1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
use std::io::{self, BufRead, Read};

use crate::stream::raw::{InBuffer, Operation, OutBuffer};

// [ reader -> zstd ] -> output
/// Implements the [`Read`] API around an [`Operation`].
///
/// This can be used to wrap a raw in-memory operation in a read-focused API.
///
/// It can wrap either a compression or decompression operation, and pulls
/// input data from a wrapped `Read`.
pub struct Reader<R, D> {
    reader: R,
    operation: D,

    state: State,

    single_frame: bool,
    finished_frame: bool,
}

enum State {
    // Still actively reading from the inner `Read`
    Reading,
    // We reached EOF from the inner `Read`, now flushing.
    PastEof,
    // We are fully done, nothing can be read.
    Finished,
}

impl<R, D> Reader<R, D> {
    /// Creates a new `Reader`.
    ///
    /// `reader` will be used to pull input data for the given operation.
    pub fn new(reader: R, operation: D) -> Self {
        Reader {
            reader,
            operation,
            state: State::Reading,
            single_frame: false,
            finished_frame: false,
        }
    }

    /// Sets `self` to stop after the first decoded frame.
    pub fn set_single_frame(&mut self) {
        self.single_frame = true;
    }

    /// Returns a mutable reference to the underlying operation.
    pub fn operation_mut(&mut self) -> &mut D {
        &mut self.operation
    }

    /// Returns a mutable reference to the underlying reader.
    pub fn reader_mut(&mut self) -> &mut R {
        &mut self.reader
    }

    /// Returns a reference to the underlying reader.
    pub fn reader(&self) -> &R {
        &self.reader
    }

    /// Returns the inner reader.
    pub fn into_inner(self) -> R {
        self.reader
    }

    /// Flush any internal buffer.
    ///
    /// For encoders, this ensures all input consumed so far is compressed.
    pub fn flush(&mut self, output: &mut [u8]) -> io::Result<usize>
    where
        D: Operation,
    {
        self.operation.flush(&mut OutBuffer::around(output))
    }
}
// Read and retry on Interrupted errors.
fn fill_buf<R>(reader: &mut R) -> io::Result<&[u8]>
where
    R: BufRead,
{
    // This doesn't work right now because of the borrow-checker.
    // When it can be made to compile, it would allow Reader to automatically
    // retry on `Interrupted` error.
    /*
    loop {
        match reader.fill_buf() {
            Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
            otherwise => return otherwise,
        }
    }
    */

    // Workaround for now
    let res = reader.fill_buf()?;

    // eprintln!("Filled buffer: {:?}", res);

    Ok(res)
}

impl<R, D> Read for Reader<R, D>
where
    R: BufRead,
    D: Operation,
{
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        // Keep trying until _something_ has been written.
        let mut first = true;
        loop {
            match self.state {
                State::Reading => {
                    let (bytes_read, bytes_written) = {
                        // Start with a fresh pool of un-processed data.
                        // This is the only line that can return an interruption error.
                        let input = if first {
                            // eprintln!("First run, no input coming.");
                            b""
                        } else {
                            fill_buf(&mut self.reader)?
                        };

                        // eprintln!("Input = {:?}", input);

                        // It's possible we don't have any new data to read.
                        // (In this case we may still have zstd's own buffer to clear.)
                        if !first && input.is_empty() {
                            self.state = State::PastEof;
                            continue;
                        }
                        first = false;

                        let mut src = InBuffer::around(input);
                        let mut dst = OutBuffer::around(buf);

                        // We don't want empty input (from first=true) to cause a frame
                        // re-initialization.
                        if self.finished_frame && !input.is_empty() {
                            // eprintln!("!! Reigniting !!");
                            self.operation.reinit()?;
                            self.finished_frame = false;
                        }

                        // Phase 1: feed input to the operation
                        let hint = self.operation.run(&mut src, &mut dst)?;
                        // eprintln!(
                        //     "Hint={} Just run our operation:\n In={:?}\n Out={:?}",
                        //     hint, src, dst
                        // );

                        if hint == 0 {
                            // In practice this only happens when decoding, when we just finished
                            // reading a frame.
                            self.finished_frame = true;
                            if self.single_frame {
                                self.state = State::Finished;
                            }
                        }

                        // eprintln!("Output: {:?}", dst);

                        (src.pos(), dst.pos())
                    };

                    self.reader.consume(bytes_read);

                    if bytes_written > 0 {
                        return Ok(bytes_written);
                    }

                    // We need more data! Try again!
                }
                State::PastEof => {
                    let mut dst = OutBuffer::around(buf);

                    // We already sent all the input we could get to zstd. Time to flush out the
                    // buffer and be done with it.

                    // Phase 2: flush out the operation's buffer
                    // Keep calling `finish()` until the buffer is empty.
                    let hint = self
                        .operation
                        .finish(&mut dst, self.finished_frame)?;
                    // eprintln!("Hint: {} ; Output: {:?}", hint, dst);
                    if hint == 0 {
                        // This indicates that the footer is complete.
                        // This is the only way to terminate the stream cleanly.
                        self.state = State::Finished;
                    }

                    return Ok(dst.pos());
                }
                State::Finished => {
                    return Ok(0);
                }
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::Reader;
    use std::io::{Cursor, Read};

    #[test]
    fn test_noop() {
        use crate::stream::raw::NoOp;

        let input = b"AbcdefghAbcdefgh.";

        // Test reader
        let mut output = Vec::new();
        {
            let mut reader = Reader::new(Cursor::new(input), NoOp);
            reader.read_to_end(&mut output).unwrap();
        }
        assert_eq!(&output, input);
    }

    #[test]
    fn test_compress() {
        use crate::stream::raw::Encoder;

        let input = b"AbcdefghAbcdefgh.";

        // Test reader
        let mut output = Vec::new();
        {
            let mut reader =
                Reader::new(Cursor::new(input), Encoder::new(1).unwrap());
            reader.read_to_end(&mut output).unwrap();
        }
        // eprintln!("{:?}", output);
        let decoded = crate::decode_all(&output[..]).unwrap();
        assert_eq!(&decoded, input);
    }
}