1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
//! Rivest–Shamir–Adleman cryptosystem
//!
//! RSA is one of the earliest asymmetric public key encryption schemes.
//! Like many other cryptosystems, RSA relies on the presumed difficulty of a hard
//! mathematical problem, namely factorization of the product of two large prime
//! numbers. At the moment there does not exist an algorithm that can factor such
//! large numbers in reasonable time. RSA is used in a wide variety of
//! applications including digital signatures and key exchanges such as
//! establishing a TLS/SSL connection.
//!
//! The RSA acronym is derived from the first letters of the surnames of the
//! algorithm's founding trio.
//!
//! # Example
//!
//! Generate a 2048-bit RSA key pair and use the public key to encrypt some data.
//!
//! ```rust
//! use openssl::rsa::{Rsa, Padding};
//!
//! let rsa = Rsa::generate(2048).unwrap();
//! let data = b"foobar";
//! let mut buf = vec![0; rsa.size() as usize];
//! let encrypted_len = rsa.public_encrypt(data, &mut buf, Padding::PKCS1).unwrap();
//! ```
use cfg_if::cfg_if;
use foreign_types::{ForeignType, ForeignTypeRef};
use libc::c_int;
use std::fmt;
use std::mem;
use std::ptr;
use crate::bn::{BigNum, BigNumRef};
use crate::error::ErrorStack;
use crate::pkey::{HasPrivate, HasPublic, Private, Public};
use crate::util::ForeignTypeRefExt;
use crate::{cvt, cvt_n, cvt_p, LenType};
use openssl_macros::corresponds;
/// Type of encryption padding to use.
///
/// Random length padding is primarily used to prevent attackers from
/// predicting or knowing the exact length of a plaintext message that
/// can possibly lead to breaking encryption.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct Padding(c_int);
impl Padding {
pub const NONE: Padding = Padding(ffi::RSA_NO_PADDING);
pub const PKCS1: Padding = Padding(ffi::RSA_PKCS1_PADDING);
pub const PKCS1_OAEP: Padding = Padding(ffi::RSA_PKCS1_OAEP_PADDING);
pub const PKCS1_PSS: Padding = Padding(ffi::RSA_PKCS1_PSS_PADDING);
/// Creates a `Padding` from an integer representation.
pub fn from_raw(value: c_int) -> Padding {
Padding(value)
}
/// Returns the integer representation of `Padding`.
#[allow(clippy::trivially_copy_pass_by_ref)]
pub fn as_raw(&self) -> c_int {
self.0
}
}
generic_foreign_type_and_impl_send_sync! {
type CType = ffi::RSA;
fn drop = ffi::RSA_free;
/// An RSA key.
pub struct Rsa<T>;
/// Reference to `RSA`
pub struct RsaRef<T>;
}
impl<T> Clone for Rsa<T> {
fn clone(&self) -> Rsa<T> {
(**self).to_owned()
}
}
impl<T> ToOwned for RsaRef<T> {
type Owned = Rsa<T>;
fn to_owned(&self) -> Rsa<T> {
unsafe {
ffi::RSA_up_ref(self.as_ptr());
Rsa::from_ptr(self.as_ptr())
}
}
}
impl<T> RsaRef<T>
where
T: HasPrivate,
{
private_key_to_pem! {
/// Serializes the private key to a PEM-encoded PKCS#1 RSAPrivateKey structure.
///
/// The output will have a header of `-----BEGIN RSA PRIVATE KEY-----`.
#[corresponds(PEM_write_bio_RSAPrivateKey)]
private_key_to_pem,
/// Serializes the private key to a PEM-encoded encrypted PKCS#1 RSAPrivateKey structure.
///
/// The output will have a header of `-----BEGIN RSA PRIVATE KEY-----`.
#[corresponds(PEM_write_bio_RSAPrivateKey)]
private_key_to_pem_passphrase,
ffi::PEM_write_bio_RSAPrivateKey
}
to_der! {
/// Serializes the private key to a DER-encoded PKCS#1 RSAPrivateKey structure.
#[corresponds(i2d_RSAPrivateKey)]
private_key_to_der,
ffi::i2d_RSAPrivateKey
}
/// Decrypts data using the private key, returning the number of decrypted bytes.
///
/// # Panics
///
/// Panics if `self` has no private components, or if `to` is smaller
/// than `self.size()`.
#[corresponds(RSA_private_decrypt)]
pub fn private_decrypt(
&self,
from: &[u8],
to: &mut [u8],
padding: Padding,
) -> Result<usize, ErrorStack> {
assert!(from.len() <= i32::MAX as usize);
assert!(to.len() >= self.size() as usize);
unsafe {
let len = cvt_n(ffi::RSA_private_decrypt(
from.len() as LenType,
from.as_ptr(),
to.as_mut_ptr(),
self.as_ptr(),
padding.0,
))?;
Ok(len as usize)
}
}
/// Encrypts data using the private key, returning the number of encrypted bytes.
///
/// # Panics
///
/// Panics if `self` has no private components, or if `to` is smaller
/// than `self.size()`.
#[corresponds(RSA_private_encrypt)]
pub fn private_encrypt(
&self,
from: &[u8],
to: &mut [u8],
padding: Padding,
) -> Result<usize, ErrorStack> {
assert!(from.len() <= i32::MAX as usize);
assert!(to.len() >= self.size() as usize);
unsafe {
let len = cvt_n(ffi::RSA_private_encrypt(
from.len() as LenType,
from.as_ptr(),
to.as_mut_ptr(),
self.as_ptr(),
padding.0,
))?;
Ok(len as usize)
}
}
/// Returns a reference to the private exponent of the key.
#[corresponds(RSA_get0_key)]
pub fn d(&self) -> &BigNumRef {
unsafe {
let mut d = ptr::null();
RSA_get0_key(self.as_ptr(), ptr::null_mut(), ptr::null_mut(), &mut d);
BigNumRef::from_const_ptr(d)
}
}
/// Returns a reference to the first factor of the exponent of the key.
#[corresponds(RSA_get0_factors)]
pub fn p(&self) -> Option<&BigNumRef> {
unsafe {
let mut p = ptr::null();
RSA_get0_factors(self.as_ptr(), &mut p, ptr::null_mut());
BigNumRef::from_const_ptr_opt(p)
}
}
/// Returns a reference to the second factor of the exponent of the key.
#[corresponds(RSA_get0_factors)]
pub fn q(&self) -> Option<&BigNumRef> {
unsafe {
let mut q = ptr::null();
RSA_get0_factors(self.as_ptr(), ptr::null_mut(), &mut q);
BigNumRef::from_const_ptr_opt(q)
}
}
/// Returns a reference to the first exponent used for CRT calculations.
#[corresponds(RSA_get0_crt_params)]
pub fn dmp1(&self) -> Option<&BigNumRef> {
unsafe {
let mut dp = ptr::null();
RSA_get0_crt_params(self.as_ptr(), &mut dp, ptr::null_mut(), ptr::null_mut());
BigNumRef::from_const_ptr_opt(dp)
}
}
/// Returns a reference to the second exponent used for CRT calculations.
#[corresponds(RSA_get0_crt_params)]
pub fn dmq1(&self) -> Option<&BigNumRef> {
unsafe {
let mut dq = ptr::null();
RSA_get0_crt_params(self.as_ptr(), ptr::null_mut(), &mut dq, ptr::null_mut());
BigNumRef::from_const_ptr_opt(dq)
}
}
/// Returns a reference to the coefficient used for CRT calculations.
#[corresponds(RSA_get0_crt_params)]
pub fn iqmp(&self) -> Option<&BigNumRef> {
unsafe {
let mut qi = ptr::null();
RSA_get0_crt_params(self.as_ptr(), ptr::null_mut(), ptr::null_mut(), &mut qi);
BigNumRef::from_const_ptr_opt(qi)
}
}
/// Validates RSA parameters for correctness
#[corresponds(RSA_check_key)]
pub fn check_key(&self) -> Result<bool, ErrorStack> {
unsafe {
let result = ffi::RSA_check_key(self.as_ptr());
if result != 1 {
let errors = ErrorStack::get();
if errors.errors().is_empty() {
Ok(false)
} else {
Err(errors)
}
} else {
Ok(true)
}
}
}
}
impl<T> RsaRef<T>
where
T: HasPublic,
{
to_pem! {
/// Serializes the public key into a PEM-encoded SubjectPublicKeyInfo structure.
///
/// The output will have a header of `-----BEGIN PUBLIC KEY-----`.
#[corresponds(PEM_write_bio_RSA_PUBKEY)]
public_key_to_pem,
ffi::PEM_write_bio_RSA_PUBKEY
}
to_der! {
/// Serializes the public key into a DER-encoded SubjectPublicKeyInfo structure.
#[corresponds(i2d_RSA_PUBKEY)]
public_key_to_der,
ffi::i2d_RSA_PUBKEY
}
to_pem! {
/// Serializes the public key into a PEM-encoded PKCS#1 RSAPublicKey structure.
///
/// The output will have a header of `-----BEGIN RSA PUBLIC KEY-----`.
#[corresponds(PEM_write_bio_RSAPublicKey)]
public_key_to_pem_pkcs1,
ffi::PEM_write_bio_RSAPublicKey
}
to_der! {
/// Serializes the public key into a DER-encoded PKCS#1 RSAPublicKey structure.
#[corresponds(i2d_RSAPublicKey)]
public_key_to_der_pkcs1,
ffi::i2d_RSAPublicKey
}
/// Returns the size of the modulus in bytes.
#[corresponds(RSA_size)]
pub fn size(&self) -> u32 {
unsafe { ffi::RSA_size(self.as_ptr()) as u32 }
}
/// Decrypts data using the public key, returning the number of decrypted bytes.
///
/// # Panics
///
/// Panics if `to` is smaller than `self.size()`.
#[corresponds(RSA_public_decrypt)]
pub fn public_decrypt(
&self,
from: &[u8],
to: &mut [u8],
padding: Padding,
) -> Result<usize, ErrorStack> {
assert!(from.len() <= i32::MAX as usize);
assert!(to.len() >= self.size() as usize);
unsafe {
let len = cvt_n(ffi::RSA_public_decrypt(
from.len() as LenType,
from.as_ptr(),
to.as_mut_ptr(),
self.as_ptr(),
padding.0,
))?;
Ok(len as usize)
}
}
/// Encrypts data using the public key, returning the number of encrypted bytes.
///
/// # Panics
///
/// Panics if `to` is smaller than `self.size()`.
#[corresponds(RSA_public_encrypt)]
pub fn public_encrypt(
&self,
from: &[u8],
to: &mut [u8],
padding: Padding,
) -> Result<usize, ErrorStack> {
assert!(from.len() <= i32::MAX as usize);
assert!(to.len() >= self.size() as usize);
unsafe {
let len = cvt_n(ffi::RSA_public_encrypt(
from.len() as LenType,
from.as_ptr(),
to.as_mut_ptr(),
self.as_ptr(),
padding.0,
))?;
Ok(len as usize)
}
}
/// Returns a reference to the modulus of the key.
#[corresponds(RSA_get0_key)]
pub fn n(&self) -> &BigNumRef {
unsafe {
let mut n = ptr::null();
RSA_get0_key(self.as_ptr(), &mut n, ptr::null_mut(), ptr::null_mut());
BigNumRef::from_const_ptr(n)
}
}
/// Returns a reference to the public exponent of the key.
#[corresponds(RSA_get0_key)]
pub fn e(&self) -> &BigNumRef {
unsafe {
let mut e = ptr::null();
RSA_get0_key(self.as_ptr(), ptr::null_mut(), &mut e, ptr::null_mut());
BigNumRef::from_const_ptr(e)
}
}
}
impl Rsa<Public> {
/// Creates a new RSA key with only public components.
///
/// `n` is the modulus common to both public and private key.
/// `e` is the public exponent.
///
/// This corresponds to [`RSA_new`] and uses [`RSA_set0_key`].
///
/// [`RSA_new`]: https://www.openssl.org/docs/manmaster/crypto/RSA_new.html
/// [`RSA_set0_key`]: https://www.openssl.org/docs/manmaster/crypto/RSA_set0_key.html
pub fn from_public_components(n: BigNum, e: BigNum) -> Result<Rsa<Public>, ErrorStack> {
unsafe {
let rsa = cvt_p(ffi::RSA_new())?;
RSA_set0_key(rsa, n.as_ptr(), e.as_ptr(), ptr::null_mut());
mem::forget((n, e));
Ok(Rsa::from_ptr(rsa))
}
}
from_pem! {
/// Decodes a PEM-encoded SubjectPublicKeyInfo structure containing an RSA key.
///
/// The input should have a header of `-----BEGIN PUBLIC KEY-----`.
#[corresponds(PEM_read_bio_RSA_PUBKEY)]
public_key_from_pem,
Rsa<Public>,
ffi::PEM_read_bio_RSA_PUBKEY
}
from_pem! {
/// Decodes a PEM-encoded PKCS#1 RSAPublicKey structure.
///
/// The input should have a header of `-----BEGIN RSA PUBLIC KEY-----`.
#[corresponds(PEM_read_bio_RSAPublicKey)]
public_key_from_pem_pkcs1,
Rsa<Public>,
ffi::PEM_read_bio_RSAPublicKey
}
from_der! {
/// Decodes a DER-encoded SubjectPublicKeyInfo structure containing an RSA key.
#[corresponds(d2i_RSA_PUBKEY)]
public_key_from_der,
Rsa<Public>,
ffi::d2i_RSA_PUBKEY
}
from_der! {
/// Decodes a DER-encoded PKCS#1 RSAPublicKey structure.
#[corresponds(d2i_RSAPublicKey)]
public_key_from_der_pkcs1,
Rsa<Public>,
ffi::d2i_RSAPublicKey
}
}
pub struct RsaPrivateKeyBuilder {
rsa: Rsa<Private>,
}
impl RsaPrivateKeyBuilder {
/// Creates a new `RsaPrivateKeyBuilder`.
///
/// `n` is the modulus common to both public and private key.
/// `e` is the public exponent and `d` is the private exponent.
///
/// This corresponds to [`RSA_new`] and uses [`RSA_set0_key`].
///
/// [`RSA_new`]: https://www.openssl.org/docs/manmaster/crypto/RSA_new.html
/// [`RSA_set0_key`]: https://www.openssl.org/docs/manmaster/crypto/RSA_set0_key.html
pub fn new(n: BigNum, e: BigNum, d: BigNum) -> Result<RsaPrivateKeyBuilder, ErrorStack> {
unsafe {
let rsa = cvt_p(ffi::RSA_new())?;
RSA_set0_key(rsa, n.as_ptr(), e.as_ptr(), d.as_ptr());
mem::forget((n, e, d));
Ok(RsaPrivateKeyBuilder {
rsa: Rsa::from_ptr(rsa),
})
}
}
/// Sets the factors of the Rsa key.
///
/// `p` and `q` are the first and second factors of `n`.
#[corresponds(RSA_set0_factors)]
// FIXME should be infallible
pub fn set_factors(self, p: BigNum, q: BigNum) -> Result<RsaPrivateKeyBuilder, ErrorStack> {
unsafe {
RSA_set0_factors(self.rsa.as_ptr(), p.as_ptr(), q.as_ptr());
mem::forget((p, q));
}
Ok(self)
}
/// Sets the Chinese Remainder Theorem params of the Rsa key.
///
/// `dmp1`, `dmq1`, and `iqmp` are the exponents and coefficient for
/// CRT calculations which is used to speed up RSA operations.
#[corresponds(RSA_set0_crt_params)]
// FIXME should be infallible
pub fn set_crt_params(
self,
dmp1: BigNum,
dmq1: BigNum,
iqmp: BigNum,
) -> Result<RsaPrivateKeyBuilder, ErrorStack> {
unsafe {
RSA_set0_crt_params(
self.rsa.as_ptr(),
dmp1.as_ptr(),
dmq1.as_ptr(),
iqmp.as_ptr(),
);
mem::forget((dmp1, dmq1, iqmp));
}
Ok(self)
}
/// Returns the Rsa key.
pub fn build(self) -> Rsa<Private> {
self.rsa
}
}
impl Rsa<Private> {
/// Creates a new RSA key with private components (public components are assumed).
///
/// This a convenience method over:
/// ```
/// # use openssl::rsa::RsaPrivateKeyBuilder;
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// # let bn = || openssl::bn::BigNum::new().unwrap();
/// # let (n, e, d, p, q, dmp1, dmq1, iqmp) = (bn(), bn(), bn(), bn(), bn(), bn(), bn(), bn());
/// RsaPrivateKeyBuilder::new(n, e, d)?
/// .set_factors(p, q)?
/// .set_crt_params(dmp1, dmq1, iqmp)?
/// .build();
/// # Ok(()) }
/// ```
#[allow(clippy::too_many_arguments, clippy::many_single_char_names)]
pub fn from_private_components(
n: BigNum,
e: BigNum,
d: BigNum,
p: BigNum,
q: BigNum,
dmp1: BigNum,
dmq1: BigNum,
iqmp: BigNum,
) -> Result<Rsa<Private>, ErrorStack> {
Ok(RsaPrivateKeyBuilder::new(n, e, d)?
.set_factors(p, q)?
.set_crt_params(dmp1, dmq1, iqmp)?
.build())
}
/// Generates a public/private key pair with the specified size.
///
/// The public exponent will be 65537.
#[corresponds(RSA_generate_key_ex)]
pub fn generate(bits: u32) -> Result<Rsa<Private>, ErrorStack> {
let e = BigNum::from_u32(ffi::RSA_F4 as u32)?;
Rsa::generate_with_e(bits, &e)
}
/// Generates a public/private key pair with the specified size and a custom exponent.
///
/// Unless you have specific needs and know what you're doing, use `Rsa::generate` instead.
#[corresponds(RSA_generate_key_ex)]
pub fn generate_with_e(bits: u32, e: &BigNumRef) -> Result<Rsa<Private>, ErrorStack> {
unsafe {
let rsa = Rsa::from_ptr(cvt_p(ffi::RSA_new())?);
cvt(ffi::RSA_generate_key_ex(
rsa.0,
bits as c_int,
e.as_ptr(),
ptr::null_mut(),
))?;
Ok(rsa)
}
}
// FIXME these need to identify input formats
private_key_from_pem! {
/// Deserializes a private key from a PEM-encoded PKCS#1 RSAPrivateKey structure.
#[corresponds(PEM_read_bio_RSAPrivateKey)]
private_key_from_pem,
/// Deserializes a private key from a PEM-encoded encrypted PKCS#1 RSAPrivateKey structure.
#[corresponds(PEM_read_bio_RSAPrivateKey)]
private_key_from_pem_passphrase,
/// Deserializes a private key from a PEM-encoded encrypted PKCS#1 RSAPrivateKey structure.
///
/// The callback should fill the password into the provided buffer and return its length.
#[corresponds(PEM_read_bio_RSAPrivateKey)]
private_key_from_pem_callback,
Rsa<Private>,
ffi::PEM_read_bio_RSAPrivateKey
}
from_der! {
/// Decodes a DER-encoded PKCS#1 RSAPrivateKey structure.
#[corresponds(d2i_RSAPrivateKey)]
private_key_from_der,
Rsa<Private>,
ffi::d2i_RSAPrivateKey
}
}
impl<T> fmt::Debug for Rsa<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "Rsa")
}
}
cfg_if! {
if #[cfg(any(ossl110, libressl273, boringssl))] {
use ffi::{
RSA_get0_key, RSA_get0_factors, RSA_get0_crt_params, RSA_set0_key, RSA_set0_factors,
RSA_set0_crt_params,
};
} else {
#[allow(bad_style)]
unsafe fn RSA_get0_key(
r: *const ffi::RSA,
n: *mut *const ffi::BIGNUM,
e: *mut *const ffi::BIGNUM,
d: *mut *const ffi::BIGNUM,
) {
if !n.is_null() {
*n = (*r).n;
}
if !e.is_null() {
*e = (*r).e;
}
if !d.is_null() {
*d = (*r).d;
}
}
#[allow(bad_style)]
unsafe fn RSA_get0_factors(
r: *const ffi::RSA,
p: *mut *const ffi::BIGNUM,
q: *mut *const ffi::BIGNUM,
) {
if !p.is_null() {
*p = (*r).p;
}
if !q.is_null() {
*q = (*r).q;
}
}
#[allow(bad_style)]
unsafe fn RSA_get0_crt_params(
r: *const ffi::RSA,
dmp1: *mut *const ffi::BIGNUM,
dmq1: *mut *const ffi::BIGNUM,
iqmp: *mut *const ffi::BIGNUM,
) {
if !dmp1.is_null() {
*dmp1 = (*r).dmp1;
}
if !dmq1.is_null() {
*dmq1 = (*r).dmq1;
}
if !iqmp.is_null() {
*iqmp = (*r).iqmp;
}
}
#[allow(bad_style)]
unsafe fn RSA_set0_key(
r: *mut ffi::RSA,
n: *mut ffi::BIGNUM,
e: *mut ffi::BIGNUM,
d: *mut ffi::BIGNUM,
) -> c_int {
(*r).n = n;
(*r).e = e;
(*r).d = d;
1
}
#[allow(bad_style)]
unsafe fn RSA_set0_factors(
r: *mut ffi::RSA,
p: *mut ffi::BIGNUM,
q: *mut ffi::BIGNUM,
) -> c_int {
(*r).p = p;
(*r).q = q;
1
}
#[allow(bad_style)]
unsafe fn RSA_set0_crt_params(
r: *mut ffi::RSA,
dmp1: *mut ffi::BIGNUM,
dmq1: *mut ffi::BIGNUM,
iqmp: *mut ffi::BIGNUM,
) -> c_int {
(*r).dmp1 = dmp1;
(*r).dmq1 = dmq1;
(*r).iqmp = iqmp;
1
}
}
}
#[cfg(test)]
mod test {
use crate::symm::Cipher;
use super::*;
#[test]
fn test_from_password() {
let key = include_bytes!("../test/rsa-encrypted.pem");
Rsa::private_key_from_pem_passphrase(key, b"mypass").unwrap();
}
#[test]
fn test_from_password_callback() {
let mut password_queried = false;
let key = include_bytes!("../test/rsa-encrypted.pem");
Rsa::private_key_from_pem_callback(key, |password| {
password_queried = true;
password[..6].copy_from_slice(b"mypass");
Ok(6)
})
.unwrap();
assert!(password_queried);
}
#[test]
fn test_to_password() {
let key = Rsa::generate(2048).unwrap();
let pem = key
.private_key_to_pem_passphrase(Cipher::aes_128_cbc(), b"foobar")
.unwrap();
Rsa::private_key_from_pem_passphrase(&pem, b"foobar").unwrap();
assert!(Rsa::private_key_from_pem_passphrase(&pem, b"fizzbuzz").is_err());
}
#[test]
fn test_public_encrypt_private_decrypt_with_padding() {
let key = include_bytes!("../test/rsa.pem.pub");
let public_key = Rsa::public_key_from_pem(key).unwrap();
let mut result = vec![0; public_key.size() as usize];
let original_data = b"This is test";
let len = public_key
.public_encrypt(original_data, &mut result, Padding::PKCS1)
.unwrap();
assert_eq!(len, 256);
let pkey = include_bytes!("../test/rsa.pem");
let private_key = Rsa::private_key_from_pem(pkey).unwrap();
let mut dec_result = vec![0; private_key.size() as usize];
let len = private_key
.private_decrypt(&result, &mut dec_result, Padding::PKCS1)
.unwrap();
assert_eq!(&dec_result[..len], original_data);
}
#[test]
fn test_private_encrypt() {
let k0 = super::Rsa::generate(512).unwrap();
let k0pkey = k0.public_key_to_pem().unwrap();
let k1 = super::Rsa::public_key_from_pem(&k0pkey).unwrap();
let msg = vec![0xdeu8, 0xadu8, 0xd0u8, 0x0du8];
let mut emesg = vec![0; k0.size() as usize];
k0.private_encrypt(&msg, &mut emesg, Padding::PKCS1)
.unwrap();
let mut dmesg = vec![0; k1.size() as usize];
let len = k1
.public_decrypt(&emesg, &mut dmesg, Padding::PKCS1)
.unwrap();
assert_eq!(msg, &dmesg[..len]);
}
#[test]
fn test_public_encrypt() {
let k0 = super::Rsa::generate(512).unwrap();
let k0pkey = k0.private_key_to_pem().unwrap();
let k1 = super::Rsa::private_key_from_pem(&k0pkey).unwrap();
let msg = vec![0xdeu8, 0xadu8, 0xd0u8, 0x0du8];
let mut emesg = vec![0; k0.size() as usize];
k0.public_encrypt(&msg, &mut emesg, Padding::PKCS1).unwrap();
let mut dmesg = vec![0; k1.size() as usize];
let len = k1
.private_decrypt(&emesg, &mut dmesg, Padding::PKCS1)
.unwrap();
assert_eq!(msg, &dmesg[..len]);
}
#[test]
fn test_public_key_from_pem_pkcs1() {
let key = include_bytes!("../test/pkcs1.pem.pub");
Rsa::public_key_from_pem_pkcs1(key).unwrap();
}
#[test]
#[should_panic]
fn test_public_key_from_pem_pkcs1_file_panic() {
let key = include_bytes!("../test/key.pem.pub");
Rsa::public_key_from_pem_pkcs1(key).unwrap();
}
#[test]
fn test_public_key_to_pem_pkcs1() {
let keypair = super::Rsa::generate(512).unwrap();
let pubkey_pem = keypair.public_key_to_pem_pkcs1().unwrap();
super::Rsa::public_key_from_pem_pkcs1(&pubkey_pem).unwrap();
}
#[test]
#[should_panic]
fn test_public_key_from_pem_pkcs1_generate_panic() {
let keypair = super::Rsa::generate(512).unwrap();
let pubkey_pem = keypair.public_key_to_pem().unwrap();
super::Rsa::public_key_from_pem_pkcs1(&pubkey_pem).unwrap();
}
#[test]
fn test_pem_pkcs1_encrypt() {
let keypair = super::Rsa::generate(2048).unwrap();
let pubkey_pem = keypair.public_key_to_pem_pkcs1().unwrap();
let pubkey = super::Rsa::public_key_from_pem_pkcs1(&pubkey_pem).unwrap();
let msg = b"Hello, world!";
let mut encrypted = vec![0; pubkey.size() as usize];
let len = pubkey
.public_encrypt(msg, &mut encrypted, Padding::PKCS1)
.unwrap();
assert!(len > msg.len());
let mut decrypted = vec![0; keypair.size() as usize];
let len = keypair
.private_decrypt(&encrypted, &mut decrypted, Padding::PKCS1)
.unwrap();
assert_eq!(len, msg.len());
assert_eq!(&decrypted[..len], msg);
}
#[test]
fn test_pem_pkcs1_padding() {
let keypair = super::Rsa::generate(2048).unwrap();
let pubkey_pem = keypair.public_key_to_pem_pkcs1().unwrap();
let pubkey = super::Rsa::public_key_from_pem_pkcs1(&pubkey_pem).unwrap();
let msg = b"foo";
let mut encrypted1 = vec![0; pubkey.size() as usize];
let mut encrypted2 = vec![0; pubkey.size() as usize];
let len1 = pubkey
.public_encrypt(msg, &mut encrypted1, Padding::PKCS1)
.unwrap();
let len2 = pubkey
.public_encrypt(msg, &mut encrypted2, Padding::PKCS1)
.unwrap();
assert!(len1 > (msg.len() + 1));
assert_eq!(len1, len2);
assert_ne!(encrypted1, encrypted2);
}
#[test]
#[allow(clippy::redundant_clone)]
fn clone() {
let key = Rsa::generate(2048).unwrap();
drop(key.clone());
}
#[test]
fn generate_with_e() {
let e = BigNum::from_u32(0x10001).unwrap();
Rsa::generate_with_e(2048, &e).unwrap();
}
#[test]
fn test_check_key() {
let k = Rsa::private_key_from_pem_passphrase(
include_bytes!("../test/rsa-encrypted.pem"),
b"mypass",
)
.unwrap();
assert!(matches!(k.check_key(), Ok(true)));
assert!(ErrorStack::get().errors().is_empty());
// BoringSSL simply rejects this key, because its corrupted!
if let Ok(k) = Rsa::private_key_from_pem(include_bytes!("../test/corrupted-rsa.pem")) {
assert!(matches!(k.check_key(), Ok(false) | Err(_)));
assert!(ErrorStack::get().errors().is_empty());
}
}
}