1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
/*!
An NFA backed bounded backtracker for executing regex searches with capturing
groups.
This module provides a [`BoundedBacktracker`] that works by simulating an NFA
using the classical backtracking algorithm with a twist: it avoids redoing
work that it has done before and thereby avoids worst case exponential time.
In exchange, it can only be used on "short" haystacks. Its advantage is that
is can be faster than the [`PikeVM`](thompson::pikevm::PikeVM) in many cases
because it does less book-keeping.
*/
use alloc::{vec, vec::Vec};
use crate::{
nfa::thompson::{self, BuildError, State, NFA},
util::{
captures::Captures,
empty, iter,
prefilter::Prefilter,
primitives::{NonMaxUsize, PatternID, SmallIndex, StateID},
search::{Anchored, HalfMatch, Input, Match, MatchError, Span},
},
};
/// Returns the minimum visited capacity for the given haystack.
///
/// This function can be used as the argument to [`Config::visited_capacity`]
/// in order to guarantee that a backtracking search for the given `input`
/// won't return an error when using a [`BoundedBacktracker`] built from the
/// given `NFA`.
///
/// This routine exists primarily as a way to test that the bounded backtracker
/// works correctly when its capacity is set to the smallest possible amount.
/// Still, it may be useful in cases where you know you want to use the bounded
/// backtracker for a specific input, and just need to know what visited
/// capacity to provide to make it work.
///
/// Be warned that this number could be quite large as it is multiplicative in
/// the size the given NFA and haystack.
pub fn min_visited_capacity(nfa: &NFA, input: &Input<'_>) -> usize {
div_ceil(nfa.states().len() * (input.get_span().len() + 1), 8)
}
/// The configuration used for building a bounded backtracker.
///
/// A bounded backtracker configuration is a simple data object that is
/// typically used with [`Builder::configure`].
#[derive(Clone, Debug, Default)]
pub struct Config {
pre: Option<Option<Prefilter>>,
visited_capacity: Option<usize>,
}
impl Config {
/// Return a new default regex configuration.
pub fn new() -> Config {
Config::default()
}
/// Set a prefilter to be used whenever a start state is entered.
///
/// A [`Prefilter`] in this context is meant to accelerate searches by
/// looking for literal prefixes that every match for the corresponding
/// pattern (or patterns) must start with. Once a prefilter produces a
/// match, the underlying search routine continues on to try and confirm
/// the match.
///
/// Be warned that setting a prefilter does not guarantee that the search
/// will be faster. While it's usually a good bet, if the prefilter
/// produces a lot of false positive candidates (i.e., positions matched
/// by the prefilter but not by the regex), then the overall result can
/// be slower than if you had just executed the regex engine without any
/// prefilters.
///
/// By default no prefilter is set.
///
/// # Example
///
/// ```
/// use regex_automata::{
/// nfa::thompson::backtrack::BoundedBacktracker,
/// util::prefilter::Prefilter,
/// Input, Match, MatchKind,
/// };
///
/// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["foo", "bar"]);
/// let re = BoundedBacktracker::builder()
/// .configure(BoundedBacktracker::config().prefilter(pre))
/// .build(r"(foo|bar)[a-z]+")?;
/// let mut cache = re.create_cache();
/// let input = Input::new("foo1 barfox bar");
/// assert_eq!(
/// Some(Match::must(0, 5..11)),
/// re.try_find(&mut cache, input)?,
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Be warned though that an incorrect prefilter can lead to incorrect
/// results!
///
/// ```
/// use regex_automata::{
/// nfa::thompson::backtrack::BoundedBacktracker,
/// util::prefilter::Prefilter,
/// Input, HalfMatch, MatchKind,
/// };
///
/// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["foo", "car"]);
/// let re = BoundedBacktracker::builder()
/// .configure(BoundedBacktracker::config().prefilter(pre))
/// .build(r"(foo|bar)[a-z]+")?;
/// let mut cache = re.create_cache();
/// let input = Input::new("foo1 barfox bar");
/// // No match reported even though there clearly is one!
/// assert_eq!(None, re.try_find(&mut cache, input)?);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn prefilter(mut self, pre: Option<Prefilter>) -> Config {
self.pre = Some(pre);
self
}
/// Set the visited capacity used to bound backtracking.
///
/// The visited capacity represents the amount of heap memory (in bytes) to
/// allocate toward tracking which parts of the backtracking search have
/// been done before. The heap memory needed for any particular search is
/// proportional to `haystack.len() * nfa.states().len()`, which an be
/// quite large. Therefore, the bounded backtracker is typically only able
/// to run on shorter haystacks.
///
/// For a given regex, increasing the visited capacity means that the
/// maximum haystack length that can be searched is increased. The
/// [`BoundedBacktracker::max_haystack_len`] method returns that maximum.
///
/// The default capacity is a reasonable but empirically chosen size.
///
/// # Example
///
/// As with other regex engines, Unicode is what tends to make the bounded
/// backtracker less useful by making the maximum haystack length quite
/// small. If necessary, increasing the visited capacity using this routine
/// will increase the maximum haystack length at the cost of using more
/// memory.
///
/// Note though that the specific maximum values here are not an API
/// guarantee. The default visited capacity is subject to change and not
/// covered by semver.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::nfa::thompson::backtrack::BoundedBacktracker;
///
/// // Unicode inflates the size of the underlying NFA quite a bit, and
/// // thus means that the backtracker can only handle smaller haystacks,
/// // assuming that the visited capacity remains unchanged.
/// let re = BoundedBacktracker::new(r"\w+")?;
/// assert!(re.max_haystack_len() <= 7_000);
/// // But we can increase the visited capacity to handle bigger haystacks!
/// let re = BoundedBacktracker::builder()
/// .configure(BoundedBacktracker::config().visited_capacity(1<<20))
/// .build(r"\w+")?;
/// assert!(re.max_haystack_len() >= 25_000);
/// assert!(re.max_haystack_len() <= 28_000);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn visited_capacity(mut self, capacity: usize) -> Config {
self.visited_capacity = Some(capacity);
self
}
/// Returns the prefilter set in this configuration, if one at all.
pub fn get_prefilter(&self) -> Option<&Prefilter> {
self.pre.as_ref().unwrap_or(&None).as_ref()
}
/// Returns the configured visited capacity.
///
/// Note that the actual capacity used may be slightly bigger than the
/// configured capacity.
pub fn get_visited_capacity(&self) -> usize {
const DEFAULT: usize = 256 * (1 << 10); // 256 KB
self.visited_capacity.unwrap_or(DEFAULT)
}
/// Overwrite the default configuration such that the options in `o` are
/// always used. If an option in `o` is not set, then the corresponding
/// option in `self` is used. If it's not set in `self` either, then it
/// remains not set.
pub(crate) fn overwrite(&self, o: Config) -> Config {
Config {
pre: o.pre.or_else(|| self.pre.clone()),
visited_capacity: o.visited_capacity.or(self.visited_capacity),
}
}
}
/// A builder for a bounded backtracker.
///
/// This builder permits configuring options for the syntax of a pattern, the
/// NFA construction and the `BoundedBacktracker` construction. This builder
/// is different from a general purpose regex builder in that it permits fine
/// grain configuration of the construction process. The trade off for this is
/// complexity, and the possibility of setting a configuration that might not
/// make sense. For example, there are two different UTF-8 modes:
///
/// * [`syntax::Config::utf8`](crate::util::syntax::Config::utf8) controls
/// whether the pattern itself can contain sub-expressions that match invalid
/// UTF-8.
/// * [`thompson::Config::utf8`] controls how the regex iterators themselves
/// advance the starting position of the next search when a match with zero
/// length is found.
///
/// Generally speaking, callers will want to either enable all of these or
/// disable all of these.
///
/// # Example
///
/// This example shows how to disable UTF-8 mode in the syntax and the regex
/// itself. This is generally what you want for matching on arbitrary bytes.
///
/// ```
/// use regex_automata::{
/// nfa::thompson::{self, backtrack::BoundedBacktracker},
/// util::syntax,
/// Match,
/// };
///
/// let re = BoundedBacktracker::builder()
/// .syntax(syntax::Config::new().utf8(false))
/// .thompson(thompson::Config::new().utf8(false))
/// .build(r"foo(?-u:[^b])ar.*")?;
/// let mut cache = re.create_cache();
///
/// let haystack = b"\xFEfoo\xFFarzz\xE2\x98\xFF\n";
/// let expected = Some(Ok(Match::must(0, 1..9)));
/// let got = re.try_find_iter(&mut cache, haystack).next();
/// assert_eq!(expected, got);
/// // Notice that `(?-u:[^b])` matches invalid UTF-8,
/// // but the subsequent `.*` does not! Disabling UTF-8
/// // on the syntax permits this.
/// //
/// // N.B. This example does not show the impact of
/// // disabling UTF-8 mode on a BoundedBacktracker Config, since that
/// // only impacts regexes that can produce matches of
/// // length 0.
/// assert_eq!(b"foo\xFFarzz", &haystack[got.unwrap()?.range()]);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Debug)]
pub struct Builder {
config: Config,
#[cfg(feature = "syntax")]
thompson: thompson::Compiler,
}
impl Builder {
/// Create a new BoundedBacktracker builder with its default configuration.
pub fn new() -> Builder {
Builder {
config: Config::default(),
#[cfg(feature = "syntax")]
thompson: thompson::Compiler::new(),
}
}
/// Build a `BoundedBacktracker` from the given pattern.
///
/// If there was a problem parsing or compiling the pattern, then an error
/// is returned.
#[cfg(feature = "syntax")]
pub fn build(
&self,
pattern: &str,
) -> Result<BoundedBacktracker, BuildError> {
self.build_many(&[pattern])
}
/// Build a `BoundedBacktracker` from the given patterns.
#[cfg(feature = "syntax")]
pub fn build_many<P: AsRef<str>>(
&self,
patterns: &[P],
) -> Result<BoundedBacktracker, BuildError> {
let nfa = self.thompson.build_many(patterns)?;
self.build_from_nfa(nfa)
}
/// Build a `BoundedBacktracker` directly from its NFA.
///
/// Note that when using this method, any configuration that applies to the
/// construction of the NFA itself will of course be ignored, since the NFA
/// given here is already built.
pub fn build_from_nfa(
&self,
nfa: NFA,
) -> Result<BoundedBacktracker, BuildError> {
nfa.look_set_any().available().map_err(BuildError::word)?;
Ok(BoundedBacktracker { config: self.config.clone(), nfa })
}
/// Apply the given `BoundedBacktracker` configuration options to this
/// builder.
pub fn configure(&mut self, config: Config) -> &mut Builder {
self.config = self.config.overwrite(config);
self
}
/// Set the syntax configuration for this builder using
/// [`syntax::Config`](crate::util::syntax::Config).
///
/// This permits setting things like case insensitivity, Unicode and multi
/// line mode.
///
/// These settings only apply when constructing a `BoundedBacktracker`
/// directly from a pattern.
#[cfg(feature = "syntax")]
pub fn syntax(
&mut self,
config: crate::util::syntax::Config,
) -> &mut Builder {
self.thompson.syntax(config);
self
}
/// Set the Thompson NFA configuration for this builder using
/// [`nfa::thompson::Config`](crate::nfa::thompson::Config).
///
/// This permits setting things like if additional time should be spent
/// shrinking the size of the NFA.
///
/// These settings only apply when constructing a `BoundedBacktracker`
/// directly from a pattern.
#[cfg(feature = "syntax")]
pub fn thompson(&mut self, config: thompson::Config) -> &mut Builder {
self.thompson.configure(config);
self
}
}
/// A backtracking regex engine that bounds its execution to avoid exponential
/// blow-up.
///
/// This regex engine only implements leftmost-first match semantics and
/// only supports leftmost searches. It effectively does the same thing as a
/// [`PikeVM`](thompson::pikevm::PikeVM), but typically does it faster because
/// it doesn't have to worry about copying capturing group spans for most NFA
/// states. Instead, the backtracker can maintain one set of captures (provided
/// by the caller) and never needs to copy them. In exchange, the backtracker
/// bounds itself to ensure it doesn't exhibit worst case exponential time.
/// This results in the backtracker only being able to handle short haystacks
/// given reasonable memory usage.
///
/// # Searches may return an error!
///
/// By design, this backtracking regex engine is bounded. This bound is
/// implemented by not visiting any combination of NFA state ID and position
/// in a haystack more than once. Thus, the total memory required to bound
/// backtracking is proportional to `haystack.len() * nfa.states().len()`.
/// This can obviously get quite large, since large haystacks aren't terribly
/// uncommon. To avoid using exorbitant memory, the capacity is bounded by
/// a fixed limit set via [`Config::visited_capacity`]. Thus, if the total
/// capacity required for a particular regex and a haystack exceeds this
/// capacity, then the search routine will return an error.
///
/// Unlike other regex engines that may return an error at search time (like
/// the DFA or the hybrid NFA/DFA), there is no way to guarantee that a bounded
/// backtracker will work for every haystack. Therefore, this regex engine
/// _only_ exposes fallible search routines to avoid the footgun of panicking
/// when running a search on a haystack that is too big.
///
/// If one wants to use the fallible search APIs without handling the
/// error, the only way to guarantee an error won't occur from the
/// haystack length is to ensure the haystack length does not exceed
/// [`BoundedBacktracker::max_haystack_len`].
///
/// # Example: Unicode word boundaries
///
/// This example shows that the bounded backtracker implements Unicode word
/// boundaries correctly by default.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{nfa::thompson::backtrack::BoundedBacktracker, Match};
///
/// let re = BoundedBacktracker::new(r"\b\w+\b")?;
/// let mut cache = re.create_cache();
///
/// let mut it = re.try_find_iter(&mut cache, "Шерлок Холмс");
/// assert_eq!(Some(Ok(Match::must(0, 0..12))), it.next());
/// assert_eq!(Some(Ok(Match::must(0, 13..23))), it.next());
/// assert_eq!(None, it.next());
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: multiple regex patterns
///
/// The bounded backtracker supports searching for multiple patterns
/// simultaneously, just like other regex engines. Note though that because it
/// uses a backtracking strategy, this regex engine is unlikely to scale well
/// as more patterns are added. But then again, as more patterns are added, the
/// maximum haystack length allowed will also shorten (assuming the visited
/// capacity remains invariant).
///
/// ```
/// use regex_automata::{nfa::thompson::backtrack::BoundedBacktracker, Match};
///
/// let re = BoundedBacktracker::new_many(&["[a-z]+", "[0-9]+"])?;
/// let mut cache = re.create_cache();
///
/// let mut it = re.try_find_iter(&mut cache, "abc 1 foo 4567 0 quux");
/// assert_eq!(Some(Ok(Match::must(0, 0..3))), it.next());
/// assert_eq!(Some(Ok(Match::must(1, 4..5))), it.next());
/// assert_eq!(Some(Ok(Match::must(0, 6..9))), it.next());
/// assert_eq!(Some(Ok(Match::must(1, 10..14))), it.next());
/// assert_eq!(Some(Ok(Match::must(1, 15..16))), it.next());
/// assert_eq!(Some(Ok(Match::must(0, 17..21))), it.next());
/// assert_eq!(None, it.next());
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Debug)]
pub struct BoundedBacktracker {
config: Config,
nfa: NFA,
}
impl BoundedBacktracker {
/// Parse the given regular expression using the default configuration and
/// return the corresponding `BoundedBacktracker`.
///
/// If you want a non-default configuration, then use the [`Builder`] to
/// set your own configuration.
///
/// # Example
///
/// ```
/// use regex_automata::{
/// nfa::thompson::backtrack::BoundedBacktracker,
/// Match,
/// };
///
/// let re = BoundedBacktracker::new("foo[0-9]+bar")?;
/// let mut cache = re.create_cache();
/// assert_eq!(
/// Some(Ok(Match::must(0, 3..14))),
/// re.try_find_iter(&mut cache, "zzzfoo12345barzzz").next(),
/// );
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "syntax")]
pub fn new(pattern: &str) -> Result<BoundedBacktracker, BuildError> {
BoundedBacktracker::builder().build(pattern)
}
/// Like `new`, but parses multiple patterns into a single "multi regex."
/// This similarly uses the default regex configuration.
///
/// # Example
///
/// ```
/// use regex_automata::{
/// nfa::thompson::backtrack::BoundedBacktracker,
/// Match,
/// };
///
/// let re = BoundedBacktracker::new_many(&["[a-z]+", "[0-9]+"])?;
/// let mut cache = re.create_cache();
///
/// let mut it = re.try_find_iter(&mut cache, "abc 1 foo 4567 0 quux");
/// assert_eq!(Some(Ok(Match::must(0, 0..3))), it.next());
/// assert_eq!(Some(Ok(Match::must(1, 4..5))), it.next());
/// assert_eq!(Some(Ok(Match::must(0, 6..9))), it.next());
/// assert_eq!(Some(Ok(Match::must(1, 10..14))), it.next());
/// assert_eq!(Some(Ok(Match::must(1, 15..16))), it.next());
/// assert_eq!(Some(Ok(Match::must(0, 17..21))), it.next());
/// assert_eq!(None, it.next());
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "syntax")]
pub fn new_many<P: AsRef<str>>(
patterns: &[P],
) -> Result<BoundedBacktracker, BuildError> {
BoundedBacktracker::builder().build_many(patterns)
}
/// # Example
///
/// This shows how to hand assemble a regular expression via its HIR,
/// compile an NFA from it and build a BoundedBacktracker from the NFA.
///
/// ```
/// use regex_automata::{
/// nfa::thompson::{NFA, backtrack::BoundedBacktracker},
/// Match,
/// };
/// use regex_syntax::hir::{Hir, Class, ClassBytes, ClassBytesRange};
///
/// let hir = Hir::class(Class::Bytes(ClassBytes::new(vec![
/// ClassBytesRange::new(b'0', b'9'),
/// ClassBytesRange::new(b'A', b'Z'),
/// ClassBytesRange::new(b'_', b'_'),
/// ClassBytesRange::new(b'a', b'z'),
/// ])));
///
/// let config = NFA::config().nfa_size_limit(Some(1_000));
/// let nfa = NFA::compiler().configure(config).build_from_hir(&hir)?;
///
/// let re = BoundedBacktracker::new_from_nfa(nfa)?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
/// let expected = Some(Match::must(0, 3..4));
/// re.try_captures(&mut cache, "!@#A#@!", &mut caps)?;
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn new_from_nfa(nfa: NFA) -> Result<BoundedBacktracker, BuildError> {
BoundedBacktracker::builder().build_from_nfa(nfa)
}
/// Create a new `BoundedBacktracker` that matches every input.
///
/// # Example
///
/// ```
/// use regex_automata::{
/// nfa::thompson::backtrack::BoundedBacktracker,
/// Match,
/// };
///
/// let re = BoundedBacktracker::always_match()?;
/// let mut cache = re.create_cache();
///
/// let expected = Some(Ok(Match::must(0, 0..0)));
/// assert_eq!(expected, re.try_find_iter(&mut cache, "").next());
/// assert_eq!(expected, re.try_find_iter(&mut cache, "foo").next());
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn always_match() -> Result<BoundedBacktracker, BuildError> {
let nfa = thompson::NFA::always_match();
BoundedBacktracker::new_from_nfa(nfa)
}
/// Create a new `BoundedBacktracker` that never matches any input.
///
/// # Example
///
/// ```
/// use regex_automata::nfa::thompson::backtrack::BoundedBacktracker;
///
/// let re = BoundedBacktracker::never_match()?;
/// let mut cache = re.create_cache();
///
/// assert_eq!(None, re.try_find_iter(&mut cache, "").next());
/// assert_eq!(None, re.try_find_iter(&mut cache, "foo").next());
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn never_match() -> Result<BoundedBacktracker, BuildError> {
let nfa = thompson::NFA::never_match();
BoundedBacktracker::new_from_nfa(nfa)
}
/// Return a default configuration for a `BoundedBacktracker`.
///
/// This is a convenience routine to avoid needing to import the `Config`
/// type when customizing the construction of a `BoundedBacktracker`.
///
/// # Example
///
/// This example shows how to disable UTF-8 mode. When UTF-8 mode is
/// disabled, zero-width matches that split a codepoint are allowed.
/// Otherwise they are never reported.
///
/// In the code below, notice that `""` is permitted to match positions
/// that split the encoding of a codepoint.
///
/// ```
/// use regex_automata::{
/// nfa::thompson::{self, backtrack::BoundedBacktracker},
/// Match,
/// };
///
/// let re = BoundedBacktracker::builder()
/// .thompson(thompson::Config::new().utf8(false))
/// .build(r"")?;
/// let mut cache = re.create_cache();
///
/// let haystack = "a☃z";
/// let mut it = re.try_find_iter(&mut cache, haystack);
/// assert_eq!(Some(Ok(Match::must(0, 0..0))), it.next());
/// assert_eq!(Some(Ok(Match::must(0, 1..1))), it.next());
/// assert_eq!(Some(Ok(Match::must(0, 2..2))), it.next());
/// assert_eq!(Some(Ok(Match::must(0, 3..3))), it.next());
/// assert_eq!(Some(Ok(Match::must(0, 4..4))), it.next());
/// assert_eq!(Some(Ok(Match::must(0, 5..5))), it.next());
/// assert_eq!(None, it.next());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn config() -> Config {
Config::new()
}
/// Return a builder for configuring the construction of a
/// `BoundedBacktracker`.
///
/// This is a convenience routine to avoid needing to import the
/// [`Builder`] type in common cases.
///
/// # Example
///
/// This example shows how to use the builder to disable UTF-8 mode
/// everywhere.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
/// nfa::thompson::{self, backtrack::BoundedBacktracker},
/// util::syntax,
/// Match,
/// };
///
/// let re = BoundedBacktracker::builder()
/// .syntax(syntax::Config::new().utf8(false))
/// .thompson(thompson::Config::new().utf8(false))
/// .build(r"foo(?-u:[^b])ar.*")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// let haystack = b"\xFEfoo\xFFarzz\xE2\x98\xFF\n";
/// let expected = Some(Match::must(0, 1..9));
/// re.try_captures(&mut cache, haystack, &mut caps)?;
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn builder() -> Builder {
Builder::new()
}
/// Create a new cache for this regex.
///
/// The cache returned should only be used for searches for this
/// regex. If you want to reuse the cache for another regex, then you
/// must call [`Cache::reset`] with that regex (or, equivalently,
/// [`BoundedBacktracker::reset_cache`]).
pub fn create_cache(&self) -> Cache {
Cache::new(self)
}
/// Create a new empty set of capturing groups that is guaranteed to be
/// valid for the search APIs on this `BoundedBacktracker`.
///
/// A `Captures` value created for a specific `BoundedBacktracker` cannot
/// be used with any other `BoundedBacktracker`.
///
/// This is a convenience function for [`Captures::all`]. See the
/// [`Captures`] documentation for an explanation of its alternative
/// constructors that permit the `BoundedBacktracker` to do less work
/// during a search, and thus might make it faster.
pub fn create_captures(&self) -> Captures {
Captures::all(self.get_nfa().group_info().clone())
}
/// Reset the given cache such that it can be used for searching with the
/// this `BoundedBacktracker` (and only this `BoundedBacktracker`).
///
/// A cache reset permits reusing memory already allocated in this cache
/// with a different `BoundedBacktracker`.
///
/// # Example
///
/// This shows how to re-purpose a cache for use with a different
/// `BoundedBacktracker`.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
/// nfa::thompson::backtrack::BoundedBacktracker,
/// Match,
/// };
///
/// let re1 = BoundedBacktracker::new(r"\w")?;
/// let re2 = BoundedBacktracker::new(r"\W")?;
///
/// let mut cache = re1.create_cache();
/// assert_eq!(
/// Some(Ok(Match::must(0, 0..2))),
/// re1.try_find_iter(&mut cache, "Δ").next(),
/// );
///
/// // Using 'cache' with re2 is not allowed. It may result in panics or
/// // incorrect results. In order to re-purpose the cache, we must reset
/// // it with the BoundedBacktracker we'd like to use it with.
/// //
/// // Similarly, after this reset, using the cache with 're1' is also not
/// // allowed.
/// cache.reset(&re2);
/// assert_eq!(
/// Some(Ok(Match::must(0, 0..3))),
/// re2.try_find_iter(&mut cache, "☃").next(),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn reset_cache(&self, cache: &mut Cache) {
cache.reset(self);
}
/// Returns the total number of patterns compiled into this
/// `BoundedBacktracker`.
///
/// In the case of a `BoundedBacktracker` that contains no patterns, this
/// returns `0`.
///
/// # Example
///
/// This example shows the pattern length for a `BoundedBacktracker` that
/// never matches:
///
/// ```
/// use regex_automata::nfa::thompson::backtrack::BoundedBacktracker;
///
/// let re = BoundedBacktracker::never_match()?;
/// assert_eq!(re.pattern_len(), 0);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// And another example for a `BoundedBacktracker` that matches at every
/// position:
///
/// ```
/// use regex_automata::nfa::thompson::backtrack::BoundedBacktracker;
///
/// let re = BoundedBacktracker::always_match()?;
/// assert_eq!(re.pattern_len(), 1);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// And finally, a `BoundedBacktracker` that was constructed from multiple
/// patterns:
///
/// ```
/// use regex_automata::nfa::thompson::backtrack::BoundedBacktracker;
///
/// let re = BoundedBacktracker::new_many(&["[0-9]+", "[a-z]+", "[A-Z]+"])?;
/// assert_eq!(re.pattern_len(), 3);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn pattern_len(&self) -> usize {
self.nfa.pattern_len()
}
/// Return the config for this `BoundedBacktracker`.
#[inline]
pub fn get_config(&self) -> &Config {
&self.config
}
/// Returns a reference to the underlying NFA.
#[inline]
pub fn get_nfa(&self) -> &NFA {
&self.nfa
}
/// Returns the maximum haystack length supported by this backtracker.
///
/// This routine is a function of both [`Config::visited_capacity`] and the
/// internal size of the backtracker's NFA.
///
/// # Example
///
/// This example shows how the maximum haystack length can vary depending
/// on the size of the regex itself. Note though that the specific maximum
/// values here are not an API guarantee. The default visited capacity is
/// subject to change and not covered by semver.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
/// nfa::thompson::backtrack::BoundedBacktracker,
/// Match, MatchError,
/// };
///
/// // If you're only using ASCII, you get a big budget.
/// let re = BoundedBacktracker::new(r"(?-u)\w+")?;
/// let mut cache = re.create_cache();
/// assert_eq!(re.max_haystack_len(), 299_592);
/// // Things work up to the max.
/// let mut haystack = "a".repeat(299_592);
/// let expected = Some(Ok(Match::must(0, 0..299_592)));
/// assert_eq!(expected, re.try_find_iter(&mut cache, &haystack).next());
/// // But you'll get an error if you provide a haystack that's too big.
/// // Notice that we use the 'try_find_iter' routine instead, which
/// // yields Result<Match, MatchError> instead of Match.
/// haystack.push('a');
/// let expected = Some(Err(MatchError::haystack_too_long(299_593)));
/// assert_eq!(expected, re.try_find_iter(&mut cache, &haystack).next());
///
/// // Unicode inflates the size of the underlying NFA quite a bit, and
/// // thus means that the backtracker can only handle smaller haystacks,
/// // assuming that the visited capacity remains unchanged.
/// let re = BoundedBacktracker::new(r"\w+")?;
/// assert!(re.max_haystack_len() <= 7_000);
/// // But we can increase the visited capacity to handle bigger haystacks!
/// let re = BoundedBacktracker::builder()
/// .configure(BoundedBacktracker::config().visited_capacity(1<<20))
/// .build(r"\w+")?;
/// assert!(re.max_haystack_len() >= 25_000);
/// assert!(re.max_haystack_len() <= 28_000);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn max_haystack_len(&self) -> usize {
// The capacity given in the config is "bytes of heap memory," but the
// capacity we use here is "number of bits." So convert the capacity in
// bytes to the capacity in bits.
let capacity = 8 * self.get_config().get_visited_capacity();
let blocks = div_ceil(capacity, Visited::BLOCK_SIZE);
let real_capacity = blocks.saturating_mul(Visited::BLOCK_SIZE);
// It's possible for `real_capacity` to be smaller than the number of
// NFA states for particularly large regexes, so we saturate towards
// zero.
(real_capacity / self.nfa.states().len()).saturating_sub(1)
}
}
impl BoundedBacktracker {
/// Returns true if and only if this regex matches the given haystack.
///
/// In the case of a backtracking regex engine, and unlike most other
/// regex engines in this crate, short circuiting isn't practical. However,
/// this routine may still be faster because it instructs backtracking to
/// not keep track of any capturing groups.
///
/// # Errors
///
/// This routine only errors if the search could not complete. For this
/// backtracking regex engine, this only occurs when the haystack length
/// exceeds [`BoundedBacktracker::max_haystack_len`].
///
/// When a search cannot complete, callers cannot know whether a match
/// exists or not.
///
/// # Example
///
/// ```
/// use regex_automata::nfa::thompson::backtrack::BoundedBacktracker;
///
/// let re = BoundedBacktracker::new("foo[0-9]+bar")?;
/// let mut cache = re.create_cache();
///
/// assert!(re.try_is_match(&mut cache, "foo12345bar")?);
/// assert!(!re.try_is_match(&mut cache, "foobar")?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: consistency with search APIs
///
/// `is_match` is guaranteed to return `true` whenever `find` returns a
/// match. This includes searches that are executed entirely within a
/// codepoint:
///
/// ```
/// use regex_automata::{
/// nfa::thompson::backtrack::BoundedBacktracker,
/// Input,
/// };
///
/// let re = BoundedBacktracker::new("a*")?;
/// let mut cache = re.create_cache();
///
/// assert!(!re.try_is_match(&mut cache, Input::new("☃").span(1..2))?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Notice that when UTF-8 mode is disabled, then the above reports a
/// match because the restriction against zero-width matches that split a
/// codepoint has been lifted:
///
/// ```
/// use regex_automata::{
/// nfa::thompson::{backtrack::BoundedBacktracker, NFA},
/// Input,
/// };
///
/// let re = BoundedBacktracker::builder()
/// .thompson(NFA::config().utf8(false))
/// .build("a*")?;
/// let mut cache = re.create_cache();
///
/// assert!(re.try_is_match(&mut cache, Input::new("☃").span(1..2))?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn try_is_match<'h, I: Into<Input<'h>>>(
&self,
cache: &mut Cache,
input: I,
) -> Result<bool, MatchError> {
let input = input.into().earliest(true);
self.try_search_slots(cache, &input, &mut []).map(|pid| pid.is_some())
}
/// Executes a leftmost forward search and returns a `Match` if one exists.
///
/// This routine only includes the overall match span. To get
/// access to the individual spans of each capturing group, use
/// [`BoundedBacktracker::try_captures`].
///
/// # Errors
///
/// This routine only errors if the search could not complete. For this
/// backtracking regex engine, this only occurs when the haystack length
/// exceeds [`BoundedBacktracker::max_haystack_len`].
///
/// When a search cannot complete, callers cannot know whether a match
/// exists or not.
///
/// # Example
///
/// ```
/// use regex_automata::{
/// nfa::thompson::backtrack::BoundedBacktracker,
/// Match,
/// };
///
/// let re = BoundedBacktracker::new("foo[0-9]+")?;
/// let mut cache = re.create_cache();
/// let expected = Match::must(0, 0..8);
/// assert_eq!(Some(expected), re.try_find(&mut cache, "foo12345")?);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn try_find<'h, I: Into<Input<'h>>>(
&self,
cache: &mut Cache,
input: I,
) -> Result<Option<Match>, MatchError> {
let input = input.into();
if self.get_nfa().pattern_len() == 1 {
let mut slots = [None, None];
let pid = match self.try_search_slots(cache, &input, &mut slots)? {
None => return Ok(None),
Some(pid) => pid,
};
let start = match slots[0] {
None => return Ok(None),
Some(s) => s.get(),
};
let end = match slots[1] {
None => return Ok(None),
Some(s) => s.get(),
};
return Ok(Some(Match::new(pid, Span { start, end })));
}
let ginfo = self.get_nfa().group_info();
let slots_len = ginfo.implicit_slot_len();
let mut slots = vec![None; slots_len];
let pid = match self.try_search_slots(cache, &input, &mut slots)? {
None => return Ok(None),
Some(pid) => pid,
};
let start = match slots[pid.as_usize() * 2] {
None => return Ok(None),
Some(s) => s.get(),
};
let end = match slots[pid.as_usize() * 2 + 1] {
None => return Ok(None),
Some(s) => s.get(),
};
Ok(Some(Match::new(pid, Span { start, end })))
}
/// Executes a leftmost forward search and writes the spans of capturing
/// groups that participated in a match into the provided [`Captures`]
/// value. If no match was found, then [`Captures::is_match`] is guaranteed
/// to return `false`.
///
/// # Errors
///
/// This routine only errors if the search could not complete. For this
/// backtracking regex engine, this only occurs when the haystack length
/// exceeds [`BoundedBacktracker::max_haystack_len`].
///
/// When a search cannot complete, callers cannot know whether a match
/// exists or not.
///
/// # Example
///
/// ```
/// use regex_automata::{
/// nfa::thompson::backtrack::BoundedBacktracker,
/// Span,
/// };
///
/// let re = BoundedBacktracker::new(
/// r"^([0-9]{4})-([0-9]{2})-([0-9]{2})$",
/// )?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
///
/// re.try_captures(&mut cache, "2010-03-14", &mut caps)?;
/// assert!(caps.is_match());
/// assert_eq!(Some(Span::from(0..4)), caps.get_group(1));
/// assert_eq!(Some(Span::from(5..7)), caps.get_group(2));
/// assert_eq!(Some(Span::from(8..10)), caps.get_group(3));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn try_captures<'h, I: Into<Input<'h>>>(
&self,
cache: &mut Cache,
input: I,
caps: &mut Captures,
) -> Result<(), MatchError> {
self.try_search(cache, &input.into(), caps)
}
/// Returns an iterator over all non-overlapping leftmost matches in the
/// given bytes. If no match exists, then the iterator yields no elements.
///
/// If the regex engine returns an error at any point, then the iterator
/// will yield that error.
///
/// # Example
///
/// ```
/// use regex_automata::{
/// nfa::thompson::backtrack::BoundedBacktracker,
/// Match, MatchError,
/// };
///
/// let re = BoundedBacktracker::new("foo[0-9]+")?;
/// let mut cache = re.create_cache();
///
/// let text = "foo1 foo12 foo123";
/// let result: Result<Vec<Match>, MatchError> = re
/// .try_find_iter(&mut cache, text)
/// .collect();
/// let matches = result?;
/// assert_eq!(matches, vec![
/// Match::must(0, 0..4),
/// Match::must(0, 5..10),
/// Match::must(0, 11..17),
/// ]);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn try_find_iter<'r, 'c, 'h, I: Into<Input<'h>>>(
&'r self,
cache: &'c mut Cache,
input: I,
) -> TryFindMatches<'r, 'c, 'h> {
let caps = Captures::matches(self.get_nfa().group_info().clone());
let it = iter::Searcher::new(input.into());
TryFindMatches { re: self, cache, caps, it }
}
/// Returns an iterator over all non-overlapping `Captures` values. If no
/// match exists, then the iterator yields no elements.
///
/// This yields the same matches as [`BoundedBacktracker::try_find_iter`],
/// but it includes the spans of all capturing groups that participate in
/// each match.
///
/// If the regex engine returns an error at any point, then the iterator
/// will yield that error.
///
/// **Tip:** See [`util::iter::Searcher`](crate::util::iter::Searcher) for
/// how to correctly iterate over all matches in a haystack while avoiding
/// the creation of a new `Captures` value for every match. (Which you are
/// forced to do with an `Iterator`.)
///
/// # Example
///
/// ```
/// use regex_automata::{
/// nfa::thompson::backtrack::BoundedBacktracker,
/// Span,
/// };
///
/// let re = BoundedBacktracker::new("foo(?P<numbers>[0-9]+)")?;
/// let mut cache = re.create_cache();
///
/// let text = "foo1 foo12 foo123";
/// let mut spans = vec![];
/// for result in re.try_captures_iter(&mut cache, text) {
/// let caps = result?;
/// // The unwrap is OK since 'numbers' matches if the pattern matches.
/// spans.push(caps.get_group_by_name("numbers").unwrap());
/// }
/// assert_eq!(spans, vec![
/// Span::from(3..4),
/// Span::from(8..10),
/// Span::from(14..17),
/// ]);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn try_captures_iter<'r, 'c, 'h, I: Into<Input<'h>>>(
&'r self,
cache: &'c mut Cache,
input: I,
) -> TryCapturesMatches<'r, 'c, 'h> {
let caps = self.create_captures();
let it = iter::Searcher::new(input.into());
TryCapturesMatches { re: self, cache, caps, it }
}
}
impl BoundedBacktracker {
/// Executes a leftmost forward search and writes the spans of capturing
/// groups that participated in a match into the provided [`Captures`]
/// value. If no match was found, then [`Captures::is_match`] is guaranteed
/// to return `false`.
///
/// This is like [`BoundedBacktracker::try_captures`], but it accepts a
/// concrete `&Input` instead of an `Into<Input>`.
///
/// # Errors
///
/// This routine only errors if the search could not complete. For this
/// backtracking regex engine, this only occurs when the haystack length
/// exceeds [`BoundedBacktracker::max_haystack_len`].
///
/// When a search cannot complete, callers cannot know whether a match
/// exists or not.
///
/// # Example: specific pattern search
///
/// This example shows how to build a multi bounded backtracker that
/// permits searching for specific patterns.
///
/// ```
/// use regex_automata::{
/// nfa::thompson::backtrack::BoundedBacktracker,
/// Anchored, Input, Match, PatternID,
/// };
///
/// let re = BoundedBacktracker::new_many(&[
/// "[a-z0-9]{6}",
/// "[a-z][a-z0-9]{5}",
/// ])?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
/// let haystack = "foo123";
///
/// // Since we are using the default leftmost-first match and both
/// // patterns match at the same starting position, only the first pattern
/// // will be returned in this case when doing a search for any of the
/// // patterns.
/// let expected = Some(Match::must(0, 0..6));
/// re.try_search(&mut cache, &Input::new(haystack), &mut caps)?;
/// assert_eq!(expected, caps.get_match());
///
/// // But if we want to check whether some other pattern matches, then we
/// // can provide its pattern ID.
/// let expected = Some(Match::must(1, 0..6));
/// let input = Input::new(haystack)
/// .anchored(Anchored::Pattern(PatternID::must(1)));
/// re.try_search(&mut cache, &input, &mut caps)?;
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: specifying the bounds of a search
///
/// This example shows how providing the bounds of a search can produce
/// different results than simply sub-slicing the haystack.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
/// nfa::thompson::backtrack::BoundedBacktracker,
/// Match, Input,
/// };
///
/// let re = BoundedBacktracker::new(r"\b[0-9]{3}\b")?;
/// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
/// let haystack = "foo123bar";
///
/// // Since we sub-slice the haystack, the search doesn't know about
/// // the larger context and assumes that `123` is surrounded by word
/// // boundaries. And of course, the match position is reported relative
/// // to the sub-slice as well, which means we get `0..3` instead of
/// // `3..6`.
/// let expected = Some(Match::must(0, 0..3));
/// re.try_search(&mut cache, &Input::new(&haystack[3..6]), &mut caps)?;
/// assert_eq!(expected, caps.get_match());
///
/// // But if we provide the bounds of the search within the context of the
/// // entire haystack, then the search can take the surrounding context
/// // into account. (And if we did find a match, it would be reported
/// // as a valid offset into `haystack` instead of its sub-slice.)
/// let expected = None;
/// re.try_search(
/// &mut cache, &Input::new(haystack).range(3..6), &mut caps,
/// )?;
/// assert_eq!(expected, caps.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn try_search(
&self,
cache: &mut Cache,
input: &Input<'_>,
caps: &mut Captures,
) -> Result<(), MatchError> {
caps.set_pattern(None);
let pid = self.try_search_slots(cache, input, caps.slots_mut())?;
caps.set_pattern(pid);
Ok(())
}
/// Executes a leftmost forward search and writes the spans of capturing
/// groups that participated in a match into the provided `slots`, and
/// returns the matching pattern ID. The contents of the slots for patterns
/// other than the matching pattern are unspecified. If no match was found,
/// then `None` is returned and the contents of all `slots` is unspecified.
///
/// This is like [`BoundedBacktracker::try_search`], but it accepts a raw
/// slots slice instead of a `Captures` value. This is useful in contexts
/// where you don't want or need to allocate a `Captures`.
///
/// It is legal to pass _any_ number of slots to this routine. If the regex
/// engine would otherwise write a slot offset that doesn't fit in the
/// provided slice, then it is simply skipped. In general though, there are
/// usually three slice lengths you might want to use:
///
/// * An empty slice, if you only care about which pattern matched.
/// * A slice with
/// [`pattern_len() * 2`](crate::nfa::thompson::NFA::pattern_len)
/// slots, if you only care about the overall match spans for each matching
/// pattern.
/// * A slice with
/// [`slot_len()`](crate::util::captures::GroupInfo::slot_len) slots, which
/// permits recording match offsets for every capturing group in every
/// pattern.
///
/// # Errors
///
/// This routine only errors if the search could not complete. For this
/// backtracking regex engine, this only occurs when the haystack length
/// exceeds [`BoundedBacktracker::max_haystack_len`].
///
/// When a search cannot complete, callers cannot know whether a match
/// exists or not.
///
/// # Example
///
/// This example shows how to find the overall match offsets in a
/// multi-pattern search without allocating a `Captures` value. Indeed, we
/// can put our slots right on the stack.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
/// nfa::thompson::backtrack::BoundedBacktracker,
/// PatternID, Input,
/// };
///
/// let re = BoundedBacktracker::new_many(&[
/// r"\pL+",
/// r"\d+",
/// ])?;
/// let mut cache = re.create_cache();
/// let input = Input::new("!@#123");
///
/// // We only care about the overall match offsets here, so we just
/// // allocate two slots for each pattern. Each slot records the start
/// // and end of the match.
/// let mut slots = [None; 4];
/// let pid = re.try_search_slots(&mut cache, &input, &mut slots)?;
/// assert_eq!(Some(PatternID::must(1)), pid);
///
/// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'.
/// // See 'GroupInfo' for more details on the mapping between groups and
/// // slot indices.
/// let slot_start = pid.unwrap().as_usize() * 2;
/// let slot_end = slot_start + 1;
/// assert_eq!(Some(3), slots[slot_start].map(|s| s.get()));
/// assert_eq!(Some(6), slots[slot_end].map(|s| s.get()));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn try_search_slots(
&self,
cache: &mut Cache,
input: &Input<'_>,
slots: &mut [Option<NonMaxUsize>],
) -> Result<Option<PatternID>, MatchError> {
let utf8empty = self.get_nfa().has_empty() && self.get_nfa().is_utf8();
if !utf8empty {
let maybe_hm = self.try_search_slots_imp(cache, input, slots)?;
return Ok(maybe_hm.map(|hm| hm.pattern()));
}
// See PikeVM::try_search_slots for why we do this.
let min = self.get_nfa().group_info().implicit_slot_len();
if slots.len() >= min {
let maybe_hm = self.try_search_slots_imp(cache, input, slots)?;
return Ok(maybe_hm.map(|hm| hm.pattern()));
}
if self.get_nfa().pattern_len() == 1 {
let mut enough = [None, None];
let got = self.try_search_slots_imp(cache, input, &mut enough)?;
// This is OK because we know `enough_slots` is strictly bigger
// than `slots`, otherwise this special case isn't reached.
slots.copy_from_slice(&enough[..slots.len()]);
return Ok(got.map(|hm| hm.pattern()));
}
let mut enough = vec![None; min];
let got = self.try_search_slots_imp(cache, input, &mut enough)?;
// This is OK because we know `enough_slots` is strictly bigger than
// `slots`, otherwise this special case isn't reached.
slots.copy_from_slice(&enough[..slots.len()]);
Ok(got.map(|hm| hm.pattern()))
}
/// This is the actual implementation of `try_search_slots_imp` that
/// doesn't account for the special case when 1) the NFA has UTF-8 mode
/// enabled, 2) the NFA can match the empty string and 3) the caller has
/// provided an insufficient number of slots to record match offsets.
#[inline(never)]
fn try_search_slots_imp(
&self,
cache: &mut Cache,
input: &Input<'_>,
slots: &mut [Option<NonMaxUsize>],
) -> Result<Option<HalfMatch>, MatchError> {
let utf8empty = self.get_nfa().has_empty() && self.get_nfa().is_utf8();
let hm = match self.search_imp(cache, input, slots)? {
None => return Ok(None),
Some(hm) if !utf8empty => return Ok(Some(hm)),
Some(hm) => hm,
};
empty::skip_splits_fwd(input, hm, hm.offset(), |input| {
Ok(self
.search_imp(cache, input, slots)?
.map(|hm| (hm, hm.offset())))
})
}
/// The implementation of standard leftmost backtracking search.
///
/// Capturing group spans are written to 'caps', but only if requested.
/// 'caps' can be one of three things: 1) totally empty, in which case, we
/// only report the pattern that matched or 2) only has slots for recording
/// the overall match offsets for any pattern or 3) has all slots available
/// for recording the spans of any groups participating in a match.
fn search_imp(
&self,
cache: &mut Cache,
input: &Input<'_>,
slots: &mut [Option<NonMaxUsize>],
) -> Result<Option<HalfMatch>, MatchError> {
// Unlike in the PikeVM, we write our capturing group spans directly
// into the caller's captures groups. So we have to make sure we're
// starting with a blank slate first. In the PikeVM, we avoid this
// by construction: the spans that are copied to every slot in the
// 'Captures' value already account for presence/absence. In this
// backtracker, we write directly into the caller provided slots, where
// as in the PikeVM, we write into scratch space first and only copy
// them to the caller provided slots when a match is found.
for slot in slots.iter_mut() {
*slot = None;
}
cache.setup_search(&self, input)?;
if input.is_done() {
return Ok(None);
}
let (anchored, start_id) = match input.get_anchored() {
// Only way we're unanchored is if both the caller asked for an
// unanchored search *and* the pattern is itself not anchored.
Anchored::No => (
self.nfa.is_always_start_anchored(),
// We always use the anchored starting state here, even if
// doing an unanchored search. The "unanchored" part of it is
// implemented in the loop below, by simply trying the next
// byte offset if the previous backtracking exploration failed.
self.nfa.start_anchored(),
),
Anchored::Yes => (true, self.nfa.start_anchored()),
Anchored::Pattern(pid) => match self.nfa.start_pattern(pid) {
None => return Ok(None),
Some(sid) => (true, sid),
},
};
if anchored {
let at = input.start();
return Ok(self.backtrack(cache, input, at, start_id, slots));
}
let pre = self.get_config().get_prefilter();
let mut at = input.start();
while at <= input.end() {
if let Some(ref pre) = pre {
let span = Span::from(at..input.end());
match pre.find(input.haystack(), span) {
None => break,
Some(ref span) => at = span.start,
}
}
if let Some(hm) = self.backtrack(cache, input, at, start_id, slots)
{
return Ok(Some(hm));
}
at += 1;
}
Ok(None)
}
/// Look for a match starting at `at` in `input` and write the matching
/// pattern ID and group spans to `caps`. The search uses `start_id` as its
/// starting state in the underlying NFA.
///
/// If no match was found, then the caller should increment `at` and try
/// at the next position.
#[cfg_attr(feature = "perf-inline", inline(always))]
fn backtrack(
&self,
cache: &mut Cache,
input: &Input<'_>,
at: usize,
start_id: StateID,
slots: &mut [Option<NonMaxUsize>],
) -> Option<HalfMatch> {
cache.stack.push(Frame::Step { sid: start_id, at });
while let Some(frame) = cache.stack.pop() {
match frame {
Frame::Step { sid, at } => {
if let Some(hm) = self.step(cache, input, sid, at, slots) {
return Some(hm);
}
}
Frame::RestoreCapture { slot, offset } => {
slots[slot] = offset;
}
}
}
None
}
// LAMENTATION: The actual backtracking search is implemented in about
// 75 lines below. Yet this file is over 2,000 lines long. What have I
// done?
/// Execute a "step" in the backtracing algorithm.
///
/// A "step" is somewhat of a misnomer, because this routine keeps going
/// until it either runs out of things to try or fins a match. In the
/// former case, it may have pushed some things on to the backtracking
/// stack, in which case, those will be tried next as part of the
/// 'backtrack' routine above.
#[cfg_attr(feature = "perf-inline", inline(always))]
fn step(
&self,
cache: &mut Cache,
input: &Input<'_>,
mut sid: StateID,
mut at: usize,
slots: &mut [Option<NonMaxUsize>],
) -> Option<HalfMatch> {
loop {
if !cache.visited.insert(sid, at - input.start()) {
return None;
}
match *self.nfa.state(sid) {
State::ByteRange { ref trans } => {
// Why do we need this? Unlike other regex engines in this
// crate, the backtracker can steam roll ahead in the
// haystack outside of the main loop over the bytes in the
// haystack. While 'trans.matches()' below handles the case
// of 'at' being out of bounds of 'input.haystack()', we
// also need to handle the case of 'at' going out of bounds
// of the span the caller asked to search.
//
// We should perhaps make the 'trans.matches()' API accept
// an '&Input' instead of a '&[u8]'. Or at least, add a new
// API that does it.
if at >= input.end() {
return None;
}
if !trans.matches(input.haystack(), at) {
return None;
}
sid = trans.next;
at += 1;
}
State::Sparse(ref sparse) => {
if at >= input.end() {
return None;
}
sid = sparse.matches(input.haystack(), at)?;
at += 1;
}
State::Dense(ref dense) => {
if at >= input.end() {
return None;
}
sid = dense.matches(input.haystack(), at)?;
at += 1;
}
State::Look { look, next } => {
// OK because we don't permit building a searcher with a
// Unicode word boundary if the requisite Unicode data is
// unavailable.
if !self.nfa.look_matcher().matches_inline(
look,
input.haystack(),
at,
) {
return None;
}
sid = next;
}
State::Union { ref alternates } => {
sid = match alternates.get(0) {
None => return None,
Some(&sid) => sid,
};
cache.stack.extend(
alternates[1..]
.iter()
.copied()
.rev()
.map(|sid| Frame::Step { sid, at }),
);
}
State::BinaryUnion { alt1, alt2 } => {
sid = alt1;
cache.stack.push(Frame::Step { sid: alt2, at });
}
State::Capture { next, slot, .. } => {
if slot.as_usize() < slots.len() {
cache.stack.push(Frame::RestoreCapture {
slot,
offset: slots[slot],
});
slots[slot] = NonMaxUsize::new(at);
}
sid = next;
}
State::Fail => return None,
State::Match { pattern_id } => {
return Some(HalfMatch::new(pattern_id, at));
}
}
}
}
}
/// An iterator over all non-overlapping matches for a fallible search.
///
/// The iterator yields a `Result<Match, MatchError` value until no more
/// matches could be found.
///
/// The lifetime parameters are as follows:
///
/// * `'r` represents the lifetime of the BoundedBacktracker.
/// * `'c` represents the lifetime of the BoundedBacktracker's cache.
/// * `'h` represents the lifetime of the haystack being searched.
///
/// This iterator can be created with the [`BoundedBacktracker::try_find_iter`]
/// method.
#[derive(Debug)]
pub struct TryFindMatches<'r, 'c, 'h> {
re: &'r BoundedBacktracker,
cache: &'c mut Cache,
caps: Captures,
it: iter::Searcher<'h>,
}
impl<'r, 'c, 'h> Iterator for TryFindMatches<'r, 'c, 'h> {
type Item = Result<Match, MatchError>;
#[inline]
fn next(&mut self) -> Option<Result<Match, MatchError>> {
// Splitting 'self' apart seems necessary to appease borrowck.
let TryFindMatches { re, ref mut cache, ref mut caps, ref mut it } =
*self;
it.try_advance(|input| {
re.try_search(cache, input, caps)?;
Ok(caps.get_match())
})
.transpose()
}
}
/// An iterator over all non-overlapping leftmost matches, with their capturing
/// groups, for a fallible search.
///
/// The iterator yields a `Result<Captures, MatchError>` value until no more
/// matches could be found.
///
/// The lifetime parameters are as follows:
///
/// * `'r` represents the lifetime of the BoundedBacktracker.
/// * `'c` represents the lifetime of the BoundedBacktracker's cache.
/// * `'h` represents the lifetime of the haystack being searched.
///
/// This iterator can be created with the
/// [`BoundedBacktracker::try_captures_iter`] method.
#[derive(Debug)]
pub struct TryCapturesMatches<'r, 'c, 'h> {
re: &'r BoundedBacktracker,
cache: &'c mut Cache,
caps: Captures,
it: iter::Searcher<'h>,
}
impl<'r, 'c, 'h> Iterator for TryCapturesMatches<'r, 'c, 'h> {
type Item = Result<Captures, MatchError>;
#[inline]
fn next(&mut self) -> Option<Result<Captures, MatchError>> {
// Splitting 'self' apart seems necessary to appease borrowck.
let TryCapturesMatches { re, ref mut cache, ref mut caps, ref mut it } =
*self;
let _ = it
.try_advance(|input| {
re.try_search(cache, input, caps)?;
Ok(caps.get_match())
})
.transpose()?;
if caps.is_match() {
Some(Ok(caps.clone()))
} else {
None
}
}
}
/// A cache represents mutable state that a [`BoundedBacktracker`] requires
/// during a search.
///
/// For a given [`BoundedBacktracker`], its corresponding cache may be created
/// either via [`BoundedBacktracker::create_cache`], or via [`Cache::new`].
/// They are equivalent in every way, except the former does not require
/// explicitly importing `Cache`.
///
/// A particular `Cache` is coupled with the [`BoundedBacktracker`] from which
/// it was created. It may only be used with that `BoundedBacktracker`. A cache
/// and its allocations may be re-purposed via [`Cache::reset`], in which case,
/// it can only be used with the new `BoundedBacktracker` (and not the old
/// one).
#[derive(Clone, Debug)]
pub struct Cache {
/// Stack used on the heap for doing backtracking instead of the
/// traditional recursive approach. We don't want recursion because then
/// we're likely to hit a stack overflow for bigger regexes.
stack: Vec<Frame>,
/// The set of (StateID, HaystackOffset) pairs that have been visited
/// by the backtracker within a single search. If such a pair has been
/// visited, then we avoid doing the work for that pair again. This is
/// what "bounds" the backtracking and prevents it from having worst case
/// exponential time.
visited: Visited,
}
impl Cache {
/// Create a new [`BoundedBacktracker`] cache.
///
/// A potentially more convenient routine to create a cache is
/// [`BoundedBacktracker::create_cache`], as it does not require also
/// importing the `Cache` type.
///
/// If you want to reuse the returned `Cache` with some other
/// `BoundedBacktracker`, then you must call [`Cache::reset`] with the
/// desired `BoundedBacktracker`.
pub fn new(re: &BoundedBacktracker) -> Cache {
Cache { stack: vec![], visited: Visited::new(re) }
}
/// Reset this cache such that it can be used for searching with different
/// [`BoundedBacktracker`].
///
/// A cache reset permits reusing memory already allocated in this cache
/// with a different `BoundedBacktracker`.
///
/// # Example
///
/// This shows how to re-purpose a cache for use with a different
/// `BoundedBacktracker`.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
/// nfa::thompson::backtrack::BoundedBacktracker,
/// Match,
/// };
///
/// let re1 = BoundedBacktracker::new(r"\w")?;
/// let re2 = BoundedBacktracker::new(r"\W")?;
///
/// let mut cache = re1.create_cache();
/// assert_eq!(
/// Some(Ok(Match::must(0, 0..2))),
/// re1.try_find_iter(&mut cache, "Δ").next(),
/// );
///
/// // Using 'cache' with re2 is not allowed. It may result in panics or
/// // incorrect results. In order to re-purpose the cache, we must reset
/// // it with the BoundedBacktracker we'd like to use it with.
/// //
/// // Similarly, after this reset, using the cache with 're1' is also not
/// // allowed.
/// cache.reset(&re2);
/// assert_eq!(
/// Some(Ok(Match::must(0, 0..3))),
/// re2.try_find_iter(&mut cache, "☃").next(),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn reset(&mut self, re: &BoundedBacktracker) {
self.visited.reset(re);
}
/// Returns the heap memory usage, in bytes, of this cache.
///
/// This does **not** include the stack size used up by this cache. To
/// compute that, use `std::mem::size_of::<Cache>()`.
pub fn memory_usage(&self) -> usize {
self.stack.len() * core::mem::size_of::<Frame>()
+ self.visited.memory_usage()
}
/// Clears this cache. This should be called at the start of every search
/// to ensure we start with a clean slate.
///
/// This also sets the length of the capturing groups used in the current
/// search. This permits an optimization where by 'SlotTable::for_state'
/// only returns the number of slots equivalent to the number of slots
/// given in the 'Captures' value. This may be less than the total number
/// of possible slots, e.g., when one only wants to track overall match
/// offsets. This in turn permits less copying of capturing group spans
/// in the BoundedBacktracker.
fn setup_search(
&mut self,
re: &BoundedBacktracker,
input: &Input<'_>,
) -> Result<(), MatchError> {
self.stack.clear();
self.visited.setup_search(re, input)?;
Ok(())
}
}
/// Represents a stack frame on the heap while doing backtracking.
///
/// Instead of using explicit recursion for backtracking, we use a stack on
/// the heap to keep track of things that we want to explore if the current
/// backtracking branch turns out to not lead to a match.
#[derive(Clone, Debug)]
enum Frame {
/// Look for a match starting at `sid` and the given position in the
/// haystack.
Step { sid: StateID, at: usize },
/// Reset the given `slot` to the given `offset` (which might be `None`).
/// This effectively gives a "scope" to capturing groups, such that an
/// offset for a particular group only gets returned if the match goes
/// through that capturing group. If backtracking ends up going down a
/// different branch that results in a different offset (or perhaps none at
/// all), then this "restore capture" frame will cause the offset to get
/// reset.
RestoreCapture { slot: SmallIndex, offset: Option<NonMaxUsize> },
}
/// A bitset that keeps track of whether a particular (StateID, offset) has
/// been considered during backtracking. If it has already been visited, then
/// backtracking skips it. This is what gives backtracking its "bound."
#[derive(Clone, Debug)]
struct Visited {
/// The actual underlying bitset. Each element in the bitset corresponds
/// to a particular (StateID, offset) pair. States correspond to the rows
/// and the offsets correspond to the columns.
///
/// If our underlying NFA has N states and the haystack we're searching
/// has M bytes, then we have N*(M+1) entries in our bitset table. The
/// M+1 occurs because our matches are delayed by one byte (to support
/// look-around), and so we need to handle the end position itself rather
/// than stopping just before the end. (If there is no end position, then
/// it's treated as "end-of-input," which is matched by things like '$'.)
///
/// Given BITS=N*(M+1), we wind up with div_ceil(BITS, sizeof(usize))
/// blocks.
///
/// We use 'usize' to represent our blocks because it makes some of the
/// arithmetic in 'insert' a bit nicer. For example, if we used 'u32' for
/// our block, we'd either need to cast u32s to usizes or usizes to u32s.
bitset: Vec<usize>,
/// The stride represents one plus length of the haystack we're searching
/// (as described above). The stride must be initialized for each search.
stride: usize,
}
impl Visited {
/// The size of each block, in bits.
const BLOCK_SIZE: usize = 8 * core::mem::size_of::<usize>();
/// Create a new visited set for the given backtracker.
///
/// The set is ready to use, but must be setup at the beginning of each
/// search by calling `setup_search`.
fn new(re: &BoundedBacktracker) -> Visited {
let mut visited = Visited { bitset: vec![], stride: 0 };
visited.reset(re);
visited
}
/// Insert the given (StateID, offset) pair into this set. If it already
/// exists, then this is a no-op and it returns false. Otherwise this
/// returns true.
fn insert(&mut self, sid: StateID, at: usize) -> bool {
let table_index = sid.as_usize() * self.stride + at;
let block_index = table_index / Visited::BLOCK_SIZE;
let bit = table_index % Visited::BLOCK_SIZE;
let block_with_bit = 1 << bit;
if self.bitset[block_index] & block_with_bit != 0 {
return false;
}
self.bitset[block_index] |= block_with_bit;
true
}
/// Reset this visited set to work with the given bounded backtracker.
fn reset(&mut self, _: &BoundedBacktracker) {
self.bitset.truncate(0);
}
/// Setup this visited set to work for a search using the given NFA
/// and input configuration. The NFA must be the same NFA used by the
/// BoundedBacktracker given to Visited::reset. Failing to call this might
/// result in panics or silently incorrect search behavior.
fn setup_search(
&mut self,
re: &BoundedBacktracker,
input: &Input<'_>,
) -> Result<(), MatchError> {
// Our haystack length is only the length of the span of the entire
// haystack that we'll be searching.
let haylen = input.get_span().len();
let err = || MatchError::haystack_too_long(haylen);
// Our stride is one more than the length of the input because our main
// search loop includes the position at input.end(). (And it does this
// because matches are delayed by one byte to account for look-around.)
self.stride = haylen + 1;
let needed_capacity =
match re.get_nfa().states().len().checked_mul(self.stride) {
None => return Err(err()),
Some(capacity) => capacity,
};
let max_capacity = 8 * re.get_config().get_visited_capacity();
if needed_capacity > max_capacity {
return Err(err());
}
let needed_blocks = div_ceil(needed_capacity, Visited::BLOCK_SIZE);
self.bitset.truncate(needed_blocks);
for block in self.bitset.iter_mut() {
*block = 0;
}
if needed_blocks > self.bitset.len() {
self.bitset.resize(needed_blocks, 0);
}
Ok(())
}
/// Return the heap memory usage, in bytes, of this visited set.
fn memory_usage(&self) -> usize {
self.bitset.len() * core::mem::size_of::<usize>()
}
}
/// Integer division, but rounds up instead of down.
fn div_ceil(lhs: usize, rhs: usize) -> usize {
if lhs % rhs == 0 {
lhs / rhs
} else {
(lhs / rhs) + 1
}
}
#[cfg(test)]
mod tests {
use super::*;
// This is a regression test for the maximum haystack length computation.
// Previously, it assumed that the total capacity of the backtracker's
// bitset would always be greater than the number of NFA states. But there
// is of course no guarantee that this is true. This regression test
// ensures that not only does `max_haystack_len` not panic, but that it
// should return `0`.
#[cfg(feature = "syntax")]
#[test]
fn max_haystack_len_overflow() {
let re = BoundedBacktracker::builder()
.configure(BoundedBacktracker::config().visited_capacity(10))
.build(r"[0-9A-Za-z]{100}")
.unwrap();
assert_eq!(0, re.max_haystack_len());
}
}