1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
//! Envelope encryption.
//!
//! # Example
//!
//! ```rust
//! use openssl::rsa::Rsa;
//! use openssl::envelope::Seal;
//! use openssl::pkey::PKey;
//! use openssl::symm::Cipher;
//!
//! let rsa = Rsa::generate(2048).unwrap();
//! let key = PKey::from_rsa(rsa).unwrap();
//!
//! let cipher = Cipher::aes_256_cbc();
//! let mut seal = Seal::new(cipher, &[key]).unwrap();
//!
//! let secret = b"My secret message";
//! let mut encrypted = vec![0; secret.len() + cipher.block_size()];
//!
//! let mut enc_len = seal.update(secret, &mut encrypted).unwrap();
//! enc_len += seal.finalize(&mut encrypted[enc_len..]).unwrap();
//! encrypted.truncate(enc_len);
//! ```
use crate::cipher::CipherRef;
use crate::cipher_ctx::CipherCtx;
use crate::error::ErrorStack;
use crate::pkey::{HasPrivate, HasPublic, PKey, PKeyRef};
use crate::symm::Cipher;
use foreign_types::ForeignTypeRef;

/// Represents an EVP_Seal context.
pub struct Seal {
    ctx: CipherCtx,
    iv: Option<Vec<u8>>,
    enc_keys: Vec<Vec<u8>>,
}

impl Seal {
    /// Creates a new `Seal`.
    pub fn new<T>(cipher: Cipher, pub_keys: &[PKey<T>]) -> Result<Seal, ErrorStack>
    where
        T: HasPublic,
    {
        let mut iv = cipher.iv_len().map(|len| vec![0; len]);
        let mut enc_keys = vec![vec![]; pub_keys.len()];

        let mut ctx = CipherCtx::new()?;
        ctx.seal_init(
            Some(unsafe { CipherRef::from_ptr(cipher.as_ptr() as *mut _) }),
            pub_keys,
            &mut enc_keys,
            iv.as_deref_mut(),
        )?;

        Ok(Seal { ctx, iv, enc_keys })
    }

    /// Returns the initialization vector, if the cipher uses one.
    #[allow(clippy::option_as_ref_deref)]
    pub fn iv(&self) -> Option<&[u8]> {
        self.iv.as_ref().map(|v| &**v)
    }

    /// Returns the encrypted keys.
    pub fn encrypted_keys(&self) -> &[Vec<u8>] {
        &self.enc_keys
    }

    /// Feeds data from `input` through the cipher, writing encrypted bytes into `output`.
    ///
    /// The number of bytes written to `output` is returned. Note that this may
    /// not be equal to the length of `input`.
    ///
    /// # Panics
    ///
    /// Panics if `output.len() < input.len() + block_size` where `block_size` is
    /// the block size of the cipher (see `Cipher::block_size`), or if
    /// `output.len() > c_int::MAX`.
    pub fn update(&mut self, input: &[u8], output: &mut [u8]) -> Result<usize, ErrorStack> {
        self.ctx.cipher_update(input, Some(output))
    }

    /// Finishes the encryption process, writing any remaining data to `output`.
    ///
    /// The number of bytes written to `output` is returned.
    ///
    /// `update` should not be called after this method.
    ///
    /// # Panics
    ///
    /// Panics if `output` is less than the cipher's block size.
    pub fn finalize(&mut self, output: &mut [u8]) -> Result<usize, ErrorStack> {
        self.ctx.cipher_final(output)
    }
}

/// Represents an EVP_Open context.
pub struct Open {
    ctx: CipherCtx,
}

impl Open {
    /// Creates a new `Open`.
    pub fn new<T>(
        cipher: Cipher,
        priv_key: &PKeyRef<T>,
        iv: Option<&[u8]>,
        encrypted_key: &[u8],
    ) -> Result<Open, ErrorStack>
    where
        T: HasPrivate,
    {
        let mut ctx = CipherCtx::new()?;
        ctx.open_init(
            Some(unsafe { CipherRef::from_ptr(cipher.as_ptr() as *mut _) }),
            encrypted_key,
            iv,
            Some(priv_key),
        )?;

        Ok(Open { ctx })
    }

    /// Feeds data from `input` through the cipher, writing decrypted bytes into `output`.
    ///
    /// The number of bytes written to `output` is returned. Note that this may
    /// not be equal to the length of `input`.
    ///
    /// # Panics
    ///
    /// Panics if `output.len() < input.len() + block_size` where
    /// `block_size` is the block size of the cipher (see `Cipher::block_size`),
    /// or if `output.len() > c_int::MAX`.
    pub fn update(&mut self, input: &[u8], output: &mut [u8]) -> Result<usize, ErrorStack> {
        self.ctx.cipher_update(input, Some(output))
    }

    /// Finishes the decryption process, writing any remaining data to `output`.
    ///
    /// The number of bytes written to `output` is returned.
    ///
    /// `update` should not be called after this method.
    ///
    /// # Panics
    ///
    /// Panics if `output` is less than the cipher's block size.
    pub fn finalize(&mut self, output: &mut [u8]) -> Result<usize, ErrorStack> {
        self.ctx.cipher_final(output)
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::pkey::PKey;
    use crate::symm::Cipher;

    #[test]
    fn public_encrypt_private_decrypt() {
        let private_pem = include_bytes!("../test/rsa.pem");
        let public_pem = include_bytes!("../test/rsa.pem.pub");
        let private_key = PKey::private_key_from_pem(private_pem).unwrap();
        let public_key = PKey::public_key_from_pem(public_pem).unwrap();
        let cipher = Cipher::aes_256_cbc();
        let secret = b"My secret message";

        let mut seal = Seal::new(cipher, &[public_key]).unwrap();
        let mut encrypted = vec![0; secret.len() + cipher.block_size()];
        let mut enc_len = seal.update(secret, &mut encrypted).unwrap();
        enc_len += seal.finalize(&mut encrypted[enc_len..]).unwrap();
        let iv = seal.iv();
        let encrypted_key = &seal.encrypted_keys()[0];

        let mut open = Open::new(cipher, &private_key, iv, encrypted_key).unwrap();
        let mut decrypted = vec![0; enc_len + cipher.block_size()];
        let mut dec_len = open.update(&encrypted[..enc_len], &mut decrypted).unwrap();
        dec_len += open.finalize(&mut decrypted[dec_len..]).unwrap();

        assert_eq!(&secret[..], &decrypted[..dec_len]);
    }
}