1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
/*!
Provides a contiguous NFA implementation of Aho-Corasick.

This is a low-level API that generally only needs to be used in niche
circumstances. When possible, prefer using [`AhoCorasick`](crate::AhoCorasick)
instead of a contiguous NFA directly. Using an `NFA` directly is typically only
necessary when one needs access to the [`Automaton`] trait implementation.
*/

use alloc::{vec, vec::Vec};

use crate::{
    automaton::Automaton,
    nfa::noncontiguous,
    util::{
        alphabet::ByteClasses,
        error::{BuildError, MatchError},
        int::{Usize, U16, U32},
        prefilter::Prefilter,
        primitives::{IteratorIndexExt, PatternID, SmallIndex, StateID},
        search::{Anchored, MatchKind},
        special::Special,
    },
};

/// A contiguous NFA implementation of Aho-Corasick.
///
/// When possible, prefer using [`AhoCorasick`](crate::AhoCorasick) instead of
/// this type directly. Using an `NFA` directly is typically only necessary
/// when one needs access to the [`Automaton`] trait implementation.
///
/// This NFA can only be built by first constructing a [`noncontiguous::NFA`].
/// Both [`NFA::new`] and [`Builder::build`] do this for you automatically, but
/// [`Builder::build_from_noncontiguous`] permits doing it explicitly.
///
/// The main difference between a noncontiguous NFA and a contiguous NFA is
/// that the latter represents all of its states and transitions in a single
/// allocation, where as the former uses a separate allocation for each state.
/// Doing this at construction time while keeping a low memory footprint isn't
/// feasible, which is primarily why there are two different NFA types: one
/// that does the least amount of work possible to build itself, and another
/// that does a little extra work to compact itself and make state transitions
/// faster by making some states use a dense representation.
///
/// Because a contiguous NFA uses a single allocation, there is a lot more
/// opportunity for compression tricks to reduce the heap memory used. Indeed,
/// it is not uncommon for a contiguous NFA to use an order of magnitude less
/// heap memory than a noncontiguous NFA. Since building a contiguous NFA
/// usually only takes a fraction of the time it takes to build a noncontiguous
/// NFA, the overall build time is not much slower. Thus, in most cases, a
/// contiguous NFA is the best choice.
///
/// Since a contiguous NFA uses various tricks for compression and to achieve
/// faster state transitions, currently, its limit on the number of states
/// is somewhat smaller than what a noncontiguous NFA can achieve. Generally
/// speaking, you shouldn't expect to run into this limit if the number of
/// patterns is under 1 million. It is plausible that this limit will be
/// increased in the future. If the limit is reached, building a contiguous NFA
/// will return an error. Often, since building a contiguous NFA is relatively
/// cheap, it can make sense to always try it even if you aren't sure if it
/// will fail or not. If it does, you can always fall back to a noncontiguous
/// NFA. (Indeed, the main [`AhoCorasick`](crate::AhoCorasick) type employs a
/// strategy similar to this at construction time.)
///
/// # Example
///
/// This example shows how to build an `NFA` directly and use it to execute
/// [`Automaton::try_find`]:
///
/// ```
/// use aho_corasick::{
///     automaton::Automaton,
///     nfa::contiguous::NFA,
///     Input, Match,
/// };
///
/// let patterns = &["b", "abc", "abcd"];
/// let haystack = "abcd";
///
/// let nfa = NFA::new(patterns).unwrap();
/// assert_eq!(
///     Some(Match::must(0, 1..2)),
///     nfa.try_find(&Input::new(haystack))?,
/// );
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// It is also possible to implement your own version of `try_find`. See the
/// [`Automaton`] documentation for an example.
#[derive(Clone)]
pub struct NFA {
    /// The raw NFA representation. Each state is packed with a header
    /// (containing the format of the state, the failure transition and, for
    /// a sparse state, the number of transitions), its transitions and any
    /// matching pattern IDs for match states.
    repr: Vec<u32>,
    /// The length of each pattern. This is used to compute the start offset
    /// of a match.
    pattern_lens: Vec<SmallIndex>,
    /// The total number of states in this NFA.
    state_len: usize,
    /// A prefilter for accelerating searches, if one exists.
    prefilter: Option<Prefilter>,
    /// The match semantics built into this NFA.
    match_kind: MatchKind,
    /// The alphabet size, or total number of equivalence classes, for this
    /// NFA. Dense states always have this many transitions.
    alphabet_len: usize,
    /// The equivalence classes for this NFA. All transitions, dense and
    /// sparse, are defined on equivalence classes and not on the 256 distinct
    /// byte values.
    byte_classes: ByteClasses,
    /// The length of the shortest pattern in this automaton.
    min_pattern_len: usize,
    /// The length of the longest pattern in this automaton.
    max_pattern_len: usize,
    /// The information required to deduce which states are "special" in this
    /// NFA.
    special: Special,
}

impl NFA {
    /// Create a new Aho-Corasick contiguous NFA using the default
    /// configuration.
    ///
    /// Use a [`Builder`] if you want to change the configuration.
    pub fn new<I, P>(patterns: I) -> Result<NFA, BuildError>
    where
        I: IntoIterator<Item = P>,
        P: AsRef<[u8]>,
    {
        NFA::builder().build(patterns)
    }

    /// A convenience method for returning a new Aho-Corasick contiguous NFA
    /// builder.
    ///
    /// This usually permits one to just import the `NFA` type.
    pub fn builder() -> Builder {
        Builder::new()
    }
}

impl NFA {
    /// A sentinel state ID indicating that a search should stop once it has
    /// entered this state. When a search stops, it returns a match if one
    /// has been found, otherwise no match. A contiguous NFA always has an
    /// actual dead state at this ID.
    const DEAD: StateID = StateID::new_unchecked(0);
    /// Another sentinel state ID indicating that a search should move through
    /// current state's failure transition.
    ///
    /// Note that unlike DEAD, this does not actually point to a valid state
    /// in a contiguous NFA. (noncontiguous::NFA::FAIL does point to a valid
    /// state.) Instead, this points to the position that is guaranteed to
    /// never be a valid state ID (by making sure it points to a place in the
    /// middle of the encoding of the DEAD state). Since we never need to
    /// actually look at the FAIL state itself, this works out.
    ///
    /// By why do it this way? So that FAIL is a constant. I don't have any
    /// concrete evidence that this materially helps matters, but it's easy to
    /// do. The alternative would be making the FAIL ID point to the second
    /// state, which could be made a constant but is a little trickier to do.
    /// The easiest path is to just make the FAIL state a runtime value, but
    /// since comparisons with FAIL occur in perf critical parts of the search,
    /// we want it to be as tight as possible and not waste any registers.
    ///
    /// Very hand wavy... But the code complexity that results from this is
    /// very mild.
    const FAIL: StateID = StateID::new_unchecked(1);
}

// SAFETY: 'start_state' always returns a valid state ID, 'next_state' always
// returns a valid state ID given a valid state ID. We otherwise claim that
// all other methods are correct as well.
unsafe impl Automaton for NFA {
    #[inline(always)]
    fn start_state(&self, anchored: Anchored) -> Result<StateID, MatchError> {
        match anchored {
            Anchored::No => Ok(self.special.start_unanchored_id),
            Anchored::Yes => Ok(self.special.start_anchored_id),
        }
    }

    #[inline(always)]
    fn next_state(
        &self,
        anchored: Anchored,
        mut sid: StateID,
        byte: u8,
    ) -> StateID {
        let repr = &self.repr;
        let class = self.byte_classes.get(byte);
        let u32tosid = StateID::from_u32_unchecked;
        loop {
            let o = sid.as_usize();
            let kind = repr[o] & 0xFF;
            // I tried to encapsulate the "next transition" logic into its own
            // function, but it seemed to always result in sub-optimal codegen
            // that led to real and significant slowdowns. So we just inline
            // the logic here.
            //
            // I've also tried a lot of different ways to speed up this
            // routine, and most of them have failed.
            if kind == State::KIND_DENSE {
                let next = u32tosid(repr[o + 2 + usize::from(class)]);
                if next != NFA::FAIL {
                    return next;
                }
            } else if kind == State::KIND_ONE {
                if class == repr[o].low_u16().high_u8() {
                    return u32tosid(repr[o + 2]);
                }
            } else {
                // NOTE: I tried a SWAR technique in the loop below, but found
                // it slower. See the 'swar' test in the tests for this module.
                let trans_len = kind.as_usize();
                let classes_len = u32_len(trans_len);
                let trans_offset = o + 2 + classes_len;
                for (i, &chunk) in
                    repr[o + 2..][..classes_len].iter().enumerate()
                {
                    let classes = chunk.to_ne_bytes();
                    if classes[0] == class {
                        return u32tosid(repr[trans_offset + i * 4]);
                    }
                    if classes[1] == class {
                        return u32tosid(repr[trans_offset + i * 4 + 1]);
                    }
                    if classes[2] == class {
                        return u32tosid(repr[trans_offset + i * 4 + 2]);
                    }
                    if classes[3] == class {
                        return u32tosid(repr[trans_offset + i * 4 + 3]);
                    }
                }
            }
            // For an anchored search, we never follow failure transitions
            // because failure transitions lead us down a path to matching
            // a *proper* suffix of the path we were on. Thus, it can only
            // produce matches that appear after the beginning of the search.
            if anchored.is_anchored() {
                return NFA::DEAD;
            }
            sid = u32tosid(repr[o + 1]);
        }
    }

    #[inline(always)]
    fn is_special(&self, sid: StateID) -> bool {
        sid <= self.special.max_special_id
    }

    #[inline(always)]
    fn is_dead(&self, sid: StateID) -> bool {
        sid == NFA::DEAD
    }

    #[inline(always)]
    fn is_match(&self, sid: StateID) -> bool {
        !self.is_dead(sid) && sid <= self.special.max_match_id
    }

    #[inline(always)]
    fn is_start(&self, sid: StateID) -> bool {
        sid == self.special.start_unanchored_id
            || sid == self.special.start_anchored_id
    }

    #[inline(always)]
    fn match_kind(&self) -> MatchKind {
        self.match_kind
    }

    #[inline(always)]
    fn patterns_len(&self) -> usize {
        self.pattern_lens.len()
    }

    #[inline(always)]
    fn pattern_len(&self, pid: PatternID) -> usize {
        self.pattern_lens[pid].as_usize()
    }

    #[inline(always)]
    fn min_pattern_len(&self) -> usize {
        self.min_pattern_len
    }

    #[inline(always)]
    fn max_pattern_len(&self) -> usize {
        self.max_pattern_len
    }

    #[inline(always)]
    fn match_len(&self, sid: StateID) -> usize {
        State::match_len(self.alphabet_len, &self.repr[sid.as_usize()..])
    }

    #[inline(always)]
    fn match_pattern(&self, sid: StateID, index: usize) -> PatternID {
        State::match_pattern(
            self.alphabet_len,
            &self.repr[sid.as_usize()..],
            index,
        )
    }

    #[inline(always)]
    fn memory_usage(&self) -> usize {
        use core::mem::size_of;

        (self.repr.len() * size_of::<u32>())
            + (self.pattern_lens.len() * size_of::<SmallIndex>())
            + self.prefilter.as_ref().map_or(0, |p| p.memory_usage())
    }

    #[inline(always)]
    fn prefilter(&self) -> Option<&Prefilter> {
        self.prefilter.as_ref()
    }
}

impl core::fmt::Debug for NFA {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        use crate::automaton::fmt_state_indicator;

        writeln!(f, "contiguous::NFA(")?;
        let mut sid = NFA::DEAD; // always the first state and always present
        loop {
            let raw = &self.repr[sid.as_usize()..];
            if raw.is_empty() {
                break;
            }
            let is_match = self.is_match(sid);
            let state = State::read(self.alphabet_len, is_match, raw);
            fmt_state_indicator(f, self, sid)?;
            write!(
                f,
                "{:06}({:06}): ",
                sid.as_usize(),
                state.fail.as_usize()
            )?;
            state.fmt(f)?;
            write!(f, "\n")?;
            if self.is_match(sid) {
                write!(f, "         matches: ")?;
                for i in 0..state.match_len {
                    let pid = State::match_pattern(self.alphabet_len, raw, i);
                    if i > 0 {
                        write!(f, ", ")?;
                    }
                    write!(f, "{}", pid.as_usize())?;
                }
                write!(f, "\n")?;
            }
            // The FAIL state doesn't actually have space for a state allocated
            // for it, so we have to treat it as a special case. write below
            // the DEAD state.
            if sid == NFA::DEAD {
                writeln!(f, "F {:06}:", NFA::FAIL.as_usize())?;
            }
            let len = State::len(self.alphabet_len, is_match, raw);
            sid = StateID::new(sid.as_usize().checked_add(len).unwrap())
                .unwrap();
        }
        writeln!(f, "match kind: {:?}", self.match_kind)?;
        writeln!(f, "prefilter: {:?}", self.prefilter.is_some())?;
        writeln!(f, "state length: {:?}", self.state_len)?;
        writeln!(f, "pattern length: {:?}", self.patterns_len())?;
        writeln!(f, "shortest pattern length: {:?}", self.min_pattern_len)?;
        writeln!(f, "longest pattern length: {:?}", self.max_pattern_len)?;
        writeln!(f, "alphabet length: {:?}", self.alphabet_len)?;
        writeln!(f, "byte classes: {:?}", self.byte_classes)?;
        writeln!(f, "memory usage: {:?}", self.memory_usage())?;
        writeln!(f, ")")?;

        Ok(())
    }
}

/// The "in memory" representation a single dense or sparse state.
///
/// A `State`'s in memory representation is not ever actually materialized
/// during a search with a contiguous NFA. Doing so would be too slow. (Indeed,
/// the only time a `State` is actually constructed is in `Debug` impls.)
/// Instead, a `State` exposes a number of static methods for reading certain
/// things from the raw binary encoding of the state.
#[derive(Clone)]
struct State<'a> {
    /// The state to transition to when 'class_to_next' yields a transition
    /// to the FAIL state.
    fail: StateID,
    /// The number of pattern IDs in this state. For a non-match state, this is
    /// always zero. Otherwise it is always bigger than zero.
    match_len: usize,
    /// The sparse or dense representation of the transitions for this state.
    trans: StateTrans<'a>,
}

/// The underlying representation of sparse or dense transitions for a state.
///
/// Note that like `State`, we don't typically construct values of this type
/// during a search since we don't always need all values and thus would
/// represent a lot of wasteful work.
#[derive(Clone)]
enum StateTrans<'a> {
    /// A sparse representation of transitions for a state, where only non-FAIL
    /// transitions are explicitly represented.
    Sparse {
        classes: &'a [u32],
        /// The transitions for this state, where each transition is packed
        /// into a u32. The low 8 bits correspond to the byte class for the
        /// transition, and the high 24 bits correspond to the next state ID.
        ///
        /// This packing is why the max state ID allowed for a contiguous
        /// NFA is 2^24-1.
        nexts: &'a [u32],
    },
    /// A "one transition" state that is never a match state.
    ///
    /// These are by far the most common state, so we use a specialized and
    /// very compact representation for them.
    One {
        /// The element of this NFA's alphabet that this transition is
        /// defined for.
        class: u8,
        /// The state this should transition to if the current symbol is
        /// equal to 'class'.
        next: u32,
    },
    /// A dense representation of transitions for a state, where all
    /// transitions are explicitly represented, including transitions to the
    /// FAIL state.
    Dense {
        /// A dense set of transitions to other states. The transitions may
        /// point to a FAIL state, in which case, the search should try the
        /// same transition lookup at 'fail'.
        ///
        /// Note that this is indexed by byte equivalence classes and not
        /// byte values. That means 'class_to_next[byte]' is wrong and
        /// 'class_to_next[classes.get(byte)]' is correct. The number of
        /// transitions is always equivalent to 'classes.alphabet_len()'.
        class_to_next: &'a [u32],
    },
}

impl<'a> State<'a> {
    /// The offset of where the "kind" of a state is stored. If it isn't one
    /// of the sentinel values below, then it's a sparse state and the kind
    /// corresponds to the number of transitions in the state.
    const KIND: usize = 0;

    /// A sentinel value indicating that the state uses a dense representation.
    const KIND_DENSE: u32 = 0xFF;
    /// A sentinel value indicating that the state uses a special "one
    /// transition" encoding. In practice, non-match states with one transition
    /// make up the overwhelming majority of all states in any given
    /// Aho-Corasick automaton, so we can specialize them using a very compact
    /// representation.
    const KIND_ONE: u32 = 0xFE;

    /// The maximum number of transitions to encode as a sparse state. Usually
    /// states with a lot of transitions are either very rare, or occur near
    /// the start state. In the latter case, they are probably dense already
    /// anyway. In the former case, making them dense is fine because they're
    /// rare.
    ///
    /// This needs to be small enough to permit each of the sentinel values for
    /// 'KIND' above. Namely, a sparse state embeds the number of transitions
    /// into the 'KIND'. Basically, "sparse" is a state kind too, but it's the
    /// "else" branch.
    ///
    /// N.B. There isn't anything particularly magical about 127 here. I
    /// just picked it because I figured any sparse state with this many
    /// transitions is going to be exceptionally rare, and if it did have this
    /// many transitions, then it would be quite slow to do a linear scan on
    /// the transitions during a search anyway.
    const MAX_SPARSE_TRANSITIONS: usize = 127;

    /// Remap state IDs in-place.
    ///
    /// `state` should be the the raw binary encoding of a state. (The start
    /// of the slice must correspond to the start of the state, but the slice
    /// may extend past the end of the encoding of the state.)
    fn remap(
        alphabet_len: usize,
        old_to_new: &[StateID],
        state: &mut [u32],
    ) -> Result<(), BuildError> {
        let kind = State::kind(state);
        if kind == State::KIND_DENSE {
            state[1] = old_to_new[state[1].as_usize()].as_u32();
            for next in state[2..][..alphabet_len].iter_mut() {
                *next = old_to_new[next.as_usize()].as_u32();
            }
        } else if kind == State::KIND_ONE {
            state[1] = old_to_new[state[1].as_usize()].as_u32();
            state[2] = old_to_new[state[2].as_usize()].as_u32();
        } else {
            let trans_len = State::sparse_trans_len(state);
            let classes_len = u32_len(trans_len);
            state[1] = old_to_new[state[1].as_usize()].as_u32();
            for next in state[2 + classes_len..][..trans_len].iter_mut() {
                *next = old_to_new[next.as_usize()].as_u32();
            }
        }
        Ok(())
    }

    /// Returns the length, in number of u32s, of this state.
    ///
    /// This is useful for reading states consecutively, e.g., in the Debug
    /// impl without needing to store a separate map from state index to state
    /// identifier.
    ///
    /// `state` should be the the raw binary encoding of a state. (The start
    /// of the slice must correspond to the start of the state, but the slice
    /// may extend past the end of the encoding of the state.)
    fn len(alphabet_len: usize, is_match: bool, state: &[u32]) -> usize {
        let kind_len = 1;
        let fail_len = 1;
        let kind = State::kind(state);
        let (classes_len, trans_len) = if kind == State::KIND_DENSE {
            (0, alphabet_len)
        } else if kind == State::KIND_ONE {
            (0, 1)
        } else {
            let trans_len = State::sparse_trans_len(state);
            let classes_len = u32_len(trans_len);
            (classes_len, trans_len)
        };
        let match_len = if !is_match {
            0
        } else if State::match_len(alphabet_len, state) == 1 {
            // This is a special case because when there is one pattern ID for
            // a match state, it is represented by a single u32 with its high
            // bit set (which is impossible for a valid pattern ID).
            1
        } else {
            // We add 1 to include the u32 that indicates the number of
            // pattern IDs that follow.
            1 + State::match_len(alphabet_len, state)
        };
        kind_len + fail_len + classes_len + trans_len + match_len
    }

    /// Returns the kind of this state.
    ///
    /// This only includes the low byte.
    #[inline(always)]
    fn kind(state: &[u32]) -> u32 {
        state[State::KIND] & 0xFF
    }

    /// Get the number of sparse transitions in this state. This can never
    /// be more than State::MAX_SPARSE_TRANSITIONS, as all states with more
    /// transitions are encoded as dense states.
    ///
    /// `state` should be the the raw binary encoding of a sparse state. (The
    /// start of the slice must correspond to the start of the state, but the
    /// slice may extend past the end of the encoding of the state.) If this
    /// isn't a sparse state, then the return value is unspecified.
    ///
    /// Do note that this is only legal to call on a sparse state. So for
    /// example, "one transition" state is not a sparse state, so it would not
    /// be legal to call this method on such a state.
    #[inline(always)]
    fn sparse_trans_len(state: &[u32]) -> usize {
        (state[State::KIND] & 0xFF).as_usize()
    }

    /// Returns the total number of matching pattern IDs in this state. Calling
    /// this on a state that isn't a match results in unspecified behavior.
    /// Thus, the returned number is never 0 for all correct calls.
    ///
    /// `state` should be the the raw binary encoding of a state. (The start
    /// of the slice must correspond to the start of the state, but the slice
    /// may extend past the end of the encoding of the state.)
    #[inline(always)]
    fn match_len(alphabet_len: usize, state: &[u32]) -> usize {
        // We don't need to handle KIND_ONE here because it can never be a
        // match state.
        let packed = if State::kind(state) == State::KIND_DENSE {
            let start = 2 + alphabet_len;
            state[start].as_usize()
        } else {
            let trans_len = State::sparse_trans_len(state);
            let classes_len = u32_len(trans_len);
            let start = 2 + classes_len + trans_len;
            state[start].as_usize()
        };
        if packed & (1 << 31) == 0 {
            packed
        } else {
            1
        }
    }

    /// Returns the pattern ID corresponding to the given index for the state
    /// given. The `index` provided must be less than the number of pattern IDs
    /// in this state.
    ///
    /// `state` should be the the raw binary encoding of a state. (The start of
    /// the slice must correspond to the start of the state, but the slice may
    /// extend past the end of the encoding of the state.)
    ///
    /// If the given state is not a match state or if the index is out of
    /// bounds, then this has unspecified behavior.
    #[inline(always)]
    fn match_pattern(
        alphabet_len: usize,
        state: &[u32],
        index: usize,
    ) -> PatternID {
        // We don't need to handle KIND_ONE here because it can never be a
        // match state.
        let start = if State::kind(state) == State::KIND_DENSE {
            2 + alphabet_len
        } else {
            let trans_len = State::sparse_trans_len(state);
            let classes_len = u32_len(trans_len);
            2 + classes_len + trans_len
        };
        let packed = state[start];
        let pid = if packed & (1 << 31) == 0 {
            state[start + 1 + index]
        } else {
            assert_eq!(0, index);
            packed & !(1 << 31)
        };
        PatternID::from_u32_unchecked(pid)
    }

    /// Read a state's binary encoding to its in-memory representation.
    ///
    /// `alphabet_len` should be the total number of transitions defined for
    /// dense states.
    ///
    /// `is_match` should be true if this state is a match state and false
    /// otherwise.
    ///
    /// `state` should be the the raw binary encoding of a state. (The start
    /// of the slice must correspond to the start of the state, but the slice
    /// may extend past the end of the encoding of the state.)
    fn read(
        alphabet_len: usize,
        is_match: bool,
        state: &'a [u32],
    ) -> State<'a> {
        let kind = State::kind(state);
        let match_len =
            if !is_match { 0 } else { State::match_len(alphabet_len, state) };
        let (trans, fail) = if kind == State::KIND_DENSE {
            let fail = StateID::from_u32_unchecked(state[1]);
            let class_to_next = &state[2..][..alphabet_len];
            (StateTrans::Dense { class_to_next }, fail)
        } else if kind == State::KIND_ONE {
            let fail = StateID::from_u32_unchecked(state[1]);
            let class = state[State::KIND].low_u16().high_u8();
            let next = state[2];
            (StateTrans::One { class, next }, fail)
        } else {
            let fail = StateID::from_u32_unchecked(state[1]);
            let trans_len = State::sparse_trans_len(state);
            let classes_len = u32_len(trans_len);
            let classes = &state[2..][..classes_len];
            let nexts = &state[2 + classes_len..][..trans_len];
            (StateTrans::Sparse { classes, nexts }, fail)
        };
        State { fail, match_len, trans }
    }

    /// Encode the "old" state from a noncontiguous NFA to its binary
    /// representation to the given `dst` slice. `classes` should be the byte
    /// classes computed for the noncontiguous NFA that the given state came
    /// from.
    ///
    /// This returns an error if `dst` became so big that `StateID`s can no
    /// longer be created for new states. Otherwise, it returns the state ID of
    /// the new state created.
    ///
    /// When `force_dense` is true, then the encoded state will always use a
    /// dense format. Otherwise, the choice between dense and sparse will be
    /// automatically chosen based on the old state.
    fn write(
        nnfa: &noncontiguous::NFA,
        oldsid: StateID,
        old: &noncontiguous::State,
        classes: &ByteClasses,
        dst: &mut Vec<u32>,
        force_dense: bool,
    ) -> Result<StateID, BuildError> {
        let sid = StateID::new(dst.len()).map_err(|e| {
            BuildError::state_id_overflow(StateID::MAX.as_u64(), e.attempted())
        })?;
        let old_len = nnfa.iter_trans(oldsid).count();
        // For states with a lot of transitions, we might as well just make
        // them dense. These kinds of hot states tend to be very rare, so we're
        // okay with it. This also gives us more sentinels in the state's
        // 'kind', which lets us create different state kinds to save on
        // space.
        let kind = if force_dense || old_len > State::MAX_SPARSE_TRANSITIONS {
            State::KIND_DENSE
        } else if old_len == 1 && !old.is_match() {
            State::KIND_ONE
        } else {
            // For a sparse state, the kind is just the number of transitions.
            u32::try_from(old_len).unwrap()
        };
        if kind == State::KIND_DENSE {
            dst.push(kind);
            dst.push(old.fail().as_u32());
            State::write_dense_trans(nnfa, oldsid, classes, dst)?;
        } else if kind == State::KIND_ONE {
            let t = nnfa.iter_trans(oldsid).next().unwrap();
            let class = u32::from(classes.get(t.byte()));
            dst.push(kind | (class << 8));
            dst.push(old.fail().as_u32());
            dst.push(t.next().as_u32());
        } else {
            dst.push(kind);
            dst.push(old.fail().as_u32());
            State::write_sparse_trans(nnfa, oldsid, classes, dst)?;
        }
        // Now finally write the number of matches and the matches themselves.
        if old.is_match() {
            let matches_len = nnfa.iter_matches(oldsid).count();
            if matches_len == 1 {
                let pid = nnfa.iter_matches(oldsid).next().unwrap().as_u32();
                assert_eq!(0, pid & (1 << 31));
                dst.push((1 << 31) | pid);
            } else {
                assert_eq!(0, matches_len & (1 << 31));
                dst.push(matches_len.as_u32());
                dst.extend(nnfa.iter_matches(oldsid).map(|pid| pid.as_u32()));
            }
        }
        Ok(sid)
    }

    /// Encode the "old" state transitions from a noncontiguous NFA to its
    /// binary sparse representation to the given `dst` slice. `classes` should
    /// be the byte classes computed for the noncontiguous NFA that the given
    /// state came from.
    ///
    /// This returns an error if `dst` became so big that `StateID`s can no
    /// longer be created for new states.
    fn write_sparse_trans(
        nnfa: &noncontiguous::NFA,
        oldsid: StateID,
        classes: &ByteClasses,
        dst: &mut Vec<u32>,
    ) -> Result<(), BuildError> {
        let (mut chunk, mut len) = ([0; 4], 0);
        for t in nnfa.iter_trans(oldsid) {
            chunk[len] = classes.get(t.byte());
            len += 1;
            if len == 4 {
                dst.push(u32::from_ne_bytes(chunk));
                chunk = [0; 4];
                len = 0;
            }
        }
        if len > 0 {
            // In the case where the number of transitions isn't divisible
            // by 4, the last u32 chunk will have some left over room. In
            // this case, we "just" repeat the last equivalence class. By
            // doing this, we know the leftover faux transitions will never
            // be followed because if they were, it would have been followed
            // prior to it in the last equivalence class. This saves us some
            // branching in the search time state transition code.
            let repeat = chunk[len - 1];
            while len < 4 {
                chunk[len] = repeat;
                len += 1;
            }
            dst.push(u32::from_ne_bytes(chunk));
        }
        for t in nnfa.iter_trans(oldsid) {
            dst.push(t.next().as_u32());
        }
        Ok(())
    }

    /// Encode the "old" state transitions from a noncontiguous NFA to its
    /// binary dense representation to the given `dst` slice. `classes` should
    /// be the byte classes computed for the noncontiguous NFA that the given
    /// state came from.
    ///
    /// This returns an error if `dst` became so big that `StateID`s can no
    /// longer be created for new states.
    fn write_dense_trans(
        nnfa: &noncontiguous::NFA,
        oldsid: StateID,
        classes: &ByteClasses,
        dst: &mut Vec<u32>,
    ) -> Result<(), BuildError> {
        // Our byte classes let us shrink the size of our dense states to the
        // number of equivalence classes instead of just fixing it to 256.
        // Any non-explicitly defined transition is just a transition to the
        // FAIL state, so we fill that in first and then overwrite them with
        // explicitly defined transitions. (Most states probably only have one
        // or two explicitly defined transitions.)
        //
        // N.B. Remember that while building the contiguous NFA, we use state
        // IDs from the noncontiguous NFA. It isn't until we've added all
        // states that we go back and map noncontiguous IDs to contiguous IDs.
        let start = dst.len();
        dst.extend(
            core::iter::repeat(noncontiguous::NFA::FAIL.as_u32())
                .take(classes.alphabet_len()),
        );
        assert!(start < dst.len(), "equivalence classes are never empty");
        for t in nnfa.iter_trans(oldsid) {
            dst[start + usize::from(classes.get(t.byte()))] =
                t.next().as_u32();
        }
        Ok(())
    }

    /// Return an iterator over every explicitly defined transition in this
    /// state.
    fn transitions<'b>(&'b self) -> impl Iterator<Item = (u8, StateID)> + 'b {
        let mut i = 0;
        core::iter::from_fn(move || match self.trans {
            StateTrans::Sparse { classes, nexts } => {
                if i >= nexts.len() {
                    return None;
                }
                let chunk = classes[i / 4];
                let class = chunk.to_ne_bytes()[i % 4];
                let next = StateID::from_u32_unchecked(nexts[i]);
                i += 1;
                Some((class, next))
            }
            StateTrans::One { class, next } => {
                if i == 0 {
                    i += 1;
                    Some((class, StateID::from_u32_unchecked(next)))
                } else {
                    None
                }
            }
            StateTrans::Dense { class_to_next } => {
                if i >= class_to_next.len() {
                    return None;
                }
                let class = i.as_u8();
                let next = StateID::from_u32_unchecked(class_to_next[i]);
                i += 1;
                Some((class, next))
            }
        })
    }
}

impl<'a> core::fmt::Debug for State<'a> {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        use crate::{automaton::sparse_transitions, util::debug::DebugByte};

        let it = sparse_transitions(self.transitions())
            // Writing out all FAIL transitions is quite noisy. Instead, we
            // just require readers of the output to assume anything absent
            // maps to the FAIL transition.
            .filter(|&(_, _, sid)| sid != NFA::FAIL)
            .enumerate();
        for (i, (start, end, sid)) in it {
            if i > 0 {
                write!(f, ", ")?;
            }
            if start == end {
                write!(f, "{:?} => {:?}", DebugByte(start), sid.as_usize())?;
            } else {
                write!(
                    f,
                    "{:?}-{:?} => {:?}",
                    DebugByte(start),
                    DebugByte(end),
                    sid.as_usize()
                )?;
            }
        }
        Ok(())
    }
}

/// A builder for configuring an Aho-Corasick contiguous NFA.
///
/// This builder has a subset of the options available to a
/// [`AhoCorasickBuilder`](crate::AhoCorasickBuilder). Of the shared options,
/// their behavior is identical.
#[derive(Clone, Debug)]
pub struct Builder {
    noncontiguous: noncontiguous::Builder,
    dense_depth: usize,
    byte_classes: bool,
}

impl Default for Builder {
    fn default() -> Builder {
        Builder {
            noncontiguous: noncontiguous::Builder::new(),
            dense_depth: 2,
            byte_classes: true,
        }
    }
}

impl Builder {
    /// Create a new builder for configuring an Aho-Corasick contiguous NFA.
    pub fn new() -> Builder {
        Builder::default()
    }

    /// Build an Aho-Corasick contiguous NFA from the given iterator of
    /// patterns.
    ///
    /// A builder may be reused to create more NFAs.
    pub fn build<I, P>(&self, patterns: I) -> Result<NFA, BuildError>
    where
        I: IntoIterator<Item = P>,
        P: AsRef<[u8]>,
    {
        let nnfa = self.noncontiguous.build(patterns)?;
        self.build_from_noncontiguous(&nnfa)
    }

    /// Build an Aho-Corasick contiguous NFA from the given noncontiguous NFA.
    ///
    /// Note that when this method is used, only the `dense_depth` and
    /// `byte_classes` settings on this builder are respected. The other
    /// settings only apply to the initial construction of the Aho-Corasick
    /// automaton. Since using this method requires that initial construction
    /// has already completed, all settings impacting only initial construction
    /// are no longer relevant.
    pub fn build_from_noncontiguous(
        &self,
        nnfa: &noncontiguous::NFA,
    ) -> Result<NFA, BuildError> {
        debug!("building contiguous NFA");
        let byte_classes = if self.byte_classes {
            nnfa.byte_classes().clone()
        } else {
            ByteClasses::singletons()
        };
        let mut index_to_state_id = vec![NFA::DEAD; nnfa.states().len()];
        let mut nfa = NFA {
            repr: vec![],
            pattern_lens: nnfa.pattern_lens_raw().to_vec(),
            state_len: nnfa.states().len(),
            prefilter: nnfa.prefilter().map(|p| p.clone()),
            match_kind: nnfa.match_kind(),
            alphabet_len: byte_classes.alphabet_len(),
            byte_classes,
            min_pattern_len: nnfa.min_pattern_len(),
            max_pattern_len: nnfa.max_pattern_len(),
            // The special state IDs are set later.
            special: Special::zero(),
        };
        for (oldsid, state) in nnfa.states().iter().with_state_ids() {
            // We don't actually encode a fail state since it isn't necessary.
            // But we still want to make sure any FAIL ids are mapped
            // correctly.
            if oldsid == noncontiguous::NFA::FAIL {
                index_to_state_id[oldsid] = NFA::FAIL;
                continue;
            }
            let force_dense = state.depth().as_usize() < self.dense_depth;
            let newsid = State::write(
                nnfa,
                oldsid,
                state,
                &nfa.byte_classes,
                &mut nfa.repr,
                force_dense,
            )?;
            index_to_state_id[oldsid] = newsid;
        }
        for &newsid in index_to_state_id.iter() {
            if newsid == NFA::FAIL {
                continue;
            }
            let state = &mut nfa.repr[newsid.as_usize()..];
            State::remap(nfa.alphabet_len, &index_to_state_id, state)?;
        }
        // Now that we've remapped all the IDs in our states, all that's left
        // is remapping the special state IDs.
        let remap = &index_to_state_id;
        let old = nnfa.special();
        let new = &mut nfa.special;
        new.max_special_id = remap[old.max_special_id];
        new.max_match_id = remap[old.max_match_id];
        new.start_unanchored_id = remap[old.start_unanchored_id];
        new.start_anchored_id = remap[old.start_anchored_id];
        debug!(
            "contiguous NFA built, <states: {:?}, size: {:?}, \
             alphabet len: {:?}>",
            nfa.state_len,
            nfa.memory_usage(),
            nfa.byte_classes.alphabet_len(),
        );
        // The vectors can grow ~twice as big during construction because a
        // Vec amortizes growth. But here, let's shrink things back down to
        // what we actually need since we're never going to add more to it.
        nfa.repr.shrink_to_fit();
        nfa.pattern_lens.shrink_to_fit();
        Ok(nfa)
    }

    /// Set the desired match semantics.
    ///
    /// This only applies when using [`Builder::build`] and not
    /// [`Builder::build_from_noncontiguous`].
    ///
    /// See
    /// [`AhoCorasickBuilder::match_kind`](crate::AhoCorasickBuilder::match_kind)
    /// for more documentation and examples.
    pub fn match_kind(&mut self, kind: MatchKind) -> &mut Builder {
        self.noncontiguous.match_kind(kind);
        self
    }

    /// Enable ASCII-aware case insensitive matching.
    ///
    /// This only applies when using [`Builder::build`] and not
    /// [`Builder::build_from_noncontiguous`].
    ///
    /// See
    /// [`AhoCorasickBuilder::ascii_case_insensitive`](crate::AhoCorasickBuilder::ascii_case_insensitive)
    /// for more documentation and examples.
    pub fn ascii_case_insensitive(&mut self, yes: bool) -> &mut Builder {
        self.noncontiguous.ascii_case_insensitive(yes);
        self
    }

    /// Enable heuristic prefilter optimizations.
    ///
    /// This only applies when using [`Builder::build`] and not
    /// [`Builder::build_from_noncontiguous`].
    ///
    /// See
    /// [`AhoCorasickBuilder::prefilter`](crate::AhoCorasickBuilder::prefilter)
    /// for more documentation and examples.
    pub fn prefilter(&mut self, yes: bool) -> &mut Builder {
        self.noncontiguous.prefilter(yes);
        self
    }

    /// Set the limit on how many states use a dense representation for their
    /// transitions. Other states will generally use a sparse representation.
    ///
    /// See
    /// [`AhoCorasickBuilder::dense_depth`](crate::AhoCorasickBuilder::dense_depth)
    /// for more documentation and examples.
    pub fn dense_depth(&mut self, depth: usize) -> &mut Builder {
        self.dense_depth = depth;
        self
    }

    /// A debug setting for whether to attempt to shrink the size of the
    /// automaton's alphabet or not.
    ///
    /// This should never be enabled unless you're debugging an automaton.
    /// Namely, disabling byte classes makes transitions easier to reason
    /// about, since they use the actual bytes instead of equivalence classes.
    /// Disabling this confers no performance benefit at search time.
    ///
    /// See
    /// [`AhoCorasickBuilder::byte_classes`](crate::AhoCorasickBuilder::byte_classes)
    /// for more documentation and examples.
    pub fn byte_classes(&mut self, yes: bool) -> &mut Builder {
        self.byte_classes = yes;
        self
    }
}

/// Computes the number of u32 values needed to represent one byte per the
/// number of transitions given.
fn u32_len(ntrans: usize) -> usize {
    if ntrans % 4 == 0 {
        ntrans >> 2
    } else {
        (ntrans >> 2) + 1
    }
}

#[cfg(test)]
mod tests {
    // This test demonstrates a SWAR technique I tried in the sparse transition
    // code inside of 'next_state'. Namely, sparse transitions work by
    // iterating over u32 chunks, with each chunk containing up to 4 classes
    // corresponding to 4 transitions. This SWAR technique lets us find a
    // matching transition without converting the u32 to a [u8; 4].
    //
    // It turned out to be a little slower unfortunately, which isn't too
    // surprising, since this is likely a throughput oriented optimization.
    // Loop unrolling doesn't really help us because the vast majority of
    // states have very few transitions.
    //
    // Anyway, this code was a little tricky to write, so I converted it to a
    // test in case someone figures out how to use it more effectively than
    // I could.
    //
    // (This also only works on little endian. So big endian would need to be
    // accounted for if we ever decided to use this I think.)
    #[cfg(target_endian = "little")]
    #[test]
    fn swar() {
        use super::*;

        fn has_zero_byte(x: u32) -> u32 {
            const LO_U32: u32 = 0x01010101;
            const HI_U32: u32 = 0x80808080;

            x.wrapping_sub(LO_U32) & !x & HI_U32
        }

        fn broadcast(b: u8) -> u32 {
            (u32::from(b)) * (u32::MAX / 255)
        }

        fn index_of(x: u32) -> usize {
            let o =
                (((x - 1) & 0x01010101).wrapping_mul(0x01010101) >> 24) - 1;
            o.as_usize()
        }

        let bytes: [u8; 4] = [b'1', b'A', b'a', b'z'];
        let chunk = u32::from_ne_bytes(bytes);

        let needle = broadcast(b'1');
        assert_eq!(0, index_of(has_zero_byte(needle ^ chunk)));
        let needle = broadcast(b'A');
        assert_eq!(1, index_of(has_zero_byte(needle ^ chunk)));
        let needle = broadcast(b'a');
        assert_eq!(2, index_of(has_zero_byte(needle ^ chunk)));
        let needle = broadcast(b'z');
        assert_eq!(3, index_of(has_zero_byte(needle ^ chunk)));
    }
}