1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
// Copyright 2015 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
//! HMAC-based Extract-and-Expand Key Derivation Function.
//!
//! HKDF is specified in [RFC 5869].
//!
//! [RFC 5869]: https://tools.ietf.org/html/rfc5869
use crate::{error, hmac};
/// An HKDF algorithm.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct Algorithm(hmac::Algorithm);
impl Algorithm {
/// The underlying HMAC algorithm.
#[inline]
pub fn hmac_algorithm(&self) -> hmac::Algorithm {
self.0
}
}
/// HKDF using HMAC-SHA-1. Obsolete.
pub static HKDF_SHA1_FOR_LEGACY_USE_ONLY: Algorithm =
Algorithm(hmac::HMAC_SHA1_FOR_LEGACY_USE_ONLY);
/// HKDF using HMAC-SHA-256.
pub static HKDF_SHA256: Algorithm = Algorithm(hmac::HMAC_SHA256);
/// HKDF using HMAC-SHA-384.
pub static HKDF_SHA384: Algorithm = Algorithm(hmac::HMAC_SHA384);
/// HKDF using HMAC-SHA-512.
pub static HKDF_SHA512: Algorithm = Algorithm(hmac::HMAC_SHA512);
impl KeyType for Algorithm {
fn len(&self) -> usize {
self.0.digest_algorithm().output_len
}
}
/// A salt for HKDF operations.
#[derive(Debug)]
pub struct Salt(hmac::Key);
impl Salt {
/// Constructs a new `Salt` with the given value based on the given digest
/// algorithm.
///
/// Constructing a `Salt` is relatively expensive so it is good to reuse a
/// `Salt` object instead of re-constructing `Salt`s with the same value.
pub fn new(algorithm: Algorithm, value: &[u8]) -> Self {
Salt(hmac::Key::new(algorithm.0, value))
}
/// The [HKDF-Extract] operation.
///
/// [HKDF-Extract]: https://tools.ietf.org/html/rfc5869#section-2.2
pub fn extract(&self, secret: &[u8]) -> Prk {
// The spec says that if no salt is provided then a key of
// `digest_alg.output_len` bytes of zeros is used. But, HMAC keys are
// already zero-padded to the block length, which is larger than the output
// length of the extract step (the length of the digest). Consequently the
// `Key` constructor will automatically do the right thing for a
// zero-length string.
let salt = &self.0;
let prk = hmac::sign(salt, secret);
Prk(hmac::Key::new(salt.algorithm(), prk.as_ref()))
}
/// The algorithm used to derive this salt.
#[inline]
pub fn algorithm(&self) -> Algorithm {
Algorithm(self.0.algorithm())
}
}
impl From<Okm<'_, Algorithm>> for Salt {
fn from(okm: Okm<'_, Algorithm>) -> Self {
Self(hmac::Key::from(Okm {
prk: okm.prk,
info: okm.info,
len: okm.len().0,
len_cached: okm.len_cached,
}))
}
}
/// The length of the OKM (Output Keying Material) for a `Prk::expand()` call.
pub trait KeyType {
/// The length that `Prk::expand()` should expand its input to.
fn len(&self) -> usize;
}
/// A HKDF PRK (pseudorandom key).
#[derive(Clone, Debug)]
pub struct Prk(hmac::Key);
impl Prk {
/// Construct a new `Prk` directly with the given value.
///
/// Usually one can avoid using this. It is useful when the application
/// intentionally wants to leak the PRK secret, e.g. to implement
/// `SSLKEYLOGFILE` functionality.
pub fn new_less_safe(algorithm: Algorithm, value: &[u8]) -> Self {
Self(hmac::Key::new(algorithm.hmac_algorithm(), value))
}
/// The [HKDF-Expand] operation.
///
/// [HKDF-Expand]: https://tools.ietf.org/html/rfc5869#section-2.3
///
/// Fails if (and only if) `len` is too large.
#[inline]
pub fn expand<'a, L: KeyType>(
&'a self,
info: &'a [&'a [u8]],
len: L,
) -> Result<Okm<'a, L>, error::Unspecified> {
let len_cached = len.len();
if len_cached > 255 * self.0.algorithm().digest_algorithm().output_len {
return Err(error::Unspecified);
}
Ok(Okm {
prk: self,
info,
len,
len_cached,
})
}
}
impl From<Okm<'_, Algorithm>> for Prk {
fn from(okm: Okm<Algorithm>) -> Self {
Self(hmac::Key::from(Okm {
prk: okm.prk,
info: okm.info,
len: okm.len().0,
len_cached: okm.len_cached,
}))
}
}
/// An HKDF OKM (Output Keying Material)
///
/// Intentionally not `Clone` or `Copy` as an OKM is generally only safe to
/// use once.
#[derive(Debug)]
pub struct Okm<'a, L: KeyType> {
prk: &'a Prk,
info: &'a [&'a [u8]],
len: L,
len_cached: usize,
}
impl<L: KeyType> Okm<'_, L> {
/// The `OkmLength` given to `Prk::expand()`.
#[inline]
pub fn len(&self) -> &L {
&self.len
}
/// Fills `out` with the output of the HKDF-Expand operation for the given
/// inputs.
///
/// Fails if (and only if) the requested output length is larger than 255
/// times the size of the digest algorithm's output. (This is the limit
/// imposed by the HKDF specification due to the way HKDF's counter is
/// constructed.)
#[inline]
pub fn fill(self, out: &mut [u8]) -> Result<(), error::Unspecified> {
fill_okm(self.prk, self.info, out, self.len_cached)
}
}
fn fill_okm(
prk: &Prk,
info: &[&[u8]],
out: &mut [u8],
len: usize,
) -> Result<(), error::Unspecified> {
if out.len() != len {
return Err(error::Unspecified);
}
let digest_alg = prk.0.algorithm().digest_algorithm();
assert!(digest_alg.block_len >= digest_alg.output_len);
let mut ctx = hmac::Context::with_key(&prk.0);
let mut n = 1u8;
let mut out = out;
loop {
for info in info {
ctx.update(info);
}
ctx.update(&[n]);
let t = ctx.sign();
let t = t.as_ref();
// Append `t` to the output.
out = if out.len() < digest_alg.output_len {
let len = out.len();
out.copy_from_slice(&t[..len]);
&mut []
} else {
let (this_chunk, rest) = out.split_at_mut(digest_alg.output_len);
this_chunk.copy_from_slice(t);
rest
};
if out.is_empty() {
return Ok(());
}
ctx = hmac::Context::with_key(&prk.0);
ctx.update(t);
n = n.checked_add(1).unwrap();
}
}