1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
// Copyright 2016 Brian Smith.
// Portions Copyright (c) 2016, Google Inc.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

use super::{counter, iv::Iv, quic::Sample, BLOCK_LEN};
use crate::{c, endian::*};

#[repr(transparent)]
pub struct Key([LittleEndian<u32>; KEY_LEN / 4]);

impl From<[u8; KEY_LEN]> for Key {
    #[inline]
    fn from(value: [u8; KEY_LEN]) -> Self {
        Self(FromByteArray::from_byte_array(&value))
    }
}

impl Key {
    #[inline] // Optimize away match on `counter`.
    pub fn encrypt_in_place(&self, counter: Counter, in_out: &mut [u8]) {
        unsafe {
            self.encrypt(
                CounterOrIv::Counter(counter),
                in_out.as_ptr(),
                in_out.len(),
                in_out.as_mut_ptr(),
            );
        }
    }

    #[inline] // Optimize away match on `iv` and length check.
    pub fn encrypt_iv_xor_blocks_in_place(&self, iv: Iv, in_out: &mut [u8; 2 * BLOCK_LEN]) {
        unsafe {
            self.encrypt(
                CounterOrIv::Iv(iv),
                in_out.as_ptr(),
                in_out.len(),
                in_out.as_mut_ptr(),
            );
        }
    }

    #[inline]
    pub fn new_mask(&self, sample: Sample) -> [u8; 5] {
        let mut out: [u8; 5] = [0; 5];
        let iv = Iv::assume_unique_for_key(sample);

        unsafe {
            self.encrypt(
                CounterOrIv::Iv(iv),
                out.as_ptr(),
                out.len(),
                out.as_mut_ptr(),
            );
        }

        out
    }

    pub fn encrypt_overlapping(&self, counter: Counter, in_out: &mut [u8], in_prefix_len: usize) {
        // XXX: The x86 and at least one branch of the ARM assembly language
        // code doesn't allow overlapping input and output unless they are
        // exactly overlapping. TODO: Figure out which branch of the ARM code
        // has this limitation and come up with a better solution.
        //
        // https://rt.openssl.org/Ticket/Display.html?id=4362
        let len = in_out.len() - in_prefix_len;
        if cfg!(any(target_arch = "arm", target_arch = "x86")) && in_prefix_len != 0 {
            in_out.copy_within(in_prefix_len.., 0);
            self.encrypt_in_place(counter, &mut in_out[..len]);
        } else {
            unsafe {
                self.encrypt(
                    CounterOrIv::Counter(counter),
                    in_out[in_prefix_len..].as_ptr(),
                    len,
                    in_out.as_mut_ptr(),
                );
            }
        }
    }

    #[inline] // Optimize away match on `counter.`
    unsafe fn encrypt(
        &self,
        counter: CounterOrIv,
        input: *const u8,
        in_out_len: usize,
        output: *mut u8,
    ) {
        let iv = match counter {
            CounterOrIv::Counter(counter) => counter.into(),
            CounterOrIv::Iv(iv) => {
                assert!(in_out_len <= 32);
                iv
            }
        };

        /// XXX: Although this takes an `Iv`, this actually uses it like a
        /// `Counter`.
        extern "C" {
            fn GFp_ChaCha20_ctr32(
                out: *mut u8,
                in_: *const u8,
                in_len: c::size_t,
                key: &Key,
                first_iv: &Iv,
            );
        }

        GFp_ChaCha20_ctr32(output, input, in_out_len, self, &iv);
    }

    #[cfg(target_arch = "x86_64")]
    #[inline]
    pub(super) fn words_less_safe(&self) -> &[LittleEndian<u32>; KEY_LEN / 4] {
        &self.0
    }
}

pub type Counter = counter::Counter<LittleEndian<u32>>;

enum CounterOrIv {
    Counter(Counter),
    Iv(Iv),
}

const KEY_BLOCKS: usize = 2;
pub const KEY_LEN: usize = KEY_BLOCKS * BLOCK_LEN;

#[cfg(test)]
mod tests {
    use super::*;
    use crate::test;
    use alloc::vec;
    use core::convert::TryInto;

    // This verifies the encryption functionality provided by ChaCha20_ctr32
    // is successful when either computed on disjoint input/output buffers,
    // or on overlapping input/output buffers. On some branches of the 32-bit
    // x86 and ARM code the in-place operation fails in some situations where
    // the input/output buffers are not exactly overlapping. Such failures are
    // dependent not only on the degree of overlapping but also the length of
    // the data. `open()` works around that by moving the input data to the
    // output location so that the buffers exactly overlap, for those targets.
    // This test exists largely as a canary for detecting if/when that type of
    // problem spreads to other platforms.
    #[test]
    pub fn chacha20_tests() {
        test::run(test_file!("chacha_tests.txt"), |section, test_case| {
            assert_eq!(section, "");

            let key = test_case.consume_bytes("Key");
            let key: &[u8; KEY_LEN] = key.as_slice().try_into()?;
            let key = Key::from(*key);

            let ctr = test_case.consume_usize("Ctr");
            let nonce = test_case.consume_bytes("Nonce");
            let input = test_case.consume_bytes("Input");
            let output = test_case.consume_bytes("Output");

            // Pre-allocate buffer for use in test_cases.
            let mut in_out_buf = vec![0u8; input.len() + 276];

            // Run the test case over all prefixes of the input because the
            // behavior of ChaCha20 implementation changes dependent on the
            // length of the input.
            for len in 0..(input.len() + 1) {
                chacha20_test_case_inner(
                    &key,
                    &nonce,
                    ctr as u32,
                    &input[..len],
                    &output[..len],
                    len,
                    &mut in_out_buf,
                );
            }

            Ok(())
        });
    }

    fn chacha20_test_case_inner(
        key: &Key,
        nonce: &[u8],
        ctr: u32,
        input: &[u8],
        expected: &[u8],
        len: usize,
        in_out_buf: &mut [u8],
    ) {
        // Straightforward encryption into disjoint buffers is computed
        // correctly.
        unsafe {
            key.encrypt(
                CounterOrIv::Counter(Counter::from_test_vector(nonce, ctr)),
                input[..len].as_ptr(),
                len,
                in_out_buf.as_mut_ptr(),
            );
        }
        assert_eq!(&in_out_buf[..len], expected);

        // Do not test offset buffers for x86 and ARM architectures (see above
        // for rationale).
        let max_offset = if cfg!(any(target_arch = "x86", target_arch = "arm")) {
            0
        } else {
            259
        };

        // Check that in-place encryption works successfully when the pointers
        // to the input/output buffers are (partially) overlapping.
        for alignment in 0..16 {
            for offset in 0..(max_offset + 1) {
                in_out_buf[alignment + offset..][..len].copy_from_slice(input);
                let ctr = Counter::from_test_vector(nonce, ctr);
                key.encrypt_overlapping(ctr, &mut in_out_buf[alignment..], offset);
                assert_eq!(&in_out_buf[alignment..][..len], expected);
            }
        }
    }
}