid)| sid != StateID::ZERO)
.map(|(byte, &next)| Transition {
start: byte.as_u8(),
end: byte.as_u8(),
next,
})
}
}
/// A single transition to another state.
///
/// This transition may only be followed if the current byte in the haystack
/// falls in the inclusive range of bytes specified.
#[derive(Clone, Copy, Eq, Hash, PartialEq)]
pub struct Transition {
/// The inclusive start of the byte range.
pub start: u8,
/// The inclusive end of the byte range.
pub end: u8,
/// The identifier of the state to transition to.
pub next: StateID,
}
impl Transition {
/// Returns true if the position `at` in `haystack` falls in this
/// transition's range of bytes.
///
/// If `at >= haystack.len()`, then this returns `false`.
pub fn matches(&self, haystack: &[u8], at: usize) -> bool {
haystack.get(at).map_or(false, |&b| self.matches_byte(b))
}
/// Returns true if the given alphabet unit falls in this transition's
/// range of bytes. If the given unit is [`EOI`](alphabet::Unit::eoi), then
/// this returns `false`.
pub fn matches_unit(&self, unit: alphabet::Unit) -> bool {
unit.as_u8().map_or(false, |byte| self.matches_byte(byte))
}
/// Returns true if the given byte falls in this transition's range of
/// bytes.
pub fn matches_byte(&self, byte: u8) -> bool {
self.start <= byte && byte <= self.end
}
}
impl fmt::Debug for Transition {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
use crate::util::escape::DebugByte;
let Transition { start, end, next } = *self;
if self.start == self.end {
write!(f, "{:?} => {:?}", DebugByte(start), next.as_usize())
} else {
write!(
f,
"{:?}-{:?} => {:?}",
DebugByte(start),
DebugByte(end),
next.as_usize(),
)
}
}
}
/// An iterator over all pattern IDs in an NFA.
///
/// This iterator is created by [`NFA::patterns`].
///
/// The lifetime parameter `'a` refers to the lifetime of the NFA from which
/// this pattern iterator was created.
#[derive(Debug)]
pub struct PatternIter<'a> {
it: PatternIDIter,
/// We explicitly associate a lifetime with this iterator even though we
/// don't actually borrow anything from the NFA. We do this for backward
/// compatibility purposes. If we ever do need to borrow something from
/// the NFA, then we can and just get rid of this marker without breaking
/// the public API.
_marker: core::marker::PhantomData<&'a ()>,
}
impl<'a> Iterator for PatternIter<'a> {
type Item = PatternID;
fn next(&mut self) -> Option<PatternID> {
self.it.next()
}
}
#[cfg(all(test, feature = "nfa-pikevm"))]
mod tests {
use super::*;
use crate::{nfa::thompson::pikevm::PikeVM, Input};
// This asserts that an NFA state doesn't have its size changed. It is
// *really* easy to accidentally increase the size, and thus potentially
// dramatically increase the memory usage of every NFA.
//
// This assert doesn't mean we absolutely cannot increase the size of an
// NFA state. We can. It's just here to make sure we do it knowingly and
// intentionally.
#[test]
fn state_has_small_size() {
#[cfg(target_pointer_width = "64")]
assert_eq!(24, core::mem::size_of::<State>());
#[cfg(target_pointer_width = "32")]
assert_eq!(20, core::mem::size_of::<State>());
}
#[test]
fn always_match() {
let re = PikeVM::new_from_nfa(NFA::always_match()).unwrap();
let mut cache = re.create_cache();
let mut caps = re.create_captures();
let mut find = |haystack, start, end| {
let input = Input::new(haystack).range(start..end);
re.search(&mut cache, &input, &mut caps);
caps.get_match().map(|m| m.end())
};
assert_eq!(Some(0), find("", 0, 0));
assert_eq!(Some(0), find("a", 0, 1));
assert_eq!(Some(1), find("a", 1, 1));
assert_eq!(Some(0), find("ab", 0, 2));
assert_eq!(Some(1), find("ab", 1, 2));
assert_eq!(Some(2), find("ab", 2, 2));
}
#[test]
fn never_match() {
let re = PikeVM::new_from_nfa(NFA::never_match()).unwrap();
let mut cache = re.create_cache();
let mut caps = re.create_captures();
let mut find = |haystack, start, end| {
let input = Input::new(haystack).range(start..end);
re.search(&mut cache, &input, &mut caps);
caps.get_match().map(|m| m.end())
};
assert_eq!(None, find("", 0, 0));
assert_eq!(None, find("a", 0, 1));
assert_eq!(None, find("a", 1, 1));
assert_eq!(None, find("ab", 0, 2));
assert_eq!(None, find("ab", 1, 2));
assert_eq!(None, find("ab", 2, 2));
}
}