1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
use std::alloc::Layout;
use std::future::Future;
use std::panic::AssertUnwindSafe;
use std::pin::Pin;
use std::ptr::{self, NonNull};
use std::task::{Context, Poll};
use std::{fmt, panic};

/// A reusable `Pin<Box<dyn Future<Output = T> + Send>>`.
///
/// This type lets you replace the future stored in the box without
/// reallocating when the size and alignment permits this.
pub(crate) struct ReusableBoxFuture<T> {
    boxed: NonNull<dyn Future<Output = T> + Send>,
}

impl<T> ReusableBoxFuture<T> {
    /// Create a new `ReusableBoxFuture<T>` containing the provided future.
    pub(crate) fn new<F>(future: F) -> Self
    where
        F: Future<Output = T> + Send + 'static,
    {
        let boxed: Box<dyn Future<Output = T> + Send> = Box::new(future);

        let boxed = Box::into_raw(boxed);

        // SAFETY: Box::into_raw does not return null pointers.
        let boxed = unsafe { NonNull::new_unchecked(boxed) };

        Self { boxed }
    }

    /// Replaces the future currently stored in this box.
    ///
    /// This reallocates if and only if the layout of the provided future is
    /// different from the layout of the currently stored future.
    pub(crate) fn set<F>(&mut self, future: F)
    where
        F: Future<Output = T> + Send + 'static,
    {
        if let Err(future) = self.try_set(future) {
            *self = Self::new(future);
        }
    }

    /// Replaces the future currently stored in this box.
    ///
    /// This function never reallocates, but returns an error if the provided
    /// future has a different size or alignment from the currently stored
    /// future.
    pub(crate) fn try_set<F>(&mut self, future: F) -> Result<(), F>
    where
        F: Future<Output = T> + Send + 'static,
    {
        // SAFETY: The pointer is not dangling.
        let self_layout = {
            let dyn_future: &(dyn Future<Output = T> + Send) = unsafe { self.boxed.as_ref() };
            Layout::for_value(dyn_future)
        };

        if Layout::new::<F>() == self_layout {
            // SAFETY: We just checked that the layout of F is correct.
            unsafe {
                self.set_same_layout(future);
            }

            Ok(())
        } else {
            Err(future)
        }
    }

    /// Sets the current future.
    ///
    /// # Safety
    ///
    /// This function requires that the layout of the provided future is the
    /// same as `self.layout`.
    unsafe fn set_same_layout<F>(&mut self, future: F)
    where
        F: Future<Output = T> + Send + 'static,
    {
        // Drop the existing future, catching any panics.
        let result = panic::catch_unwind(AssertUnwindSafe(|| {
            ptr::drop_in_place(self.boxed.as_ptr());
        }));

        // Overwrite the future behind the pointer. This is safe because the
        // allocation was allocated with the same size and alignment as the type F.
        let self_ptr: *mut F = self.boxed.as_ptr() as *mut F;
        ptr::write(self_ptr, future);

        // Update the vtable of self.boxed. The pointer is not null because we
        // just got it from self.boxed, which is not null.
        self.boxed = NonNull::new_unchecked(self_ptr);

        // If the old future's destructor panicked, resume unwinding.
        match result {
            Ok(()) => {}
            Err(payload) => {
                panic::resume_unwind(payload);
            }
        }
    }

    /// Gets a pinned reference to the underlying future.
    pub(crate) fn get_pin(&mut self) -> Pin<&mut (dyn Future<Output = T> + Send)> {
        // SAFETY: The user of this box cannot move the box, and we do not move it
        // either.
        unsafe { Pin::new_unchecked(self.boxed.as_mut()) }
    }

    /// Polls the future stored inside this box.
    pub(crate) fn poll(&mut self, cx: &mut Context<'_>) -> Poll<T> {
        self.get_pin().poll(cx)
    }
}

impl<T> Future for ReusableBoxFuture<T> {
    type Output = T;

    /// Polls the future stored inside this box.
    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<T> {
        Pin::into_inner(self).get_pin().poll(cx)
    }
}

// The future stored inside ReusableBoxFuture<T> must be Send.
unsafe impl<T> Send for ReusableBoxFuture<T> {}

// The only method called on self.boxed is poll, which takes &mut self, so this
// struct being Sync does not permit any invalid access to the Future, even if
// the future is not Sync.
unsafe impl<T> Sync for ReusableBoxFuture<T> {}

// Just like a Pin<Box<dyn Future>> is always Unpin, so is this type.
impl<T> Unpin for ReusableBoxFuture<T> {}

impl<T> Drop for ReusableBoxFuture<T> {
    fn drop(&mut self) {
        unsafe {
            drop(Box::from_raw(self.boxed.as_ptr()));
        }
    }
}

impl<T> fmt::Debug for ReusableBoxFuture<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("ReusableBoxFuture").finish()
    }
}

#[cfg(test)]
mod test {
    use super::ReusableBoxFuture;
    use futures::future::FutureExt;
    use std::alloc::Layout;
    use std::future::Future;
    use std::pin::Pin;
    use std::task::{Context, Poll};

    #[test]
    fn test_different_futures() {
        let fut = async move { 10 };
        // Not zero sized!
        assert_eq!(Layout::for_value(&fut).size(), 1);

        let mut b = ReusableBoxFuture::new(fut);

        assert_eq!(b.get_pin().now_or_never(), Some(10));

        b.try_set(async move { 20 })
            .unwrap_or_else(|_| panic!("incorrect size"));

        assert_eq!(b.get_pin().now_or_never(), Some(20));

        b.try_set(async move { 30 })
            .unwrap_or_else(|_| panic!("incorrect size"));

        assert_eq!(b.get_pin().now_or_never(), Some(30));
    }

    #[test]
    fn test_different_sizes() {
        let fut1 = async move { 10 };
        let val = [0u32; 1000];
        let fut2 = async move { val[0] };
        let fut3 = ZeroSizedFuture {};

        assert_eq!(Layout::for_value(&fut1).size(), 1);
        assert_eq!(Layout::for_value(&fut2).size(), 4004);
        assert_eq!(Layout::for_value(&fut3).size(), 0);

        let mut b = ReusableBoxFuture::new(fut1);
        assert_eq!(b.get_pin().now_or_never(), Some(10));
        b.set(fut2);
        assert_eq!(b.get_pin().now_or_never(), Some(0));
        b.set(fut3);
        assert_eq!(b.get_pin().now_or_never(), Some(5));
    }

    struct ZeroSizedFuture {}
    impl Future for ZeroSizedFuture {
        type Output = u32;
        fn poll(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<u32> {
            Poll::Ready(5)
        }
    }

    #[test]
    fn test_zero_sized() {
        let fut = ZeroSizedFuture {};
        // Zero sized!
        assert_eq!(Layout::for_value(&fut).size(), 0);

        let mut b = ReusableBoxFuture::new(fut);

        assert_eq!(b.get_pin().now_or_never(), Some(5));
        assert_eq!(b.get_pin().now_or_never(), Some(5));

        b.try_set(ZeroSizedFuture {})
            .unwrap_or_else(|_| panic!("incorrect size"));

        assert_eq!(b.get_pin().now_or_never(), Some(5));
        assert_eq!(b.get_pin().now_or_never(), Some(5));
    }
}