1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Big Integer Types for Rust
//!
//! * A [`BigUint`] is unsigned and represented as a vector of digits.
//! * A [`BigInt`] is signed and is a combination of [`BigUint`] and [`Sign`].
//!
//! Common numerical operations are overloaded, so we can treat them
//! the same way we treat other numbers.
//!
//! ## Example
//!
//! ```rust
//! # fn main() {
//! use num_bigint::BigUint;
//! use num_traits::One;
//!
//! // Calculate large fibonacci numbers.
//! fn fib(n: usize) -> BigUint {
//! let mut f0 = BigUint::ZERO;
//! let mut f1 = BigUint::one();
//! for _ in 0..n {
//! let f2 = f0 + &f1;
//! f0 = f1;
//! f1 = f2;
//! }
//! f0
//! }
//!
//! // This is a very large number.
//! println!("fib(1000) = {}", fib(1000));
//! # }
//! ```
//!
//! It's easy to generate large random numbers:
//!
//! ```rust,ignore
//! use num_bigint::{ToBigInt, RandBigInt};
//!
//! let mut rng = rand::thread_rng();
//! let a = rng.gen_bigint(1000);
//!
//! let low = -10000.to_bigint().unwrap();
//! let high = 10000.to_bigint().unwrap();
//! let b = rng.gen_bigint_range(&low, &high);
//!
//! // Probably an even larger number.
//! println!("{}", a * b);
//! ```
//!
//! See the "Features" section for instructions for enabling random number generation.
//!
//! ## Features
//!
//! The `std` crate feature is enabled by default, which enables [`std::error::Error`]
//! implementations and some internal use of floating point approximations. This can be disabled by
//! depending on `num-bigint` with `default-features = false`. Either way, the `alloc` crate is
//! always required for heap allocation of the `BigInt`/`BigUint` digits.
//!
//! ### Random Generation
//!
//! `num-bigint` supports the generation of random big integers when the `rand`
//! feature is enabled. To enable it include rand as
//!
//! ```toml
//! rand = "0.8"
//! num-bigint = { version = "0.4", features = ["rand"] }
//! ```
//!
//! Note that you must use the version of `rand` that `num-bigint` is compatible
//! with: `0.8`.
//!
//! ### Arbitrary Big Integers
//!
//! `num-bigint` supports `arbitrary` and `quickcheck` features to implement
//! [`arbitrary::Arbitrary`] and [`quickcheck::Arbitrary`], respectively, for both `BigInt` and
//! `BigUint`. These are useful for fuzzing and other forms of randomized testing.
//!
//! ### Serialization
//!
//! The `serde` feature adds implementations of [`Serialize`][serde::Serialize] and
//! [`Deserialize`][serde::Deserialize] for both `BigInt` and `BigUint`. Their serialized data is
//! generated portably, regardless of platform differences like the internal digit size.
//!
//!
//! ## Compatibility
//!
//! The `num-bigint` crate is tested for rustc 1.60 and greater.
#![cfg_attr(docsrs, feature(doc_cfg))]
#![doc(html_root_url = "https://docs.rs/num-bigint/0.4")]
#![warn(rust_2018_idioms)]
#![no_std]
#[macro_use]
extern crate alloc;
#[cfg(feature = "std")]
extern crate std;
use core::fmt;
#[macro_use]
mod macros;
mod bigint;
mod bigrand;
mod biguint;
#[cfg(target_pointer_width = "32")]
type UsizePromotion = u32;
#[cfg(target_pointer_width = "64")]
type UsizePromotion = u64;
#[cfg(target_pointer_width = "32")]
type IsizePromotion = i32;
#[cfg(target_pointer_width = "64")]
type IsizePromotion = i64;
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ParseBigIntError {
kind: BigIntErrorKind,
}
#[derive(Debug, Clone, PartialEq, Eq)]
enum BigIntErrorKind {
Empty,
InvalidDigit,
}
impl ParseBigIntError {
fn __description(&self) -> &str {
use crate::BigIntErrorKind::*;
match self.kind {
Empty => "cannot parse integer from empty string",
InvalidDigit => "invalid digit found in string",
}
}
fn empty() -> Self {
ParseBigIntError {
kind: BigIntErrorKind::Empty,
}
}
fn invalid() -> Self {
ParseBigIntError {
kind: BigIntErrorKind::InvalidDigit,
}
}
}
impl fmt::Display for ParseBigIntError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.__description().fmt(f)
}
}
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
impl std::error::Error for ParseBigIntError {
fn description(&self) -> &str {
self.__description()
}
}
/// The error type returned when a checked conversion regarding big integer fails.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct TryFromBigIntError<T> {
original: T,
}
impl<T> TryFromBigIntError<T> {
fn new(original: T) -> Self {
TryFromBigIntError { original }
}
fn __description(&self) -> &str {
"out of range conversion regarding big integer attempted"
}
/// Extract the original value, if available. The value will be available
/// if the type before conversion was either [`BigInt`] or [`BigUint`].
pub fn into_original(self) -> T {
self.original
}
}
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
impl<T> std::error::Error for TryFromBigIntError<T>
where
T: fmt::Debug,
{
fn description(&self) -> &str {
self.__description()
}
}
impl<T> fmt::Display for TryFromBigIntError<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.__description().fmt(f)
}
}
pub use crate::biguint::BigUint;
pub use crate::biguint::ToBigUint;
pub use crate::biguint::U32Digits;
pub use crate::biguint::U64Digits;
pub use crate::bigint::BigInt;
pub use crate::bigint::Sign;
pub use crate::bigint::ToBigInt;
#[cfg(feature = "rand")]
#[cfg_attr(docsrs, doc(cfg(feature = "rand")))]
pub use crate::bigrand::{RandBigInt, RandomBits, UniformBigInt, UniformBigUint};
mod big_digit {
// A [`BigDigit`] is a [`BigUint`]'s composing element.
cfg_digit!(
pub(crate) type BigDigit = u32;
pub(crate) type BigDigit = u64;
);
// A [`DoubleBigDigit`] is the internal type used to do the computations. Its
// size is the double of the size of [`BigDigit`].
cfg_digit!(
pub(crate) type DoubleBigDigit = u64;
pub(crate) type DoubleBigDigit = u128;
);
pub(crate) const BITS: u8 = BigDigit::BITS as u8;
pub(crate) const HALF_BITS: u8 = BITS / 2;
pub(crate) const HALF: BigDigit = (1 << HALF_BITS) - 1;
pub(crate) const MAX: BigDigit = BigDigit::MAX;
const LO_MASK: DoubleBigDigit = MAX as DoubleBigDigit;
#[inline]
fn get_hi(n: DoubleBigDigit) -> BigDigit {
(n >> BITS) as BigDigit
}
#[inline]
fn get_lo(n: DoubleBigDigit) -> BigDigit {
(n & LO_MASK) as BigDigit
}
/// Split one [`DoubleBigDigit`] into two [`BigDigit`]s.
#[inline]
pub(crate) fn from_doublebigdigit(n: DoubleBigDigit) -> (BigDigit, BigDigit) {
(get_hi(n), get_lo(n))
}
/// Join two [`BigDigit`]s into one [`DoubleBigDigit`].
#[inline]
pub(crate) fn to_doublebigdigit(hi: BigDigit, lo: BigDigit) -> DoubleBigDigit {
DoubleBigDigit::from(lo) | (DoubleBigDigit::from(hi) << BITS)
}
}