1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
use super::BigInt;
use super::Sign::{Minus, NoSign, Plus};

use crate::big_digit::{self, BigDigit, DoubleBigDigit};
use crate::biguint::IntDigits;

use alloc::vec::Vec;
use core::cmp::Ordering::{Equal, Greater, Less};
use core::ops::{BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign};
use num_traits::{ToPrimitive, Zero};

// Negation in two's complement.
// acc must be initialized as 1 for least-significant digit.
//
// When negating, a carry (acc == 1) means that all the digits
// considered to this point were zero. This means that if all the
// digits of a negative BigInt have been considered, carry must be
// zero as we cannot have negative zero.
//
//    01 -> ...f    ff
//    ff -> ...f    01
// 01 00 -> ...f ff 00
// 01 01 -> ...f fe ff
// 01 ff -> ...f fe 01
// ff 00 -> ...f 01 00
// ff 01 -> ...f 00 ff
// ff ff -> ...f 00 01
#[inline]
fn negate_carry(a: BigDigit, acc: &mut DoubleBigDigit) -> BigDigit {
    *acc += DoubleBigDigit::from(!a);
    let lo = *acc as BigDigit;
    *acc >>= big_digit::BITS;
    lo
}

// + 1 & -ff = ...0 01 & ...f 01 = ...0 01 = + 1
// +ff & - 1 = ...0 ff & ...f ff = ...0 ff = +ff
// answer is pos, has length of a
fn bitand_pos_neg(a: &mut [BigDigit], b: &[BigDigit]) {
    let mut carry_b = 1;
    for (ai, &bi) in a.iter_mut().zip(b.iter()) {
        let twos_b = negate_carry(bi, &mut carry_b);
        *ai &= twos_b;
    }
    debug_assert!(b.len() > a.len() || carry_b == 0);
}

// - 1 & +ff = ...f ff & ...0 ff = ...0 ff = +ff
// -ff & + 1 = ...f 01 & ...0 01 = ...0 01 = + 1
// answer is pos, has length of b
fn bitand_neg_pos(a: &mut Vec<BigDigit>, b: &[BigDigit]) {
    let mut carry_a = 1;
    for (ai, &bi) in a.iter_mut().zip(b.iter()) {
        let twos_a = negate_carry(*ai, &mut carry_a);
        *ai = twos_a & bi;
    }
    debug_assert!(a.len() > b.len() || carry_a == 0);
    match Ord::cmp(&a.len(), &b.len()) {
        Greater => a.truncate(b.len()),
        Equal => {}
        Less => {
            let extra = &b[a.len()..];
            a.extend(extra.iter().cloned());
        }
    }
}

// - 1 & -ff = ...f ff & ...f 01 = ...f 01 = - ff
// -ff & - 1 = ...f 01 & ...f ff = ...f 01 = - ff
// -ff & -fe = ...f 01 & ...f 02 = ...f 00 = -100
// answer is neg, has length of longest with a possible carry
fn bitand_neg_neg(a: &mut Vec<BigDigit>, b: &[BigDigit]) {
    let mut carry_a = 1;
    let mut carry_b = 1;
    let mut carry_and = 1;
    for (ai, &bi) in a.iter_mut().zip(b.iter()) {
        let twos_a = negate_carry(*ai, &mut carry_a);
        let twos_b = negate_carry(bi, &mut carry_b);
        *ai = negate_carry(twos_a & twos_b, &mut carry_and);
    }
    debug_assert!(a.len() > b.len() || carry_a == 0);
    debug_assert!(b.len() > a.len() || carry_b == 0);
    match Ord::cmp(&a.len(), &b.len()) {
        Greater => {
            for ai in a[b.len()..].iter_mut() {
                let twos_a = negate_carry(*ai, &mut carry_a);
                *ai = negate_carry(twos_a, &mut carry_and);
            }
            debug_assert!(carry_a == 0);
        }
        Equal => {}
        Less => {
            let extra = &b[a.len()..];
            a.extend(extra.iter().map(|&bi| {
                let twos_b = negate_carry(bi, &mut carry_b);
                negate_carry(twos_b, &mut carry_and)
            }));
            debug_assert!(carry_b == 0);
        }
    }
    if carry_and != 0 {
        a.push(1);
    }
}

forward_val_val_binop!(impl BitAnd for BigInt, bitand);
forward_ref_val_binop!(impl BitAnd for BigInt, bitand);

// do not use forward_ref_ref_binop_commutative! for bitand so that we can
// clone as needed, avoiding over-allocation
impl BitAnd<&BigInt> for &BigInt {
    type Output = BigInt;

    #[inline]
    fn bitand(self, other: &BigInt) -> BigInt {
        match (self.sign, other.sign) {
            (NoSign, _) | (_, NoSign) => BigInt::ZERO,
            (Plus, Plus) => BigInt::from(&self.data & &other.data),
            (Plus, Minus) => self.clone() & other,
            (Minus, Plus) => other.clone() & self,
            (Minus, Minus) => {
                // forward to val-ref, choosing the larger to clone
                if self.len() >= other.len() {
                    self.clone() & other
                } else {
                    other.clone() & self
                }
            }
        }
    }
}

impl BitAnd<&BigInt> for BigInt {
    type Output = BigInt;

    #[inline]
    fn bitand(mut self, other: &BigInt) -> BigInt {
        self &= other;
        self
    }
}

forward_val_assign!(impl BitAndAssign for BigInt, bitand_assign);

impl BitAndAssign<&BigInt> for BigInt {
    fn bitand_assign(&mut self, other: &BigInt) {
        match (self.sign, other.sign) {
            (NoSign, _) => {}
            (_, NoSign) => self.set_zero(),
            (Plus, Plus) => {
                self.data &= &other.data;
                if self.data.is_zero() {
                    self.sign = NoSign;
                }
            }
            (Plus, Minus) => {
                bitand_pos_neg(self.digits_mut(), other.digits());
                self.normalize();
            }
            (Minus, Plus) => {
                bitand_neg_pos(self.digits_mut(), other.digits());
                self.sign = Plus;
                self.normalize();
            }
            (Minus, Minus) => {
                bitand_neg_neg(self.digits_mut(), other.digits());
                self.normalize();
            }
        }
    }
}

// + 1 | -ff = ...0 01 | ...f 01 = ...f 01 = -ff
// +ff | - 1 = ...0 ff | ...f ff = ...f ff = - 1
// answer is neg, has length of b
fn bitor_pos_neg(a: &mut Vec<BigDigit>, b: &[BigDigit]) {
    let mut carry_b = 1;
    let mut carry_or = 1;
    for (ai, &bi) in a.iter_mut().zip(b.iter()) {
        let twos_b = negate_carry(bi, &mut carry_b);
        *ai = negate_carry(*ai | twos_b, &mut carry_or);
    }
    debug_assert!(b.len() > a.len() || carry_b == 0);
    match Ord::cmp(&a.len(), &b.len()) {
        Greater => {
            a.truncate(b.len());
        }
        Equal => {}
        Less => {
            let extra = &b[a.len()..];
            a.extend(extra.iter().map(|&bi| {
                let twos_b = negate_carry(bi, &mut carry_b);
                negate_carry(twos_b, &mut carry_or)
            }));
            debug_assert!(carry_b == 0);
        }
    }
    // for carry_or to be non-zero, we would need twos_b == 0
    debug_assert!(carry_or == 0);
}

// - 1 | +ff = ...f ff | ...0 ff = ...f ff = - 1
// -ff | + 1 = ...f 01 | ...0 01 = ...f 01 = -ff
// answer is neg, has length of a
fn bitor_neg_pos(a: &mut [BigDigit], b: &[BigDigit]) {
    let mut carry_a = 1;
    let mut carry_or = 1;
    for (ai, &bi) in a.iter_mut().zip(b.iter()) {
        let twos_a = negate_carry(*ai, &mut carry_a);
        *ai = negate_carry(twos_a | bi, &mut carry_or);
    }
    debug_assert!(a.len() > b.len() || carry_a == 0);
    if a.len() > b.len() {
        for ai in a[b.len()..].iter_mut() {
            let twos_a = negate_carry(*ai, &mut carry_a);
            *ai = negate_carry(twos_a, &mut carry_or);
        }
        debug_assert!(carry_a == 0);
    }
    // for carry_or to be non-zero, we would need twos_a == 0
    debug_assert!(carry_or == 0);
}

// - 1 | -ff = ...f ff | ...f 01 = ...f ff = -1
// -ff | - 1 = ...f 01 | ...f ff = ...f ff = -1
// answer is neg, has length of shortest
fn bitor_neg_neg(a: &mut Vec<BigDigit>, b: &[BigDigit]) {
    let mut carry_a = 1;
    let mut carry_b = 1;
    let mut carry_or = 1;
    for (ai, &bi) in a.iter_mut().zip(b.iter()) {
        let twos_a = negate_carry(*ai, &mut carry_a);
        let twos_b = negate_carry(bi, &mut carry_b);
        *ai = negate_carry(twos_a | twos_b, &mut carry_or);
    }
    debug_assert!(a.len() > b.len() || carry_a == 0);
    debug_assert!(b.len() > a.len() || carry_b == 0);
    if a.len() > b.len() {
        a.truncate(b.len());
    }
    // for carry_or to be non-zero, we would need twos_a == 0 or twos_b == 0
    debug_assert!(carry_or == 0);
}

forward_val_val_binop!(impl BitOr for BigInt, bitor);
forward_ref_val_binop!(impl BitOr for BigInt, bitor);

// do not use forward_ref_ref_binop_commutative! for bitor so that we can
// clone as needed, avoiding over-allocation
impl BitOr<&BigInt> for &BigInt {
    type Output = BigInt;

    #[inline]
    fn bitor(self, other: &BigInt) -> BigInt {
        match (self.sign, other.sign) {
            (NoSign, _) => other.clone(),
            (_, NoSign) => self.clone(),
            (Plus, Plus) => BigInt::from(&self.data | &other.data),
            (Plus, Minus) => other.clone() | self,
            (Minus, Plus) => self.clone() | other,
            (Minus, Minus) => {
                // forward to val-ref, choosing the smaller to clone
                if self.len() <= other.len() {
                    self.clone() | other
                } else {
                    other.clone() | self
                }
            }
        }
    }
}

impl BitOr<&BigInt> for BigInt {
    type Output = BigInt;

    #[inline]
    fn bitor(mut self, other: &BigInt) -> BigInt {
        self |= other;
        self
    }
}

forward_val_assign!(impl BitOrAssign for BigInt, bitor_assign);

impl BitOrAssign<&BigInt> for BigInt {
    fn bitor_assign(&mut self, other: &BigInt) {
        match (self.sign, other.sign) {
            (_, NoSign) => {}
            (NoSign, _) => self.clone_from(other),
            (Plus, Plus) => self.data |= &other.data,
            (Plus, Minus) => {
                bitor_pos_neg(self.digits_mut(), other.digits());
                self.sign = Minus;
                self.normalize();
            }
            (Minus, Plus) => {
                bitor_neg_pos(self.digits_mut(), other.digits());
                self.normalize();
            }
            (Minus, Minus) => {
                bitor_neg_neg(self.digits_mut(), other.digits());
                self.normalize();
            }
        }
    }
}

// + 1 ^ -ff = ...0 01 ^ ...f 01 = ...f 00 = -100
// +ff ^ - 1 = ...0 ff ^ ...f ff = ...f 00 = -100
// answer is neg, has length of longest with a possible carry
fn bitxor_pos_neg(a: &mut Vec<BigDigit>, b: &[BigDigit]) {
    let mut carry_b = 1;
    let mut carry_xor = 1;
    for (ai, &bi) in a.iter_mut().zip(b.iter()) {
        let twos_b = negate_carry(bi, &mut carry_b);
        *ai = negate_carry(*ai ^ twos_b, &mut carry_xor);
    }
    debug_assert!(b.len() > a.len() || carry_b == 0);
    match Ord::cmp(&a.len(), &b.len()) {
        Greater => {
            for ai in a[b.len()..].iter_mut() {
                let twos_b = !0;
                *ai = negate_carry(*ai ^ twos_b, &mut carry_xor);
            }
        }
        Equal => {}
        Less => {
            let extra = &b[a.len()..];
            a.extend(extra.iter().map(|&bi| {
                let twos_b = negate_carry(bi, &mut carry_b);
                negate_carry(twos_b, &mut carry_xor)
            }));
            debug_assert!(carry_b == 0);
        }
    }
    if carry_xor != 0 {
        a.push(1);
    }
}

// - 1 ^ +ff = ...f ff ^ ...0 ff = ...f 00 = -100
// -ff ^ + 1 = ...f 01 ^ ...0 01 = ...f 00 = -100
// answer is neg, has length of longest with a possible carry
fn bitxor_neg_pos(a: &mut Vec<BigDigit>, b: &[BigDigit]) {
    let mut carry_a = 1;
    let mut carry_xor = 1;
    for (ai, &bi) in a.iter_mut().zip(b.iter()) {
        let twos_a = negate_carry(*ai, &mut carry_a);
        *ai = negate_carry(twos_a ^ bi, &mut carry_xor);
    }
    debug_assert!(a.len() > b.len() || carry_a == 0);
    match Ord::cmp(&a.len(), &b.len()) {
        Greater => {
            for ai in a[b.len()..].iter_mut() {
                let twos_a = negate_carry(*ai, &mut carry_a);
                *ai = negate_carry(twos_a, &mut carry_xor);
            }
            debug_assert!(carry_a == 0);
        }
        Equal => {}
        Less => {
            let extra = &b[a.len()..];
            a.extend(extra.iter().map(|&bi| {
                let twos_a = !0;
                negate_carry(twos_a ^ bi, &mut carry_xor)
            }));
        }
    }
    if carry_xor != 0 {
        a.push(1);
    }
}

// - 1 ^ -ff = ...f ff ^ ...f 01 = ...0 fe = +fe
// -ff & - 1 = ...f 01 ^ ...f ff = ...0 fe = +fe
// answer is pos, has length of longest
fn bitxor_neg_neg(a: &mut Vec<BigDigit>, b: &[BigDigit]) {
    let mut carry_a = 1;
    let mut carry_b = 1;
    for (ai, &bi) in a.iter_mut().zip(b.iter()) {
        let twos_a = negate_carry(*ai, &mut carry_a);
        let twos_b = negate_carry(bi, &mut carry_b);
        *ai = twos_a ^ twos_b;
    }
    debug_assert!(a.len() > b.len() || carry_a == 0);
    debug_assert!(b.len() > a.len() || carry_b == 0);
    match Ord::cmp(&a.len(), &b.len()) {
        Greater => {
            for ai in a[b.len()..].iter_mut() {
                let twos_a = negate_carry(*ai, &mut carry_a);
                let twos_b = !0;
                *ai = twos_a ^ twos_b;
            }
            debug_assert!(carry_a == 0);
        }
        Equal => {}
        Less => {
            let extra = &b[a.len()..];
            a.extend(extra.iter().map(|&bi| {
                let twos_a = !0;
                let twos_b = negate_carry(bi, &mut carry_b);
                twos_a ^ twos_b
            }));
            debug_assert!(carry_b == 0);
        }
    }
}

forward_all_binop_to_val_ref_commutative!(impl BitXor for BigInt, bitxor);

impl BitXor<&BigInt> for BigInt {
    type Output = BigInt;

    #[inline]
    fn bitxor(mut self, other: &BigInt) -> BigInt {
        self ^= other;
        self
    }
}

forward_val_assign!(impl BitXorAssign for BigInt, bitxor_assign);

impl BitXorAssign<&BigInt> for BigInt {
    fn bitxor_assign(&mut self, other: &BigInt) {
        match (self.sign, other.sign) {
            (_, NoSign) => {}
            (NoSign, _) => self.clone_from(other),
            (Plus, Plus) => {
                self.data ^= &other.data;
                if self.data.is_zero() {
                    self.sign = NoSign;
                }
            }
            (Plus, Minus) => {
                bitxor_pos_neg(self.digits_mut(), other.digits());
                self.sign = Minus;
                self.normalize();
            }
            (Minus, Plus) => {
                bitxor_neg_pos(self.digits_mut(), other.digits());
                self.normalize();
            }
            (Minus, Minus) => {
                bitxor_neg_neg(self.digits_mut(), other.digits());
                self.sign = Plus;
                self.normalize();
            }
        }
    }
}

pub(super) fn set_negative_bit(x: &mut BigInt, bit: u64, value: bool) {
    debug_assert_eq!(x.sign, Minus);
    let data = &mut x.data;

    let bits_per_digit = u64::from(big_digit::BITS);
    if bit >= bits_per_digit * data.len() as u64 {
        if !value {
            data.set_bit(bit, true);
        }
    } else {
        // If the Uint number is
        //   ... 0  x 1 0 ... 0
        // then the two's complement is
        //   ... 1 !x 1 0 ... 0
        //            |-- bit at position 'trailing_zeros'
        // where !x is obtained from x by flipping each bit
        let trailing_zeros = data.trailing_zeros().unwrap();
        if bit > trailing_zeros {
            data.set_bit(bit, !value);
        } else if bit == trailing_zeros && !value {
            // Clearing the bit at position `trailing_zeros` is dealt with by doing
            // similarly to what `bitand_neg_pos` does, except we start at digit
            // `bit_index`. All digits below `bit_index` are guaranteed to be zero,
            // so initially we have `carry_in` = `carry_out` = 1. Furthermore, we
            // stop traversing the digits when there are no more carries.
            let bit_index = (bit / bits_per_digit).to_usize().unwrap();
            let bit_mask = (1 as BigDigit) << (bit % bits_per_digit);
            let mut digit_iter = data.digits_mut().iter_mut().skip(bit_index);
            let mut carry_in = 1;
            let mut carry_out = 1;

            let digit = digit_iter.next().unwrap();
            let twos_in = negate_carry(*digit, &mut carry_in);
            let twos_out = twos_in & !bit_mask;
            *digit = negate_carry(twos_out, &mut carry_out);

            for digit in digit_iter {
                if carry_in == 0 && carry_out == 0 {
                    // Exit the loop since no more digits can change
                    break;
                }
                let twos = negate_carry(*digit, &mut carry_in);
                *digit = negate_carry(twos, &mut carry_out);
            }

            if carry_out != 0 {
                // All digits have been traversed and there is a carry
                debug_assert_eq!(carry_in, 0);
                data.digits_mut().push(1);
            }
        } else if bit < trailing_zeros && value {
            // Flip each bit from position 'bit' to 'trailing_zeros', both inclusive
            //       ... 1 !x 1 0 ... 0 ... 0
            //                        |-- bit at position 'bit'
            //                |-- bit at position 'trailing_zeros'
            // bit_mask:      1 1 ... 1 0 .. 0
            // This is done by xor'ing with the bit_mask
            let index_lo = (bit / bits_per_digit).to_usize().unwrap();
            let index_hi = (trailing_zeros / bits_per_digit).to_usize().unwrap();
            let bit_mask_lo = big_digit::MAX << (bit % bits_per_digit);
            let bit_mask_hi =
                big_digit::MAX >> (bits_per_digit - 1 - (trailing_zeros % bits_per_digit));
            let digits = data.digits_mut();

            if index_lo == index_hi {
                digits[index_lo] ^= bit_mask_lo & bit_mask_hi;
            } else {
                digits[index_lo] = bit_mask_lo;
                for digit in &mut digits[index_lo + 1..index_hi] {
                    *digit = big_digit::MAX;
                }
                digits[index_hi] ^= bit_mask_hi;
            }
        } else {
            // We end up here in two cases:
            //   bit == trailing_zeros && value: Bit is already set
            //   bit < trailing_zeros && !value: Bit is already cleared
        }
    }
}