1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
use super::addition::{__add2, add2};
use super::subtraction::sub2;
use super::{biguint_from_vec, cmp_slice, BigUint, IntDigits};
use crate::big_digit::{self, BigDigit, DoubleBigDigit};
use crate::Sign::{self, Minus, NoSign, Plus};
use crate::{BigInt, UsizePromotion};
use core::cmp::Ordering;
use core::iter::Product;
use core::ops::{Mul, MulAssign};
use num_traits::{CheckedMul, FromPrimitive, One, Zero};
#[inline]
pub(super) fn mac_with_carry(
a: BigDigit,
b: BigDigit,
c: BigDigit,
acc: &mut DoubleBigDigit,
) -> BigDigit {
*acc += DoubleBigDigit::from(a);
*acc += DoubleBigDigit::from(b) * DoubleBigDigit::from(c);
let lo = *acc as BigDigit;
*acc >>= big_digit::BITS;
lo
}
#[inline]
fn mul_with_carry(a: BigDigit, b: BigDigit, acc: &mut DoubleBigDigit) -> BigDigit {
*acc += DoubleBigDigit::from(a) * DoubleBigDigit::from(b);
let lo = *acc as BigDigit;
*acc >>= big_digit::BITS;
lo
}
/// Three argument multiply accumulate:
/// acc += b * c
fn mac_digit(acc: &mut [BigDigit], b: &[BigDigit], c: BigDigit) {
if c == 0 {
return;
}
let mut carry = 0;
let (a_lo, a_hi) = acc.split_at_mut(b.len());
for (a, &b) in a_lo.iter_mut().zip(b) {
*a = mac_with_carry(*a, b, c, &mut carry);
}
let (carry_hi, carry_lo) = big_digit::from_doublebigdigit(carry);
let final_carry = if carry_hi == 0 {
__add2(a_hi, &[carry_lo])
} else {
__add2(a_hi, &[carry_hi, carry_lo])
};
assert_eq!(final_carry, 0, "carry overflow during multiplication!");
}
fn bigint_from_slice(slice: &[BigDigit]) -> BigInt {
BigInt::from(biguint_from_vec(slice.to_vec()))
}
/// Three argument multiply accumulate:
/// acc += b * c
#[allow(clippy::many_single_char_names)]
fn mac3(mut acc: &mut [BigDigit], mut b: &[BigDigit], mut c: &[BigDigit]) {
// Least-significant zeros have no effect on the output.
if let Some(&0) = b.first() {
if let Some(nz) = b.iter().position(|&d| d != 0) {
b = &b[nz..];
acc = &mut acc[nz..];
} else {
return;
}
}
if let Some(&0) = c.first() {
if let Some(nz) = c.iter().position(|&d| d != 0) {
c = &c[nz..];
acc = &mut acc[nz..];
} else {
return;
}
}
let acc = acc;
let (x, y) = if b.len() < c.len() { (b, c) } else { (c, b) };
// We use four algorithms for different input sizes.
//
// - For small inputs, long multiplication is fastest.
// - If y is at least least twice as long as x, split using Half-Karatsuba.
// - Next we use Karatsuba multiplication (Toom-2), which we have optimized
// to avoid unnecessary allocations for intermediate values.
// - For the largest inputs we use Toom-3, which better optimizes the
// number of operations, but uses more temporary allocations.
//
// The thresholds are somewhat arbitrary, chosen by evaluating the results
// of `cargo bench --bench bigint multiply`.
if x.len() <= 32 {
// Long multiplication:
for (i, xi) in x.iter().enumerate() {
mac_digit(&mut acc[i..], y, *xi);
}
} else if x.len() * 2 <= y.len() {
// Karatsuba Multiplication for factors with significant length disparity.
//
// The Half-Karatsuba Multiplication Algorithm is a specialized case of
// the normal Karatsuba multiplication algorithm, designed for the scenario
// where y has at least twice as many base digits as x.
//
// In this case y (the longer input) is split into high2 and low2,
// at m2 (half the length of y) and x (the shorter input),
// is used directly without splitting.
//
// The algorithm then proceeds as follows:
//
// 1. Compute the product z0 = x * low2.
// 2. Compute the product temp = x * high2.
// 3. Adjust the weight of temp by adding m2 (* NBASE ^ m2)
// 4. Add temp and z0 to obtain the final result.
//
// Proof:
//
// The algorithm can be derived from the original Karatsuba algorithm by
// simplifying the formula when the shorter factor x is not split into
// high and low parts, as shown below.
//
// Original Karatsuba formula:
//
// result = (z2 * NBASE ^ (m2 × 2)) + ((z1 - z2 - z0) * NBASE ^ m2) + z0
//
// Substitutions:
//
// low1 = x
// high1 = 0
//
// Applying substitutions:
//
// z0 = (low1 * low2)
// = (x * low2)
//
// z1 = ((low1 + high1) * (low2 + high2))
// = ((x + 0) * (low2 + high2))
// = (x * low2) + (x * high2)
//
// z2 = (high1 * high2)
// = (0 * high2)
// = 0
//
// Simplified using the above substitutions:
//
// result = (z2 * NBASE ^ (m2 × 2)) + ((z1 - z2 - z0) * NBASE ^ m2) + z0
// = (0 * NBASE ^ (m2 × 2)) + ((z1 - 0 - z0) * NBASE ^ m2) + z0
// = ((z1 - z0) * NBASE ^ m2) + z0
// = ((z1 - z0) * NBASE ^ m2) + z0
// = (x * high2) * NBASE ^ m2 + z0
let m2 = y.len() / 2;
let (low2, high2) = y.split_at(m2);
// (x * high2) * NBASE ^ m2 + z0
mac3(acc, x, low2);
mac3(&mut acc[m2..], x, high2);
} else if x.len() <= 256 {
// Karatsuba multiplication:
//
// The idea is that we break x and y up into two smaller numbers that each have about half
// as many digits, like so (note that multiplying by b is just a shift):
//
// x = x0 + x1 * b
// y = y0 + y1 * b
//
// With some algebra, we can compute x * y with three smaller products, where the inputs to
// each of the smaller products have only about half as many digits as x and y:
//
// x * y = (x0 + x1 * b) * (y0 + y1 * b)
//
// x * y = x0 * y0
// + x0 * y1 * b
// + x1 * y0 * b
// + x1 * y1 * b^2
//
// Let p0 = x0 * y0 and p2 = x1 * y1:
//
// x * y = p0
// + (x0 * y1 + x1 * y0) * b
// + p2 * b^2
//
// The real trick is that middle term:
//
// x0 * y1 + x1 * y0
//
// = x0 * y1 + x1 * y0 - p0 + p0 - p2 + p2
//
// = x0 * y1 + x1 * y0 - x0 * y0 - x1 * y1 + p0 + p2
//
// Now we complete the square:
//
// = -(x0 * y0 - x0 * y1 - x1 * y0 + x1 * y1) + p0 + p2
//
// = -((x1 - x0) * (y1 - y0)) + p0 + p2
//
// Let p1 = (x1 - x0) * (y1 - y0), and substitute back into our original formula:
//
// x * y = p0
// + (p0 + p2 - p1) * b
// + p2 * b^2
//
// Where the three intermediate products are:
//
// p0 = x0 * y0
// p1 = (x1 - x0) * (y1 - y0)
// p2 = x1 * y1
//
// In doing the computation, we take great care to avoid unnecessary temporary variables
// (since creating a BigUint requires a heap allocation): thus, we rearrange the formula a
// bit so we can use the same temporary variable for all the intermediate products:
//
// x * y = p2 * b^2 + p2 * b
// + p0 * b + p0
// - p1 * b
//
// The other trick we use is instead of doing explicit shifts, we slice acc at the
// appropriate offset when doing the add.
// When x is smaller than y, it's significantly faster to pick b such that x is split in
// half, not y:
let b = x.len() / 2;
let (x0, x1) = x.split_at(b);
let (y0, y1) = y.split_at(b);
// We reuse the same BigUint for all the intermediate multiplies and have to size p
// appropriately here: x1.len() >= x0.len and y1.len() >= y0.len():
let len = x1.len() + y1.len() + 1;
let mut p = BigUint { data: vec![0; len] };
// p2 = x1 * y1
mac3(&mut p.data, x1, y1);
// Not required, but the adds go faster if we drop any unneeded 0s from the end:
p.normalize();
add2(&mut acc[b..], &p.data);
add2(&mut acc[b * 2..], &p.data);
// Zero out p before the next multiply:
p.data.truncate(0);
p.data.resize(len, 0);
// p0 = x0 * y0
mac3(&mut p.data, x0, y0);
p.normalize();
add2(acc, &p.data);
add2(&mut acc[b..], &p.data);
// p1 = (x1 - x0) * (y1 - y0)
// We do this one last, since it may be negative and acc can't ever be negative:
let (j0_sign, j0) = sub_sign(x1, x0);
let (j1_sign, j1) = sub_sign(y1, y0);
match j0_sign * j1_sign {
Plus => {
p.data.truncate(0);
p.data.resize(len, 0);
mac3(&mut p.data, &j0.data, &j1.data);
p.normalize();
sub2(&mut acc[b..], &p.data);
}
Minus => {
mac3(&mut acc[b..], &j0.data, &j1.data);
}
NoSign => (),
}
} else {
// Toom-3 multiplication:
//
// Toom-3 is like Karatsuba above, but dividing the inputs into three parts.
// Both are instances of Toom-Cook, using `k=3` and `k=2` respectively.
//
// The general idea is to treat the large integers digits as
// polynomials of a certain degree and determine the coefficients/digits
// of the product of the two via interpolation of the polynomial product.
let i = y.len() / 3 + 1;
let x0_len = Ord::min(x.len(), i);
let x1_len = Ord::min(x.len() - x0_len, i);
let y0_len = i;
let y1_len = Ord::min(y.len() - y0_len, i);
// Break x and y into three parts, representating an order two polynomial.
// t is chosen to be the size of a digit so we can use faster shifts
// in place of multiplications.
//
// x(t) = x2*t^2 + x1*t + x0
let x0 = bigint_from_slice(&x[..x0_len]);
let x1 = bigint_from_slice(&x[x0_len..x0_len + x1_len]);
let x2 = bigint_from_slice(&x[x0_len + x1_len..]);
// y(t) = y2*t^2 + y1*t + y0
let y0 = bigint_from_slice(&y[..y0_len]);
let y1 = bigint_from_slice(&y[y0_len..y0_len + y1_len]);
let y2 = bigint_from_slice(&y[y0_len + y1_len..]);
// Let w(t) = x(t) * y(t)
//
// This gives us the following order-4 polynomial.
//
// w(t) = w4*t^4 + w3*t^3 + w2*t^2 + w1*t + w0
//
// We need to find the coefficients w4, w3, w2, w1 and w0. Instead
// of simply multiplying the x and y in total, we can evaluate w
// at 5 points. An n-degree polynomial is uniquely identified by (n + 1)
// points.
//
// It is arbitrary as to what points we evaluate w at but we use the
// following.
//
// w(t) at t = 0, 1, -1, -2 and inf
//
// The values for w(t) in terms of x(t)*y(t) at these points are:
//
// let a = w(0) = x0 * y0
// let b = w(1) = (x2 + x1 + x0) * (y2 + y1 + y0)
// let c = w(-1) = (x2 - x1 + x0) * (y2 - y1 + y0)
// let d = w(-2) = (4*x2 - 2*x1 + x0) * (4*y2 - 2*y1 + y0)
// let e = w(inf) = x2 * y2 as t -> inf
// x0 + x2, avoiding temporaries
let p = &x0 + &x2;
// y0 + y2, avoiding temporaries
let q = &y0 + &y2;
// x2 - x1 + x0, avoiding temporaries
let p2 = &p - &x1;
// y2 - y1 + y0, avoiding temporaries
let q2 = &q - &y1;
// w(0)
let r0 = &x0 * &y0;
// w(inf)
let r4 = &x2 * &y2;
// w(1)
let r1 = (p + x1) * (q + y1);
// w(-1)
let r2 = &p2 * &q2;
// w(-2)
let r3 = ((p2 + x2) * 2 - x0) * ((q2 + y2) * 2 - y0);
// Evaluating these points gives us the following system of linear equations.
//
// 0 0 0 0 1 | a
// 1 1 1 1 1 | b
// 1 -1 1 -1 1 | c
// 16 -8 4 -2 1 | d
// 1 0 0 0 0 | e
//
// The solved equation (after gaussian elimination or similar)
// in terms of its coefficients:
//
// w0 = w(0)
// w1 = w(0)/2 + w(1)/3 - w(-1) + w(-2)/6 - 2*w(inf)
// w2 = -w(0) + w(1)/2 + w(-1)/2 - w(inf)
// w3 = -w(0)/2 + w(1)/6 + w(-1)/2 - w(-2)/6 + 2*w(inf)
// w4 = w(inf)
//
// This particular sequence is given by Bodrato and is an interpolation
// of the above equations.
let mut comp3: BigInt = (r3 - &r1) / 3u32;
let mut comp1: BigInt = (r1 - &r2) >> 1;
let mut comp2: BigInt = r2 - &r0;
comp3 = ((&comp2 - comp3) >> 1) + (&r4 << 1);
comp2 += &comp1 - &r4;
comp1 -= &comp3;
// Recomposition. The coefficients of the polynomial are now known.
//
// Evaluate at w(t) where t is our given base to get the result.
//
// let bits = u64::from(big_digit::BITS) * i as u64;
// let result = r0
// + (comp1 << bits)
// + (comp2 << (2 * bits))
// + (comp3 << (3 * bits))
// + (r4 << (4 * bits));
// let result_pos = result.to_biguint().unwrap();
// add2(&mut acc[..], &result_pos.data);
//
// But with less intermediate copying:
for (j, result) in [&r0, &comp1, &comp2, &comp3, &r4].iter().enumerate().rev() {
match result.sign() {
Plus => add2(&mut acc[i * j..], result.digits()),
Minus => sub2(&mut acc[i * j..], result.digits()),
NoSign => {}
}
}
}
}
fn mul3(x: &[BigDigit], y: &[BigDigit]) -> BigUint {
let len = x.len() + y.len() + 1;
let mut prod = BigUint { data: vec![0; len] };
mac3(&mut prod.data, x, y);
prod.normalized()
}
fn scalar_mul(a: &mut BigUint, b: BigDigit) {
match b {
0 => a.set_zero(),
1 => {}
_ => {
if b.is_power_of_two() {
*a <<= b.trailing_zeros();
} else {
let mut carry = 0;
for a in a.data.iter_mut() {
*a = mul_with_carry(*a, b, &mut carry);
}
if carry != 0 {
a.data.push(carry as BigDigit);
}
}
}
}
}
fn sub_sign(mut a: &[BigDigit], mut b: &[BigDigit]) -> (Sign, BigUint) {
// Normalize:
if let Some(&0) = a.last() {
a = &a[..a.iter().rposition(|&x| x != 0).map_or(0, |i| i + 1)];
}
if let Some(&0) = b.last() {
b = &b[..b.iter().rposition(|&x| x != 0).map_or(0, |i| i + 1)];
}
match cmp_slice(a, b) {
Ordering::Greater => {
let mut a = a.to_vec();
sub2(&mut a, b);
(Plus, biguint_from_vec(a))
}
Ordering::Less => {
let mut b = b.to_vec();
sub2(&mut b, a);
(Minus, biguint_from_vec(b))
}
Ordering::Equal => (NoSign, BigUint::ZERO),
}
}
macro_rules! impl_mul {
($(impl Mul<$Other:ty> for $Self:ty;)*) => {$(
impl Mul<$Other> for $Self {
type Output = BigUint;
#[inline]
fn mul(self, other: $Other) -> BigUint {
match (&*self.data, &*other.data) {
// multiply by zero
(&[], _) | (_, &[]) => BigUint::ZERO,
// multiply by a scalar
(_, &[digit]) => self * digit,
(&[digit], _) => other * digit,
// full multiplication
(x, y) => mul3(x, y),
}
}
}
)*}
}
impl_mul! {
impl Mul<BigUint> for BigUint;
impl Mul<BigUint> for &BigUint;
impl Mul<&BigUint> for BigUint;
impl Mul<&BigUint> for &BigUint;
}
macro_rules! impl_mul_assign {
($(impl MulAssign<$Other:ty> for BigUint;)*) => {$(
impl MulAssign<$Other> for BigUint {
#[inline]
fn mul_assign(&mut self, other: $Other) {
match (&*self.data, &*other.data) {
// multiply by zero
(&[], _) => {},
(_, &[]) => self.set_zero(),
// multiply by a scalar
(_, &[digit]) => *self *= digit,
(&[digit], _) => *self = other * digit,
// full multiplication
(x, y) => *self = mul3(x, y),
}
}
}
)*}
}
impl_mul_assign! {
impl MulAssign<BigUint> for BigUint;
impl MulAssign<&BigUint> for BigUint;
}
promote_unsigned_scalars!(impl Mul for BigUint, mul);
promote_unsigned_scalars_assign!(impl MulAssign for BigUint, mul_assign);
forward_all_scalar_binop_to_val_val_commutative!(impl Mul<u32> for BigUint, mul);
forward_all_scalar_binop_to_val_val_commutative!(impl Mul<u64> for BigUint, mul);
forward_all_scalar_binop_to_val_val_commutative!(impl Mul<u128> for BigUint, mul);
impl Mul<u32> for BigUint {
type Output = BigUint;
#[inline]
fn mul(mut self, other: u32) -> BigUint {
self *= other;
self
}
}
impl MulAssign<u32> for BigUint {
#[inline]
fn mul_assign(&mut self, other: u32) {
scalar_mul(self, other as BigDigit);
}
}
impl Mul<u64> for BigUint {
type Output = BigUint;
#[inline]
fn mul(mut self, other: u64) -> BigUint {
self *= other;
self
}
}
impl MulAssign<u64> for BigUint {
cfg_digit!(
#[inline]
fn mul_assign(&mut self, other: u64) {
if let Some(other) = BigDigit::from_u64(other) {
scalar_mul(self, other);
} else {
let (hi, lo) = big_digit::from_doublebigdigit(other);
*self = mul3(&self.data, &[lo, hi]);
}
}
#[inline]
fn mul_assign(&mut self, other: u64) {
scalar_mul(self, other);
}
);
}
impl Mul<u128> for BigUint {
type Output = BigUint;
#[inline]
fn mul(mut self, other: u128) -> BigUint {
self *= other;
self
}
}
impl MulAssign<u128> for BigUint {
cfg_digit!(
#[inline]
fn mul_assign(&mut self, other: u128) {
if let Some(other) = BigDigit::from_u128(other) {
scalar_mul(self, other);
} else {
*self = match super::u32_from_u128(other) {
(0, 0, c, d) => mul3(&self.data, &[d, c]),
(0, b, c, d) => mul3(&self.data, &[d, c, b]),
(a, b, c, d) => mul3(&self.data, &[d, c, b, a]),
};
}
}
#[inline]
fn mul_assign(&mut self, other: u128) {
if let Some(other) = BigDigit::from_u128(other) {
scalar_mul(self, other);
} else {
let (hi, lo) = big_digit::from_doublebigdigit(other);
*self = mul3(&self.data, &[lo, hi]);
}
}
);
}
impl CheckedMul for BigUint {
#[inline]
fn checked_mul(&self, v: &BigUint) -> Option<BigUint> {
Some(self.mul(v))
}
}
impl_product_iter_type!(BigUint);
#[test]
fn test_sub_sign() {
use crate::BigInt;
use num_traits::Num;
fn sub_sign_i(a: &[BigDigit], b: &[BigDigit]) -> BigInt {
let (sign, val) = sub_sign(a, b);
BigInt::from_biguint(sign, val)
}
let a = BigUint::from_str_radix("265252859812191058636308480000000", 10).unwrap();
let b = BigUint::from_str_radix("26525285981219105863630848000000", 10).unwrap();
let a_i = BigInt::from(a.clone());
let b_i = BigInt::from(b.clone());
assert_eq!(sub_sign_i(&a.data, &b.data), &a_i - &b_i);
assert_eq!(sub_sign_i(&b.data, &a.data), &b_i - &a_i);
}