1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
// Copyright 2015 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

//! HMAC-based Extract-and-Expand Key Derivation Function.
//!
//! HKDF is specified in [RFC 5869].
//!
//! [RFC 5869]: https://tools.ietf.org/html/rfc5869

use crate::{error, hmac};

/// An HKDF algorithm.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct Algorithm(hmac::Algorithm);

impl Algorithm {
    /// The underlying HMAC algorithm.
    #[inline]
    pub fn hmac_algorithm(&self) -> hmac::Algorithm {
        self.0
    }
}

/// HKDF using HMAC-SHA-1. Obsolete.
pub static HKDF_SHA1_FOR_LEGACY_USE_ONLY: Algorithm =
    Algorithm(hmac::HMAC_SHA1_FOR_LEGACY_USE_ONLY);

/// HKDF using HMAC-SHA-256.
pub static HKDF_SHA256: Algorithm = Algorithm(hmac::HMAC_SHA256);

/// HKDF using HMAC-SHA-384.
pub static HKDF_SHA384: Algorithm = Algorithm(hmac::HMAC_SHA384);

/// HKDF using HMAC-SHA-512.
pub static HKDF_SHA512: Algorithm = Algorithm(hmac::HMAC_SHA512);

impl KeyType for Algorithm {
    fn len(&self) -> usize {
        self.0.digest_algorithm().output_len
    }
}

/// A salt for HKDF operations.
#[derive(Debug)]
pub struct Salt(hmac::Key);

impl Salt {
    /// Constructs a new `Salt` with the given value based on the given digest
    /// algorithm.
    ///
    /// Constructing a `Salt` is relatively expensive so it is good to reuse a
    /// `Salt` object instead of re-constructing `Salt`s with the same value.
    pub fn new(algorithm: Algorithm, value: &[u8]) -> Self {
        Salt(hmac::Key::new(algorithm.0, value))
    }

    /// The [HKDF-Extract] operation.
    ///
    /// [HKDF-Extract]: https://tools.ietf.org/html/rfc5869#section-2.2
    pub fn extract(&self, secret: &[u8]) -> Prk {
        // The spec says that if no salt is provided then a key of
        // `digest_alg.output_len` bytes of zeros is used. But, HMAC keys are
        // already zero-padded to the block length, which is larger than the output
        // length of the extract step (the length of the digest). Consequently the
        // `Key` constructor will automatically do the right thing for a
        // zero-length string.
        let salt = &self.0;
        let prk = hmac::sign(salt, secret);
        Prk(hmac::Key::new(salt.algorithm(), prk.as_ref()))
    }

    /// The algorithm used to derive this salt.
    #[inline]
    pub fn algorithm(&self) -> Algorithm {
        Algorithm(self.0.algorithm())
    }
}

impl From<Okm<'_, Algorithm>> for Salt {
    fn from(okm: Okm<'_, Algorithm>) -> Self {
        Self(hmac::Key::from(Okm {
            prk: okm.prk,
            info: okm.info,
            len: okm.len().0,
            len_cached: okm.len_cached,
        }))
    }
}

/// The length of the OKM (Output Keying Material) for a `Prk::expand()` call.
pub trait KeyType {
    /// The length that `Prk::expand()` should expand its input to.
    fn len(&self) -> usize;
}

/// A HKDF PRK (pseudorandom key).
#[derive(Clone, Debug)]
pub struct Prk(hmac::Key);

impl Prk {
    /// Construct a new `Prk` directly with the given value.
    ///
    /// Usually one can avoid using this. It is useful when the application
    /// intentionally wants to leak the PRK secret, e.g. to implement
    /// `SSLKEYLOGFILE` functionality.
    pub fn new_less_safe(algorithm: Algorithm, value: &[u8]) -> Self {
        Self(hmac::Key::new(algorithm.hmac_algorithm(), value))
    }

    /// The [HKDF-Expand] operation.
    ///
    /// [HKDF-Expand]: https://tools.ietf.org/html/rfc5869#section-2.3
    ///
    /// Fails if (and only if) `len` is too large.
    #[inline]
    pub fn expand<'a, L: KeyType>(
        &'a self,
        info: &'a [&'a [u8]],
        len: L,
    ) -> Result<Okm<'a, L>, error::Unspecified> {
        let len_cached = len.len();
        if len_cached > 255 * self.0.algorithm().digest_algorithm().output_len {
            return Err(error::Unspecified);
        }
        Ok(Okm {
            prk: self,
            info,
            len,
            len_cached,
        })
    }
}

impl From<Okm<'_, Algorithm>> for Prk {
    fn from(okm: Okm<Algorithm>) -> Self {
        Self(hmac::Key::from(Okm {
            prk: okm.prk,
            info: okm.info,
            len: okm.len().0,
            len_cached: okm.len_cached,
        }))
    }
}

/// An HKDF OKM (Output Keying Material)
///
/// Intentionally not `Clone` or `Copy` as an OKM is generally only safe to
/// use once.
#[derive(Debug)]
pub struct Okm<'a, L: KeyType> {
    prk: &'a Prk,
    info: &'a [&'a [u8]],
    len: L,
    len_cached: usize,
}

impl<L: KeyType> Okm<'_, L> {
    /// The `OkmLength` given to `Prk::expand()`.
    #[inline]
    pub fn len(&self) -> &L {
        &self.len
    }

    /// Fills `out` with the output of the HKDF-Expand operation for the given
    /// inputs.
    ///
    /// Fails if (and only if) the requested output length is larger than 255
    /// times the size of the digest algorithm's output. (This is the limit
    /// imposed by the HKDF specification due to the way HKDF's counter is
    /// constructed.)
    #[inline]
    pub fn fill(self, out: &mut [u8]) -> Result<(), error::Unspecified> {
        fill_okm(self.prk, self.info, out, self.len_cached)
    }
}

fn fill_okm(
    prk: &Prk,
    info: &[&[u8]],
    out: &mut [u8],
    len: usize,
) -> Result<(), error::Unspecified> {
    if out.len() != len {
        return Err(error::Unspecified);
    }

    let digest_alg = prk.0.algorithm().digest_algorithm();
    assert!(digest_alg.block_len >= digest_alg.output_len);

    let mut ctx = hmac::Context::with_key(&prk.0);

    let mut n = 1u8;
    let mut out = out;
    loop {
        for info in info {
            ctx.update(info);
        }
        ctx.update(&[n]);

        let t = ctx.sign();
        let t = t.as_ref();

        // Append `t` to the output.
        out = if out.len() < digest_alg.output_len {
            let len = out.len();
            out.copy_from_slice(&t[..len]);
            &mut []
        } else {
            let (this_chunk, rest) = out.split_at_mut(digest_alg.output_len);
            this_chunk.copy_from_slice(t);
            rest
        };

        if out.is_empty() {
            return Ok(());
        }

        ctx = hmac::Context::with_key(&prk.0);
        ctx.update(t);
        n = n.checked_add(1).unwrap();
    }
}