1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
//! In-process memory IO types.
use crate::io::{split, AsyncRead, AsyncWrite, ReadBuf, ReadHalf, WriteHalf};
use crate::loom::sync::Mutex;
use bytes::{Buf, BytesMut};
use std::{
pin::Pin,
sync::Arc,
task::{self, ready, Poll, Waker},
};
/// A bidirectional pipe to read and write bytes in memory.
///
/// A pair of `DuplexStream`s are created together, and they act as a "channel"
/// that can be used as in-memory IO types. Writing to one of the pairs will
/// allow that data to be read from the other, and vice versa.
///
/// # Closing a `DuplexStream`
///
/// If one end of the `DuplexStream` channel is dropped, any pending reads on
/// the other side will continue to read data until the buffer is drained, then
/// they will signal EOF by returning 0 bytes. Any writes to the other side,
/// including pending ones (that are waiting for free space in the buffer) will
/// return `Err(BrokenPipe)` immediately.
///
/// # Example
///
/// ```
/// # async fn ex() -> std::io::Result<()> {
/// # use tokio::io::{AsyncReadExt, AsyncWriteExt};
/// let (mut client, mut server) = tokio::io::duplex(64);
///
/// client.write_all(b"ping").await?;
///
/// let mut buf = [0u8; 4];
/// server.read_exact(&mut buf).await?;
/// assert_eq!(&buf, b"ping");
///
/// server.write_all(b"pong").await?;
///
/// client.read_exact(&mut buf).await?;
/// assert_eq!(&buf, b"pong");
/// # Ok(())
/// # }
/// ```
#[derive(Debug)]
#[cfg_attr(docsrs, doc(cfg(feature = "io-util")))]
pub struct DuplexStream {
read: Arc<Mutex<SimplexStream>>,
write: Arc<Mutex<SimplexStream>>,
}
/// A unidirectional pipe to read and write bytes in memory.
///
/// It can be constructed by [`simplex`] function which will create a pair of
/// reader and writer or by calling [`SimplexStream::new_unsplit`] that will
/// create a handle for both reading and writing.
///
/// # Example
///
/// ```
/// # async fn ex() -> std::io::Result<()> {
/// # use tokio::io::{AsyncReadExt, AsyncWriteExt};
/// let (mut receiver, mut sender) = tokio::io::simplex(64);
///
/// sender.write_all(b"ping").await?;
///
/// let mut buf = [0u8; 4];
/// receiver.read_exact(&mut buf).await?;
/// assert_eq!(&buf, b"ping");
/// # Ok(())
/// # }
/// ```
#[derive(Debug)]
#[cfg_attr(docsrs, doc(cfg(feature = "io-util")))]
pub struct SimplexStream {
/// The buffer storing the bytes written, also read from.
///
/// Using a `BytesMut` because it has efficient `Buf` and `BufMut`
/// functionality already. Additionally, it can try to copy data in the
/// same buffer if there read index has advanced far enough.
buffer: BytesMut,
/// Determines if the write side has been closed.
is_closed: bool,
/// The maximum amount of bytes that can be written before returning
/// `Poll::Pending`.
max_buf_size: usize,
/// If the `read` side has been polled and is pending, this is the waker
/// for that parked task.
read_waker: Option<Waker>,
/// If the `write` side has filled the `max_buf_size` and returned
/// `Poll::Pending`, this is the waker for that parked task.
write_waker: Option<Waker>,
}
// ===== impl DuplexStream =====
/// Create a new pair of `DuplexStream`s that act like a pair of connected sockets.
///
/// The `max_buf_size` argument is the maximum amount of bytes that can be
/// written to a side before the write returns `Poll::Pending`.
#[cfg_attr(docsrs, doc(cfg(feature = "io-util")))]
pub fn duplex(max_buf_size: usize) -> (DuplexStream, DuplexStream) {
let one = Arc::new(Mutex::new(SimplexStream::new_unsplit(max_buf_size)));
let two = Arc::new(Mutex::new(SimplexStream::new_unsplit(max_buf_size)));
(
DuplexStream {
read: one.clone(),
write: two.clone(),
},
DuplexStream {
read: two,
write: one,
},
)
}
impl AsyncRead for DuplexStream {
// Previous rustc required this `self` to be `mut`, even though newer
// versions recognize it isn't needed to call `lock()`. So for
// compatibility, we include the `mut` and `allow` the lint.
//
// See https://github.com/rust-lang/rust/issues/73592
#[allow(unused_mut)]
fn poll_read(
mut self: Pin<&mut Self>,
cx: &mut task::Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<std::io::Result<()>> {
Pin::new(&mut *self.read.lock()).poll_read(cx, buf)
}
}
impl AsyncWrite for DuplexStream {
#[allow(unused_mut)]
fn poll_write(
mut self: Pin<&mut Self>,
cx: &mut task::Context<'_>,
buf: &[u8],
) -> Poll<std::io::Result<usize>> {
Pin::new(&mut *self.write.lock()).poll_write(cx, buf)
}
fn poll_write_vectored(
self: Pin<&mut Self>,
cx: &mut task::Context<'_>,
bufs: &[std::io::IoSlice<'_>],
) -> Poll<Result<usize, std::io::Error>> {
Pin::new(&mut *self.write.lock()).poll_write_vectored(cx, bufs)
}
fn is_write_vectored(&self) -> bool {
true
}
#[allow(unused_mut)]
fn poll_flush(
mut self: Pin<&mut Self>,
cx: &mut task::Context<'_>,
) -> Poll<std::io::Result<()>> {
Pin::new(&mut *self.write.lock()).poll_flush(cx)
}
#[allow(unused_mut)]
fn poll_shutdown(
mut self: Pin<&mut Self>,
cx: &mut task::Context<'_>,
) -> Poll<std::io::Result<()>> {
Pin::new(&mut *self.write.lock()).poll_shutdown(cx)
}
}
impl Drop for DuplexStream {
fn drop(&mut self) {
// notify the other side of the closure
self.write.lock().close_write();
self.read.lock().close_read();
}
}
// ===== impl SimplexStream =====
/// Creates unidirectional buffer that acts like in memory pipe.
///
/// The `max_buf_size` argument is the maximum amount of bytes that can be
/// written to a buffer before the it returns `Poll::Pending`.
///
/// # Unify reader and writer
///
/// The reader and writer half can be unified into a single structure
/// of `SimplexStream` that supports both reading and writing or
/// the `SimplexStream` can be already created as unified structure
/// using [`SimplexStream::new_unsplit()`].
///
/// ```
/// # async fn ex() -> std::io::Result<()> {
/// # use tokio::io::{AsyncReadExt, AsyncWriteExt};
/// let (writer, reader) = tokio::io::simplex(64);
/// let mut simplex_stream = writer.unsplit(reader);
/// simplex_stream.write_all(b"hello").await?;
///
/// let mut buf = [0u8; 5];
/// simplex_stream.read_exact(&mut buf).await?;
/// assert_eq!(&buf, b"hello");
/// # Ok(())
/// # }
/// ```
#[cfg_attr(docsrs, doc(cfg(feature = "io-util")))]
pub fn simplex(max_buf_size: usize) -> (ReadHalf<SimplexStream>, WriteHalf<SimplexStream>) {
split(SimplexStream::new_unsplit(max_buf_size))
}
impl SimplexStream {
/// Creates unidirectional buffer that acts like in memory pipe. To create split
/// version with separate reader and writer you can use [`simplex`] function.
///
/// The `max_buf_size` argument is the maximum amount of bytes that can be
/// written to a buffer before the it returns `Poll::Pending`.
#[cfg_attr(docsrs, doc(cfg(feature = "io-util")))]
pub fn new_unsplit(max_buf_size: usize) -> SimplexStream {
SimplexStream {
buffer: BytesMut::new(),
is_closed: false,
max_buf_size,
read_waker: None,
write_waker: None,
}
}
fn close_write(&mut self) {
self.is_closed = true;
// needs to notify any readers that no more data will come
if let Some(waker) = self.read_waker.take() {
waker.wake();
}
}
fn close_read(&mut self) {
self.is_closed = true;
// needs to notify any writers that they have to abort
if let Some(waker) = self.write_waker.take() {
waker.wake();
}
}
fn poll_read_internal(
mut self: Pin<&mut Self>,
cx: &mut task::Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<std::io::Result<()>> {
if self.buffer.has_remaining() {
let max = self.buffer.remaining().min(buf.remaining());
buf.put_slice(&self.buffer[..max]);
self.buffer.advance(max);
if max > 0 {
// The passed `buf` might have been empty, don't wake up if
// no bytes have been moved.
if let Some(waker) = self.write_waker.take() {
waker.wake();
}
}
Poll::Ready(Ok(()))
} else if self.is_closed {
Poll::Ready(Ok(()))
} else {
self.read_waker = Some(cx.waker().clone());
Poll::Pending
}
}
fn poll_write_internal(
mut self: Pin<&mut Self>,
cx: &mut task::Context<'_>,
buf: &[u8],
) -> Poll<std::io::Result<usize>> {
if self.is_closed {
return Poll::Ready(Err(std::io::ErrorKind::BrokenPipe.into()));
}
let avail = self.max_buf_size - self.buffer.len();
if avail == 0 {
self.write_waker = Some(cx.waker().clone());
return Poll::Pending;
}
let len = buf.len().min(avail);
self.buffer.extend_from_slice(&buf[..len]);
if let Some(waker) = self.read_waker.take() {
waker.wake();
}
Poll::Ready(Ok(len))
}
fn poll_write_vectored_internal(
mut self: Pin<&mut Self>,
cx: &mut task::Context<'_>,
bufs: &[std::io::IoSlice<'_>],
) -> Poll<Result<usize, std::io::Error>> {
if self.is_closed {
return Poll::Ready(Err(std::io::ErrorKind::BrokenPipe.into()));
}
let avail = self.max_buf_size - self.buffer.len();
if avail == 0 {
self.write_waker = Some(cx.waker().clone());
return Poll::Pending;
}
let mut rem = avail;
for buf in bufs {
if rem == 0 {
break;
}
let len = buf.len().min(rem);
self.buffer.extend_from_slice(&buf[..len]);
rem -= len;
}
if let Some(waker) = self.read_waker.take() {
waker.wake();
}
Poll::Ready(Ok(avail - rem))
}
}
impl AsyncRead for SimplexStream {
cfg_coop! {
fn poll_read(
self: Pin<&mut Self>,
cx: &mut task::Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<std::io::Result<()>> {
ready!(crate::trace::trace_leaf(cx));
let coop = ready!(crate::runtime::coop::poll_proceed(cx));
let ret = self.poll_read_internal(cx, buf);
if ret.is_ready() {
coop.made_progress();
}
ret
}
}
cfg_not_coop! {
fn poll_read(
self: Pin<&mut Self>,
cx: &mut task::Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<std::io::Result<()>> {
ready!(crate::trace::trace_leaf(cx));
self.poll_read_internal(cx, buf)
}
}
}
impl AsyncWrite for SimplexStream {
cfg_coop! {
fn poll_write(
self: Pin<&mut Self>,
cx: &mut task::Context<'_>,
buf: &[u8],
) -> Poll<std::io::Result<usize>> {
ready!(crate::trace::trace_leaf(cx));
let coop = ready!(crate::runtime::coop::poll_proceed(cx));
let ret = self.poll_write_internal(cx, buf);
if ret.is_ready() {
coop.made_progress();
}
ret
}
}
cfg_not_coop! {
fn poll_write(
self: Pin<&mut Self>,
cx: &mut task::Context<'_>,
buf: &[u8],
) -> Poll<std::io::Result<usize>> {
ready!(crate::trace::trace_leaf(cx));
self.poll_write_internal(cx, buf)
}
}
cfg_coop! {
fn poll_write_vectored(
self: Pin<&mut Self>,
cx: &mut task::Context<'_>,
bufs: &[std::io::IoSlice<'_>],
) -> Poll<Result<usize, std::io::Error>> {
ready!(crate::trace::trace_leaf(cx));
let coop = ready!(crate::runtime::coop::poll_proceed(cx));
let ret = self.poll_write_vectored_internal(cx, bufs);
if ret.is_ready() {
coop.made_progress();
}
ret
}
}
cfg_not_coop! {
fn poll_write_vectored(
self: Pin<&mut Self>,
cx: &mut task::Context<'_>,
bufs: &[std::io::IoSlice<'_>],
) -> Poll<Result<usize, std::io::Error>> {
ready!(crate::trace::trace_leaf(cx));
self.poll_write_vectored_internal(cx, bufs)
}
}
fn is_write_vectored(&self) -> bool {
true
}
fn poll_flush(self: Pin<&mut Self>, _: &mut task::Context<'_>) -> Poll<std::io::Result<()>> {
Poll::Ready(Ok(()))
}
fn poll_shutdown(
mut self: Pin<&mut Self>,
_: &mut task::Context<'_>,
) -> Poll<std::io::Result<()>> {
self.close_write();
Poll::Ready(Ok(()))
}
}