indexmap/set.rs
1//! A hash set implemented using [`IndexMap`]
2
3mod iter;
4mod mutable;
5mod slice;
6
7#[cfg(test)]
8mod tests;
9
10pub use self::iter::{
11 Difference, Drain, ExtractIf, Intersection, IntoIter, Iter, Splice, SymmetricDifference, Union,
12};
13pub use self::mutable::MutableValues;
14pub use self::slice::Slice;
15
16#[cfg(feature = "rayon")]
17pub use crate::rayon::set as rayon;
18use crate::TryReserveError;
19
20#[cfg(feature = "std")]
21use std::collections::hash_map::RandomState;
22
23use crate::util::try_simplify_range;
24use alloc::boxed::Box;
25use alloc::vec::Vec;
26use core::cmp::Ordering;
27use core::fmt;
28use core::hash::{BuildHasher, Hash};
29use core::ops::{BitAnd, BitOr, BitXor, Index, RangeBounds, Sub};
30
31use super::{Equivalent, IndexMap};
32
33type Bucket<T> = super::Bucket<T, ()>;
34
35/// A hash set where the iteration order of the values is independent of their
36/// hash values.
37///
38/// The interface is closely compatible with the standard
39/// [`HashSet`][std::collections::HashSet],
40/// but also has additional features.
41///
42/// # Order
43///
44/// The values have a consistent order that is determined by the sequence of
45/// insertion and removal calls on the set. The order does not depend on the
46/// values or the hash function at all. Note that insertion order and value
47/// are not affected if a re-insertion is attempted once an element is
48/// already present.
49///
50/// All iterators traverse the set *in order*. Set operation iterators like
51/// [`IndexSet::union`] produce a concatenated order, as do their matching "bitwise"
52/// operators. See their documentation for specifics.
53///
54/// The insertion order is preserved, with **notable exceptions** like the
55/// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods.
56/// Methods such as [`.sort_by()`][Self::sort_by] of
57/// course result in a new order, depending on the sorting order.
58///
59/// # Indices
60///
61/// The values are indexed in a compact range without holes in the range
62/// `0..self.len()`. For example, the method `.get_full` looks up the index for
63/// a value, and the method `.get_index` looks up the value by index.
64///
65/// # Complexity
66///
67/// Internally, `IndexSet<T, S>` just holds an [`IndexMap<T, (), S>`](IndexMap). Thus the complexity
68/// of the two are the same for most methods.
69///
70/// # Examples
71///
72/// ```
73/// use indexmap::IndexSet;
74///
75/// // Collects which letters appear in a sentence.
76/// let letters: IndexSet<_> = "a short treatise on fungi".chars().collect();
77///
78/// assert!(letters.contains(&'s'));
79/// assert!(letters.contains(&'t'));
80/// assert!(letters.contains(&'u'));
81/// assert!(!letters.contains(&'y'));
82/// ```
83#[cfg(feature = "std")]
84pub struct IndexSet<T, S = RandomState> {
85 pub(crate) map: IndexMap<T, (), S>,
86}
87#[cfg(not(feature = "std"))]
88pub struct IndexSet<T, S> {
89 pub(crate) map: IndexMap<T, (), S>,
90}
91
92impl<T, S> Clone for IndexSet<T, S>
93where
94 T: Clone,
95 S: Clone,
96{
97 fn clone(&self) -> Self {
98 IndexSet {
99 map: self.map.clone(),
100 }
101 }
102
103 fn clone_from(&mut self, other: &Self) {
104 self.map.clone_from(&other.map);
105 }
106}
107
108impl<T, S> fmt::Debug for IndexSet<T, S>
109where
110 T: fmt::Debug,
111{
112 #[cfg(not(feature = "test_debug"))]
113 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
114 f.debug_set().entries(self.iter()).finish()
115 }
116
117 #[cfg(feature = "test_debug")]
118 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
119 // Let the inner `IndexMap` print all of its details
120 f.debug_struct("IndexSet").field("map", &self.map).finish()
121 }
122}
123
124#[cfg(feature = "std")]
125#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
126impl<T> IndexSet<T> {
127 /// Create a new set. (Does not allocate.)
128 pub fn new() -> Self {
129 IndexSet {
130 map: IndexMap::new(),
131 }
132 }
133
134 /// Create a new set with capacity for `n` elements.
135 /// (Does not allocate if `n` is zero.)
136 ///
137 /// Computes in **O(n)** time.
138 pub fn with_capacity(n: usize) -> Self {
139 IndexSet {
140 map: IndexMap::with_capacity(n),
141 }
142 }
143}
144
145impl<T, S> IndexSet<T, S> {
146 /// Create a new set with capacity for `n` elements.
147 /// (Does not allocate if `n` is zero.)
148 ///
149 /// Computes in **O(n)** time.
150 pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self {
151 IndexSet {
152 map: IndexMap::with_capacity_and_hasher(n, hash_builder),
153 }
154 }
155
156 /// Create a new set with `hash_builder`.
157 ///
158 /// This function is `const`, so it
159 /// can be called in `static` contexts.
160 pub const fn with_hasher(hash_builder: S) -> Self {
161 IndexSet {
162 map: IndexMap::with_hasher(hash_builder),
163 }
164 }
165
166 #[inline]
167 pub(crate) fn into_entries(self) -> Vec<Bucket<T>> {
168 self.map.into_entries()
169 }
170
171 #[inline]
172 pub(crate) fn as_entries(&self) -> &[Bucket<T>] {
173 self.map.as_entries()
174 }
175
176 pub(crate) fn with_entries<F>(&mut self, f: F)
177 where
178 F: FnOnce(&mut [Bucket<T>]),
179 {
180 self.map.with_entries(f);
181 }
182
183 /// Return the number of elements the set can hold without reallocating.
184 ///
185 /// This number is a lower bound; the set might be able to hold more,
186 /// but is guaranteed to be able to hold at least this many.
187 ///
188 /// Computes in **O(1)** time.
189 pub fn capacity(&self) -> usize {
190 self.map.capacity()
191 }
192
193 /// Return a reference to the set's `BuildHasher`.
194 pub fn hasher(&self) -> &S {
195 self.map.hasher()
196 }
197
198 /// Return the number of elements in the set.
199 ///
200 /// Computes in **O(1)** time.
201 pub fn len(&self) -> usize {
202 self.map.len()
203 }
204
205 /// Returns true if the set contains no elements.
206 ///
207 /// Computes in **O(1)** time.
208 pub fn is_empty(&self) -> bool {
209 self.map.is_empty()
210 }
211
212 /// Return an iterator over the values of the set, in their order
213 pub fn iter(&self) -> Iter<'_, T> {
214 Iter::new(self.as_entries())
215 }
216
217 /// Remove all elements in the set, while preserving its capacity.
218 ///
219 /// Computes in **O(n)** time.
220 pub fn clear(&mut self) {
221 self.map.clear();
222 }
223
224 /// Shortens the set, keeping the first `len` elements and dropping the rest.
225 ///
226 /// If `len` is greater than the set's current length, this has no effect.
227 pub fn truncate(&mut self, len: usize) {
228 self.map.truncate(len);
229 }
230
231 /// Clears the `IndexSet` in the given index range, returning those values
232 /// as a drain iterator.
233 ///
234 /// The range may be any type that implements [`RangeBounds<usize>`],
235 /// including all of the `std::ops::Range*` types, or even a tuple pair of
236 /// `Bound` start and end values. To drain the set entirely, use `RangeFull`
237 /// like `set.drain(..)`.
238 ///
239 /// This shifts down all entries following the drained range to fill the
240 /// gap, and keeps the allocated memory for reuse.
241 ///
242 /// ***Panics*** if the starting point is greater than the end point or if
243 /// the end point is greater than the length of the set.
244 #[track_caller]
245 pub fn drain<R>(&mut self, range: R) -> Drain<'_, T>
246 where
247 R: RangeBounds<usize>,
248 {
249 Drain::new(self.map.core.drain(range))
250 }
251
252 /// Creates an iterator which uses a closure to determine if a value should be removed,
253 /// for all values in the given range.
254 ///
255 /// If the closure returns true, then the value is removed and yielded.
256 /// If the closure returns false, the value will remain in the list and will not be yielded
257 /// by the iterator.
258 ///
259 /// The range may be any type that implements [`RangeBounds<usize>`],
260 /// including all of the `std::ops::Range*` types, or even a tuple pair of
261 /// `Bound` start and end values. To check the entire set, use `RangeFull`
262 /// like `set.extract_if(.., predicate)`.
263 ///
264 /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
265 /// or the iteration short-circuits, then the remaining elements will be retained.
266 /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
267 ///
268 /// [`retain`]: IndexSet::retain
269 ///
270 /// ***Panics*** if the starting point is greater than the end point or if
271 /// the end point is greater than the length of the set.
272 ///
273 /// # Examples
274 ///
275 /// Splitting a set into even and odd values, reusing the original set:
276 ///
277 /// ```
278 /// use indexmap::IndexSet;
279 ///
280 /// let mut set: IndexSet<i32> = (0..8).collect();
281 /// let extracted: IndexSet<i32> = set.extract_if(.., |v| v % 2 == 0).collect();
282 ///
283 /// let evens = extracted.into_iter().collect::<Vec<_>>();
284 /// let odds = set.into_iter().collect::<Vec<_>>();
285 ///
286 /// assert_eq!(evens, vec![0, 2, 4, 6]);
287 /// assert_eq!(odds, vec![1, 3, 5, 7]);
288 /// ```
289 #[track_caller]
290 pub fn extract_if<F, R>(&mut self, range: R, pred: F) -> ExtractIf<'_, T, F>
291 where
292 F: FnMut(&T) -> bool,
293 R: RangeBounds<usize>,
294 {
295 ExtractIf::new(&mut self.map.core, range, pred)
296 }
297
298 /// Splits the collection into two at the given index.
299 ///
300 /// Returns a newly allocated set containing the elements in the range
301 /// `[at, len)`. After the call, the original set will be left containing
302 /// the elements `[0, at)` with its previous capacity unchanged.
303 ///
304 /// ***Panics*** if `at > len`.
305 #[track_caller]
306 pub fn split_off(&mut self, at: usize) -> Self
307 where
308 S: Clone,
309 {
310 Self {
311 map: self.map.split_off(at),
312 }
313 }
314
315 /// Reserve capacity for `additional` more values.
316 ///
317 /// Computes in **O(n)** time.
318 pub fn reserve(&mut self, additional: usize) {
319 self.map.reserve(additional);
320 }
321
322 /// Reserve capacity for `additional` more values, without over-allocating.
323 ///
324 /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
325 /// frequent re-allocations. However, the underlying data structures may still have internal
326 /// capacity requirements, and the allocator itself may give more space than requested, so this
327 /// cannot be relied upon to be precisely minimal.
328 ///
329 /// Computes in **O(n)** time.
330 pub fn reserve_exact(&mut self, additional: usize) {
331 self.map.reserve_exact(additional);
332 }
333
334 /// Try to reserve capacity for `additional` more values.
335 ///
336 /// Computes in **O(n)** time.
337 pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
338 self.map.try_reserve(additional)
339 }
340
341 /// Try to reserve capacity for `additional` more values, without over-allocating.
342 ///
343 /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid
344 /// frequent re-allocations. However, the underlying data structures may still have internal
345 /// capacity requirements, and the allocator itself may give more space than requested, so this
346 /// cannot be relied upon to be precisely minimal.
347 ///
348 /// Computes in **O(n)** time.
349 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
350 self.map.try_reserve_exact(additional)
351 }
352
353 /// Shrink the capacity of the set as much as possible.
354 ///
355 /// Computes in **O(n)** time.
356 pub fn shrink_to_fit(&mut self) {
357 self.map.shrink_to_fit();
358 }
359
360 /// Shrink the capacity of the set with a lower limit.
361 ///
362 /// Computes in **O(n)** time.
363 pub fn shrink_to(&mut self, min_capacity: usize) {
364 self.map.shrink_to(min_capacity);
365 }
366}
367
368impl<T, S> IndexSet<T, S>
369where
370 T: Hash + Eq,
371 S: BuildHasher,
372{
373 /// Insert the value into the set.
374 ///
375 /// If an equivalent item already exists in the set, it returns
376 /// `false` leaving the original value in the set and without
377 /// altering its insertion order. Otherwise, it inserts the new
378 /// item and returns `true`.
379 ///
380 /// Computes in **O(1)** time (amortized average).
381 pub fn insert(&mut self, value: T) -> bool {
382 self.map.insert(value, ()).is_none()
383 }
384
385 /// Insert the value into the set, and get its index.
386 ///
387 /// If an equivalent item already exists in the set, it returns
388 /// the index of the existing item and `false`, leaving the
389 /// original value in the set and without altering its insertion
390 /// order. Otherwise, it inserts the new item and returns the index
391 /// of the inserted item and `true`.
392 ///
393 /// Computes in **O(1)** time (amortized average).
394 pub fn insert_full(&mut self, value: T) -> (usize, bool) {
395 let (index, existing) = self.map.insert_full(value, ());
396 (index, existing.is_none())
397 }
398
399 /// Insert the value into the set at its ordered position among sorted values.
400 ///
401 /// This is equivalent to finding the position with
402 /// [`binary_search`][Self::binary_search], and if needed calling
403 /// [`insert_before`][Self::insert_before] for a new value.
404 ///
405 /// If the sorted item is found in the set, it returns the index of that
406 /// existing item and `false`, without any change. Otherwise, it inserts the
407 /// new item and returns its sorted index and `true`.
408 ///
409 /// If the existing items are **not** already sorted, then the insertion
410 /// index is unspecified (like [`slice::binary_search`]), but the value
411 /// is moved to or inserted at that position regardless.
412 ///
413 /// Computes in **O(n)** time (average). Instead of repeating calls to
414 /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert]
415 /// or [`extend`][Self::extend] and only call [`sort`][Self::sort] or
416 /// [`sort_unstable`][Self::sort_unstable] once.
417 pub fn insert_sorted(&mut self, value: T) -> (usize, bool)
418 where
419 T: Ord,
420 {
421 let (index, existing) = self.map.insert_sorted(value, ());
422 (index, existing.is_none())
423 }
424
425 /// Insert the value into the set at its ordered position among values
426 /// sorted by `cmp`.
427 ///
428 /// This is equivalent to finding the position with
429 /// [`binary_search_by`][Self::binary_search_by], then calling
430 /// [`insert_before`][Self::insert_before].
431 ///
432 /// If the existing items are **not** already sorted, then the insertion
433 /// index is unspecified (like [`slice::binary_search`]), but the value
434 /// is moved to or inserted at that position regardless.
435 ///
436 /// Computes in **O(n)** time (average).
437 pub fn insert_sorted_by<F>(&mut self, value: T, mut cmp: F) -> (usize, bool)
438 where
439 T: Ord,
440 F: FnMut(&T, &T) -> Ordering,
441 {
442 let (index, existing) = self
443 .map
444 .insert_sorted_by(value, (), |a, (), b, ()| cmp(a, b));
445 (index, existing.is_none())
446 }
447
448 /// Insert the value into the set at its ordered position among values
449 /// using a sort-key extraction function.
450 ///
451 /// This is equivalent to finding the position with
452 /// [`binary_search_by_key`][Self::binary_search_by_key] with `sort_key(key)`,
453 /// then calling [`insert_before`][Self::insert_before].
454 ///
455 /// If the existing items are **not** already sorted, then the insertion
456 /// index is unspecified (like [`slice::binary_search`]), but the value
457 /// is moved to or inserted at that position regardless.
458 ///
459 /// Computes in **O(n)** time (average).
460 pub fn insert_sorted_by_key<B, F>(&mut self, value: T, mut sort_key: F) -> (usize, bool)
461 where
462 B: Ord,
463 F: FnMut(&T) -> B,
464 {
465 let (index, existing) = self.map.insert_sorted_by_key(value, (), |k, _| sort_key(k));
466 (index, existing.is_none())
467 }
468
469 /// Insert the value into the set before the value at the given index, or at the end.
470 ///
471 /// If an equivalent item already exists in the set, it returns `false` leaving the
472 /// original value in the set, but moved to the new position. The returned index
473 /// will either be the given index or one less, depending on how the value moved.
474 /// (See [`shift_insert`](Self::shift_insert) for different behavior here.)
475 ///
476 /// Otherwise, it inserts the new value exactly at the given index and returns `true`.
477 ///
478 /// ***Panics*** if `index` is out of bounds.
479 /// Valid indices are `0..=set.len()` (inclusive).
480 ///
481 /// Computes in **O(n)** time (average).
482 ///
483 /// # Examples
484 ///
485 /// ```
486 /// use indexmap::IndexSet;
487 /// let mut set: IndexSet<char> = ('a'..='z').collect();
488 ///
489 /// // The new value '*' goes exactly at the given index.
490 /// assert_eq!(set.get_index_of(&'*'), None);
491 /// assert_eq!(set.insert_before(10, '*'), (10, true));
492 /// assert_eq!(set.get_index_of(&'*'), Some(10));
493 ///
494 /// // Moving the value 'a' up will shift others down, so this moves *before* 10 to index 9.
495 /// assert_eq!(set.insert_before(10, 'a'), (9, false));
496 /// assert_eq!(set.get_index_of(&'a'), Some(9));
497 /// assert_eq!(set.get_index_of(&'*'), Some(10));
498 ///
499 /// // Moving the value 'z' down will shift others up, so this moves to exactly 10.
500 /// assert_eq!(set.insert_before(10, 'z'), (10, false));
501 /// assert_eq!(set.get_index_of(&'z'), Some(10));
502 /// assert_eq!(set.get_index_of(&'*'), Some(11));
503 ///
504 /// // Moving or inserting before the endpoint is also valid.
505 /// assert_eq!(set.len(), 27);
506 /// assert_eq!(set.insert_before(set.len(), '*'), (26, false));
507 /// assert_eq!(set.get_index_of(&'*'), Some(26));
508 /// assert_eq!(set.insert_before(set.len(), '+'), (27, true));
509 /// assert_eq!(set.get_index_of(&'+'), Some(27));
510 /// assert_eq!(set.len(), 28);
511 /// ```
512 #[track_caller]
513 pub fn insert_before(&mut self, index: usize, value: T) -> (usize, bool) {
514 let (index, existing) = self.map.insert_before(index, value, ());
515 (index, existing.is_none())
516 }
517
518 /// Insert the value into the set at the given index.
519 ///
520 /// If an equivalent item already exists in the set, it returns `false` leaving
521 /// the original value in the set, but moved to the given index.
522 /// Note that existing values **cannot** be moved to `index == set.len()`!
523 /// (See [`insert_before`](Self::insert_before) for different behavior here.)
524 ///
525 /// Otherwise, it inserts the new value at the given index and returns `true`.
526 ///
527 /// ***Panics*** if `index` is out of bounds.
528 /// Valid indices are `0..set.len()` (exclusive) when moving an existing value, or
529 /// `0..=set.len()` (inclusive) when inserting a new value.
530 ///
531 /// Computes in **O(n)** time (average).
532 ///
533 /// # Examples
534 ///
535 /// ```
536 /// use indexmap::IndexSet;
537 /// let mut set: IndexSet<char> = ('a'..='z').collect();
538 ///
539 /// // The new value '*' goes exactly at the given index.
540 /// assert_eq!(set.get_index_of(&'*'), None);
541 /// assert_eq!(set.shift_insert(10, '*'), true);
542 /// assert_eq!(set.get_index_of(&'*'), Some(10));
543 ///
544 /// // Moving the value 'a' up to 10 will shift others down, including the '*' that was at 10.
545 /// assert_eq!(set.shift_insert(10, 'a'), false);
546 /// assert_eq!(set.get_index_of(&'a'), Some(10));
547 /// assert_eq!(set.get_index_of(&'*'), Some(9));
548 ///
549 /// // Moving the value 'z' down to 9 will shift others up, including the '*' that was at 9.
550 /// assert_eq!(set.shift_insert(9, 'z'), false);
551 /// assert_eq!(set.get_index_of(&'z'), Some(9));
552 /// assert_eq!(set.get_index_of(&'*'), Some(10));
553 ///
554 /// // Existing values can move to len-1 at most, but new values can insert at the endpoint.
555 /// assert_eq!(set.len(), 27);
556 /// assert_eq!(set.shift_insert(set.len() - 1, '*'), false);
557 /// assert_eq!(set.get_index_of(&'*'), Some(26));
558 /// assert_eq!(set.shift_insert(set.len(), '+'), true);
559 /// assert_eq!(set.get_index_of(&'+'), Some(27));
560 /// assert_eq!(set.len(), 28);
561 /// ```
562 ///
563 /// ```should_panic
564 /// use indexmap::IndexSet;
565 /// let mut set: IndexSet<char> = ('a'..='z').collect();
566 ///
567 /// // This is an invalid index for moving an existing value!
568 /// set.shift_insert(set.len(), 'a');
569 /// ```
570 #[track_caller]
571 pub fn shift_insert(&mut self, index: usize, value: T) -> bool {
572 self.map.shift_insert(index, value, ()).is_none()
573 }
574
575 /// Adds a value to the set, replacing the existing value, if any, that is
576 /// equal to the given one, without altering its insertion order. Returns
577 /// the replaced value.
578 ///
579 /// Computes in **O(1)** time (average).
580 pub fn replace(&mut self, value: T) -> Option<T> {
581 self.replace_full(value).1
582 }
583
584 /// Adds a value to the set, replacing the existing value, if any, that is
585 /// equal to the given one, without altering its insertion order. Returns
586 /// the index of the item and its replaced value.
587 ///
588 /// Computes in **O(1)** time (average).
589 pub fn replace_full(&mut self, value: T) -> (usize, Option<T>) {
590 let hash = self.map.hash(&value);
591 match self.map.core.replace_full(hash, value, ()) {
592 (i, Some((replaced, ()))) => (i, Some(replaced)),
593 (i, None) => (i, None),
594 }
595 }
596
597 /// Replaces the value at the given index. The new value does not need to be
598 /// equivalent to the one it is replacing, but it must be unique to the rest
599 /// of the set.
600 ///
601 /// Returns `Ok(old_value)` if successful, or `Err((other_index, value))` if
602 /// an equivalent value already exists at a different index. The set will be
603 /// unchanged in the error case.
604 ///
605 /// ***Panics*** if `index` is out of bounds.
606 ///
607 /// Computes in **O(1)** time (average).
608 #[track_caller]
609 pub fn replace_index(&mut self, index: usize, value: T) -> Result<T, (usize, T)> {
610 self.map.replace_index(index, value)
611 }
612
613 /// Return an iterator over the values that are in `self` but not `other`.
614 ///
615 /// Values are produced in the same order that they appear in `self`.
616 pub fn difference<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Difference<'a, T, S2>
617 where
618 S2: BuildHasher,
619 {
620 Difference::new(self, other)
621 }
622
623 /// Return an iterator over the values that are in `self` or `other`,
624 /// but not in both.
625 ///
626 /// Values from `self` are produced in their original order, followed by
627 /// values from `other` in their original order.
628 pub fn symmetric_difference<'a, S2>(
629 &'a self,
630 other: &'a IndexSet<T, S2>,
631 ) -> SymmetricDifference<'a, T, S, S2>
632 where
633 S2: BuildHasher,
634 {
635 SymmetricDifference::new(self, other)
636 }
637
638 /// Return an iterator over the values that are in both `self` and `other`.
639 ///
640 /// Values are produced in the same order that they appear in `self`.
641 pub fn intersection<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Intersection<'a, T, S2>
642 where
643 S2: BuildHasher,
644 {
645 Intersection::new(self, other)
646 }
647
648 /// Return an iterator over all values that are in `self` or `other`.
649 ///
650 /// Values from `self` are produced in their original order, followed by
651 /// values that are unique to `other` in their original order.
652 pub fn union<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Union<'a, T, S>
653 where
654 S2: BuildHasher,
655 {
656 Union::new(self, other)
657 }
658
659 /// Creates a splicing iterator that replaces the specified range in the set
660 /// with the given `replace_with` iterator and yields the removed items.
661 /// `replace_with` does not need to be the same length as `range`.
662 ///
663 /// The `range` is removed even if the iterator is not consumed until the
664 /// end. It is unspecified how many elements are removed from the set if the
665 /// `Splice` value is leaked.
666 ///
667 /// The input iterator `replace_with` is only consumed when the `Splice`
668 /// value is dropped. If a value from the iterator matches an existing entry
669 /// in the set (outside of `range`), then the original will be unchanged.
670 /// Otherwise, the new value will be inserted in the replaced `range`.
671 ///
672 /// ***Panics*** if the starting point is greater than the end point or if
673 /// the end point is greater than the length of the set.
674 ///
675 /// # Examples
676 ///
677 /// ```
678 /// use indexmap::IndexSet;
679 ///
680 /// let mut set = IndexSet::from([0, 1, 2, 3, 4]);
681 /// let new = [5, 4, 3, 2, 1];
682 /// let removed: Vec<_> = set.splice(2..4, new).collect();
683 ///
684 /// // 1 and 4 kept their positions, while 5, 3, and 2 were newly inserted.
685 /// assert!(set.into_iter().eq([0, 1, 5, 3, 2, 4]));
686 /// assert_eq!(removed, &[2, 3]);
687 /// ```
688 #[track_caller]
689 pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, T, S>
690 where
691 R: RangeBounds<usize>,
692 I: IntoIterator<Item = T>,
693 {
694 Splice::new(self, range, replace_with.into_iter())
695 }
696
697 /// Moves all values from `other` into `self`, leaving `other` empty.
698 ///
699 /// This is equivalent to calling [`insert`][Self::insert] for each value
700 /// from `other` in order, which means that values that already exist
701 /// in `self` are unchanged in their current position.
702 ///
703 /// See also [`union`][Self::union] to iterate the combined values by
704 /// reference, without modifying `self` or `other`.
705 ///
706 /// # Examples
707 ///
708 /// ```
709 /// use indexmap::IndexSet;
710 ///
711 /// let mut a = IndexSet::from([3, 2, 1]);
712 /// let mut b = IndexSet::from([3, 4, 5]);
713 /// let old_capacity = b.capacity();
714 ///
715 /// a.append(&mut b);
716 ///
717 /// assert_eq!(a.len(), 5);
718 /// assert_eq!(b.len(), 0);
719 /// assert_eq!(b.capacity(), old_capacity);
720 ///
721 /// assert!(a.iter().eq(&[3, 2, 1, 4, 5]));
722 /// ```
723 pub fn append<S2>(&mut self, other: &mut IndexSet<T, S2>) {
724 self.map.append(&mut other.map);
725 }
726}
727
728impl<T, S> IndexSet<T, S>
729where
730 S: BuildHasher,
731{
732 /// Return `true` if an equivalent to `value` exists in the set.
733 ///
734 /// Computes in **O(1)** time (average).
735 pub fn contains<Q>(&self, value: &Q) -> bool
736 where
737 Q: ?Sized + Hash + Equivalent<T>,
738 {
739 self.map.contains_key(value)
740 }
741
742 /// Return a reference to the value stored in the set, if it is present,
743 /// else `None`.
744 ///
745 /// Computes in **O(1)** time (average).
746 pub fn get<Q>(&self, value: &Q) -> Option<&T>
747 where
748 Q: ?Sized + Hash + Equivalent<T>,
749 {
750 self.map.get_key_value(value).map(|(x, &())| x)
751 }
752
753 /// Return item index and value
754 pub fn get_full<Q>(&self, value: &Q) -> Option<(usize, &T)>
755 where
756 Q: ?Sized + Hash + Equivalent<T>,
757 {
758 self.map.get_full(value).map(|(i, x, &())| (i, x))
759 }
760
761 /// Return item index, if it exists in the set
762 ///
763 /// Computes in **O(1)** time (average).
764 pub fn get_index_of<Q>(&self, value: &Q) -> Option<usize>
765 where
766 Q: ?Sized + Hash + Equivalent<T>,
767 {
768 self.map.get_index_of(value)
769 }
770
771 /// Remove the value from the set, and return `true` if it was present.
772 ///
773 /// **NOTE:** This is equivalent to [`.swap_remove(value)`][Self::swap_remove], replacing this
774 /// value's position with the last element, and it is deprecated in favor of calling that
775 /// explicitly. If you need to preserve the relative order of the values in the set, use
776 /// [`.shift_remove(value)`][Self::shift_remove] instead.
777 #[deprecated(note = "`remove` disrupts the set order -- \
778 use `swap_remove` or `shift_remove` for explicit behavior.")]
779 pub fn remove<Q>(&mut self, value: &Q) -> bool
780 where
781 Q: ?Sized + Hash + Equivalent<T>,
782 {
783 self.swap_remove(value)
784 }
785
786 /// Remove the value from the set, and return `true` if it was present.
787 ///
788 /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
789 /// last element of the set and popping it off. **This perturbs
790 /// the position of what used to be the last element!**
791 ///
792 /// Return `false` if `value` was not in the set.
793 ///
794 /// Computes in **O(1)** time (average).
795 pub fn swap_remove<Q>(&mut self, value: &Q) -> bool
796 where
797 Q: ?Sized + Hash + Equivalent<T>,
798 {
799 self.map.swap_remove(value).is_some()
800 }
801
802 /// Remove the value from the set, and return `true` if it was present.
803 ///
804 /// Like [`Vec::remove`], the value is removed by shifting all of the
805 /// elements that follow it, preserving their relative order.
806 /// **This perturbs the index of all of those elements!**
807 ///
808 /// Return `false` if `value` was not in the set.
809 ///
810 /// Computes in **O(n)** time (average).
811 pub fn shift_remove<Q>(&mut self, value: &Q) -> bool
812 where
813 Q: ?Sized + Hash + Equivalent<T>,
814 {
815 self.map.shift_remove(value).is_some()
816 }
817
818 /// Removes and returns the value in the set, if any, that is equal to the
819 /// given one.
820 ///
821 /// **NOTE:** This is equivalent to [`.swap_take(value)`][Self::swap_take], replacing this
822 /// value's position with the last element, and it is deprecated in favor of calling that
823 /// explicitly. If you need to preserve the relative order of the values in the set, use
824 /// [`.shift_take(value)`][Self::shift_take] instead.
825 #[deprecated(note = "`take` disrupts the set order -- \
826 use `swap_take` or `shift_take` for explicit behavior.")]
827 pub fn take<Q>(&mut self, value: &Q) -> Option<T>
828 where
829 Q: ?Sized + Hash + Equivalent<T>,
830 {
831 self.swap_take(value)
832 }
833
834 /// Removes and returns the value in the set, if any, that is equal to the
835 /// given one.
836 ///
837 /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
838 /// last element of the set and popping it off. **This perturbs
839 /// the position of what used to be the last element!**
840 ///
841 /// Return `None` if `value` was not in the set.
842 ///
843 /// Computes in **O(1)** time (average).
844 pub fn swap_take<Q>(&mut self, value: &Q) -> Option<T>
845 where
846 Q: ?Sized + Hash + Equivalent<T>,
847 {
848 self.map.swap_remove_entry(value).map(|(x, ())| x)
849 }
850
851 /// Removes and returns the value in the set, if any, that is equal to the
852 /// given one.
853 ///
854 /// Like [`Vec::remove`], the value is removed by shifting all of the
855 /// elements that follow it, preserving their relative order.
856 /// **This perturbs the index of all of those elements!**
857 ///
858 /// Return `None` if `value` was not in the set.
859 ///
860 /// Computes in **O(n)** time (average).
861 pub fn shift_take<Q>(&mut self, value: &Q) -> Option<T>
862 where
863 Q: ?Sized + Hash + Equivalent<T>,
864 {
865 self.map.shift_remove_entry(value).map(|(x, ())| x)
866 }
867
868 /// Remove the value from the set return it and the index it had.
869 ///
870 /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
871 /// last element of the set and popping it off. **This perturbs
872 /// the position of what used to be the last element!**
873 ///
874 /// Return `None` if `value` was not in the set.
875 pub fn swap_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)>
876 where
877 Q: ?Sized + Hash + Equivalent<T>,
878 {
879 self.map.swap_remove_full(value).map(|(i, x, ())| (i, x))
880 }
881
882 /// Remove the value from the set return it and the index it had.
883 ///
884 /// Like [`Vec::remove`], the value is removed by shifting all of the
885 /// elements that follow it, preserving their relative order.
886 /// **This perturbs the index of all of those elements!**
887 ///
888 /// Return `None` if `value` was not in the set.
889 pub fn shift_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)>
890 where
891 Q: ?Sized + Hash + Equivalent<T>,
892 {
893 self.map.shift_remove_full(value).map(|(i, x, ())| (i, x))
894 }
895}
896
897impl<T, S> IndexSet<T, S> {
898 /// Remove the last value
899 ///
900 /// This preserves the order of the remaining elements.
901 ///
902 /// Computes in **O(1)** time (average).
903 #[doc(alias = "pop_last")] // like `BTreeSet`
904 pub fn pop(&mut self) -> Option<T> {
905 self.map.pop().map(|(x, ())| x)
906 }
907
908 /// Scan through each value in the set and keep those where the
909 /// closure `keep` returns `true`.
910 ///
911 /// The elements are visited in order, and remaining elements keep their
912 /// order.
913 ///
914 /// Computes in **O(n)** time (average).
915 pub fn retain<F>(&mut self, mut keep: F)
916 where
917 F: FnMut(&T) -> bool,
918 {
919 self.map.retain(move |x, &mut ()| keep(x))
920 }
921
922 /// Sort the set's values by their default ordering.
923 ///
924 /// This is a stable sort -- but equivalent values should not normally coexist in
925 /// a set at all, so [`sort_unstable`][Self::sort_unstable] is preferred
926 /// because it is generally faster and doesn't allocate auxiliary memory.
927 ///
928 /// See [`sort_by`](Self::sort_by) for details.
929 pub fn sort(&mut self)
930 where
931 T: Ord,
932 {
933 self.map.sort_keys()
934 }
935
936 /// Sort the set's values in place using the comparison function `cmp`.
937 ///
938 /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable.
939 pub fn sort_by<F>(&mut self, mut cmp: F)
940 where
941 F: FnMut(&T, &T) -> Ordering,
942 {
943 self.map.sort_by(move |a, (), b, ()| cmp(a, b));
944 }
945
946 /// Sort the values of the set and return a by-value iterator of
947 /// the values with the result.
948 ///
949 /// The sort is stable.
950 pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<T>
951 where
952 F: FnMut(&T, &T) -> Ordering,
953 {
954 let mut entries = self.into_entries();
955 entries.sort_by(move |a, b| cmp(&a.key, &b.key));
956 IntoIter::new(entries)
957 }
958
959 /// Sort the set's values in place using a key extraction function.
960 ///
961 /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable.
962 pub fn sort_by_key<K, F>(&mut self, mut sort_key: F)
963 where
964 K: Ord,
965 F: FnMut(&T) -> K,
966 {
967 self.with_entries(move |entries| {
968 entries.sort_by_key(move |a| sort_key(&a.key));
969 });
970 }
971
972 /// Sort the set's values by their default ordering.
973 ///
974 /// See [`sort_unstable_by`](Self::sort_unstable_by) for details.
975 pub fn sort_unstable(&mut self)
976 where
977 T: Ord,
978 {
979 self.map.sort_unstable_keys()
980 }
981
982 /// Sort the set's values in place using the comparison function `cmp`.
983 ///
984 /// Computes in **O(n log n)** time. The sort is unstable.
985 pub fn sort_unstable_by<F>(&mut self, mut cmp: F)
986 where
987 F: FnMut(&T, &T) -> Ordering,
988 {
989 self.map.sort_unstable_by(move |a, _, b, _| cmp(a, b))
990 }
991
992 /// Sort the values of the set and return a by-value iterator of
993 /// the values with the result.
994 pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<T>
995 where
996 F: FnMut(&T, &T) -> Ordering,
997 {
998 let mut entries = self.into_entries();
999 entries.sort_unstable_by(move |a, b| cmp(&a.key, &b.key));
1000 IntoIter::new(entries)
1001 }
1002
1003 /// Sort the set's values in place using a key extraction function.
1004 ///
1005 /// Computes in **O(n log n)** time. The sort is unstable.
1006 pub fn sort_unstable_by_key<K, F>(&mut self, mut sort_key: F)
1007 where
1008 K: Ord,
1009 F: FnMut(&T) -> K,
1010 {
1011 self.with_entries(move |entries| {
1012 entries.sort_unstable_by_key(move |a| sort_key(&a.key));
1013 });
1014 }
1015
1016 /// Sort the set's values in place using a key extraction function.
1017 ///
1018 /// During sorting, the function is called at most once per entry, by using temporary storage
1019 /// to remember the results of its evaluation. The order of calls to the function is
1020 /// unspecified and may change between versions of `indexmap` or the standard library.
1021 ///
1022 /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is
1023 /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable.
1024 pub fn sort_by_cached_key<K, F>(&mut self, mut sort_key: F)
1025 where
1026 K: Ord,
1027 F: FnMut(&T) -> K,
1028 {
1029 self.with_entries(move |entries| {
1030 entries.sort_by_cached_key(move |a| sort_key(&a.key));
1031 });
1032 }
1033
1034 /// Search over a sorted set for a value.
1035 ///
1036 /// Returns the position where that value is present, or the position where it can be inserted
1037 /// to maintain the sort. See [`slice::binary_search`] for more details.
1038 ///
1039 /// Computes in **O(log(n))** time, which is notably less scalable than looking the value up
1040 /// using [`get_index_of`][IndexSet::get_index_of], but this can also position missing values.
1041 pub fn binary_search(&self, x: &T) -> Result<usize, usize>
1042 where
1043 T: Ord,
1044 {
1045 self.as_slice().binary_search(x)
1046 }
1047
1048 /// Search over a sorted set with a comparator function.
1049 ///
1050 /// Returns the position where that value is present, or the position where it can be inserted
1051 /// to maintain the sort. See [`slice::binary_search_by`] for more details.
1052 ///
1053 /// Computes in **O(log(n))** time.
1054 #[inline]
1055 pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
1056 where
1057 F: FnMut(&'a T) -> Ordering,
1058 {
1059 self.as_slice().binary_search_by(f)
1060 }
1061
1062 /// Search over a sorted set with an extraction function.
1063 ///
1064 /// Returns the position where that value is present, or the position where it can be inserted
1065 /// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
1066 ///
1067 /// Computes in **O(log(n))** time.
1068 #[inline]
1069 pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize>
1070 where
1071 F: FnMut(&'a T) -> B,
1072 B: Ord,
1073 {
1074 self.as_slice().binary_search_by_key(b, f)
1075 }
1076
1077 /// Checks if the values of this set are sorted.
1078 #[inline]
1079 pub fn is_sorted(&self) -> bool
1080 where
1081 T: PartialOrd,
1082 {
1083 self.as_slice().is_sorted()
1084 }
1085
1086 /// Checks if this set is sorted using the given comparator function.
1087 #[inline]
1088 pub fn is_sorted_by<'a, F>(&'a self, cmp: F) -> bool
1089 where
1090 F: FnMut(&'a T, &'a T) -> bool,
1091 {
1092 self.as_slice().is_sorted_by(cmp)
1093 }
1094
1095 /// Checks if this set is sorted using the given sort-key function.
1096 #[inline]
1097 pub fn is_sorted_by_key<'a, F, K>(&'a self, sort_key: F) -> bool
1098 where
1099 F: FnMut(&'a T) -> K,
1100 K: PartialOrd,
1101 {
1102 self.as_slice().is_sorted_by_key(sort_key)
1103 }
1104
1105 /// Returns the index of the partition point of a sorted set according to the given predicate
1106 /// (the index of the first element of the second partition).
1107 ///
1108 /// See [`slice::partition_point`] for more details.
1109 ///
1110 /// Computes in **O(log(n))** time.
1111 #[must_use]
1112 pub fn partition_point<P>(&self, pred: P) -> usize
1113 where
1114 P: FnMut(&T) -> bool,
1115 {
1116 self.as_slice().partition_point(pred)
1117 }
1118
1119 /// Reverses the order of the set's values in place.
1120 ///
1121 /// Computes in **O(n)** time and **O(1)** space.
1122 pub fn reverse(&mut self) {
1123 self.map.reverse()
1124 }
1125
1126 /// Returns a slice of all the values in the set.
1127 ///
1128 /// Computes in **O(1)** time.
1129 pub fn as_slice(&self) -> &Slice<T> {
1130 Slice::from_slice(self.as_entries())
1131 }
1132
1133 /// Converts into a boxed slice of all the values in the set.
1134 ///
1135 /// Note that this will drop the inner hash table and any excess capacity.
1136 pub fn into_boxed_slice(self) -> Box<Slice<T>> {
1137 Slice::from_boxed(self.into_entries().into_boxed_slice())
1138 }
1139
1140 /// Get a value by index
1141 ///
1142 /// Valid indices are `0 <= index < self.len()`.
1143 ///
1144 /// Computes in **O(1)** time.
1145 pub fn get_index(&self, index: usize) -> Option<&T> {
1146 self.as_entries().get(index).map(Bucket::key_ref)
1147 }
1148
1149 /// Returns a slice of values in the given range of indices.
1150 ///
1151 /// Valid indices are `0 <= index < self.len()`.
1152 ///
1153 /// Computes in **O(1)** time.
1154 pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<T>> {
1155 let entries = self.as_entries();
1156 let range = try_simplify_range(range, entries.len())?;
1157 entries.get(range).map(Slice::from_slice)
1158 }
1159
1160 /// Get the first value
1161 ///
1162 /// Computes in **O(1)** time.
1163 pub fn first(&self) -> Option<&T> {
1164 self.as_entries().first().map(Bucket::key_ref)
1165 }
1166
1167 /// Get the last value
1168 ///
1169 /// Computes in **O(1)** time.
1170 pub fn last(&self) -> Option<&T> {
1171 self.as_entries().last().map(Bucket::key_ref)
1172 }
1173
1174 /// Remove the value by index
1175 ///
1176 /// Valid indices are `0 <= index < self.len()`.
1177 ///
1178 /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
1179 /// last element of the set and popping it off. **This perturbs
1180 /// the position of what used to be the last element!**
1181 ///
1182 /// Computes in **O(1)** time (average).
1183 pub fn swap_remove_index(&mut self, index: usize) -> Option<T> {
1184 self.map.swap_remove_index(index).map(|(x, ())| x)
1185 }
1186
1187 /// Remove the value by index
1188 ///
1189 /// Valid indices are `0 <= index < self.len()`.
1190 ///
1191 /// Like [`Vec::remove`], the value is removed by shifting all of the
1192 /// elements that follow it, preserving their relative order.
1193 /// **This perturbs the index of all of those elements!**
1194 ///
1195 /// Computes in **O(n)** time (average).
1196 pub fn shift_remove_index(&mut self, index: usize) -> Option<T> {
1197 self.map.shift_remove_index(index).map(|(x, ())| x)
1198 }
1199
1200 /// Moves the position of a value from one index to another
1201 /// by shifting all other values in-between.
1202 ///
1203 /// * If `from < to`, the other values will shift down while the targeted value moves up.
1204 /// * If `from > to`, the other values will shift up while the targeted value moves down.
1205 ///
1206 /// ***Panics*** if `from` or `to` are out of bounds.
1207 ///
1208 /// Computes in **O(n)** time (average).
1209 #[track_caller]
1210 pub fn move_index(&mut self, from: usize, to: usize) {
1211 self.map.move_index(from, to)
1212 }
1213
1214 /// Swaps the position of two values in the set.
1215 ///
1216 /// ***Panics*** if `a` or `b` are out of bounds.
1217 ///
1218 /// Computes in **O(1)** time (average).
1219 #[track_caller]
1220 pub fn swap_indices(&mut self, a: usize, b: usize) {
1221 self.map.swap_indices(a, b)
1222 }
1223}
1224
1225/// Access [`IndexSet`] values at indexed positions.
1226///
1227/// # Examples
1228///
1229/// ```
1230/// use indexmap::IndexSet;
1231///
1232/// let mut set = IndexSet::new();
1233/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1234/// set.insert(word.to_string());
1235/// }
1236/// assert_eq!(set[0], "Lorem");
1237/// assert_eq!(set[1], "ipsum");
1238/// set.reverse();
1239/// assert_eq!(set[0], "amet");
1240/// assert_eq!(set[1], "sit");
1241/// set.sort();
1242/// assert_eq!(set[0], "Lorem");
1243/// assert_eq!(set[1], "amet");
1244/// ```
1245///
1246/// ```should_panic
1247/// use indexmap::IndexSet;
1248///
1249/// let mut set = IndexSet::new();
1250/// set.insert("foo");
1251/// println!("{:?}", set[10]); // panics!
1252/// ```
1253impl<T, S> Index<usize> for IndexSet<T, S> {
1254 type Output = T;
1255
1256 /// Returns a reference to the value at the supplied `index`.
1257 ///
1258 /// ***Panics*** if `index` is out of bounds.
1259 fn index(&self, index: usize) -> &T {
1260 if let Some(value) = self.get_index(index) {
1261 value
1262 } else {
1263 panic!(
1264 "index out of bounds: the len is {len} but the index is {index}",
1265 len = self.len()
1266 );
1267 }
1268 }
1269}
1270
1271impl<T, S> FromIterator<T> for IndexSet<T, S>
1272where
1273 T: Hash + Eq,
1274 S: BuildHasher + Default,
1275{
1276 fn from_iter<I: IntoIterator<Item = T>>(iterable: I) -> Self {
1277 let iter = iterable.into_iter().map(|x| (x, ()));
1278 IndexSet {
1279 map: IndexMap::from_iter(iter),
1280 }
1281 }
1282}
1283
1284#[cfg(feature = "std")]
1285#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
1286impl<T, const N: usize> From<[T; N]> for IndexSet<T, RandomState>
1287where
1288 T: Eq + Hash,
1289{
1290 /// # Examples
1291 ///
1292 /// ```
1293 /// use indexmap::IndexSet;
1294 ///
1295 /// let set1 = IndexSet::from([1, 2, 3, 4]);
1296 /// let set2: IndexSet<_> = [1, 2, 3, 4].into();
1297 /// assert_eq!(set1, set2);
1298 /// ```
1299 fn from(arr: [T; N]) -> Self {
1300 Self::from_iter(arr)
1301 }
1302}
1303
1304impl<T, S> Extend<T> for IndexSet<T, S>
1305where
1306 T: Hash + Eq,
1307 S: BuildHasher,
1308{
1309 fn extend<I: IntoIterator<Item = T>>(&mut self, iterable: I) {
1310 let iter = iterable.into_iter().map(|x| (x, ()));
1311 self.map.extend(iter);
1312 }
1313}
1314
1315impl<'a, T, S> Extend<&'a T> for IndexSet<T, S>
1316where
1317 T: Hash + Eq + Copy + 'a,
1318 S: BuildHasher,
1319{
1320 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iterable: I) {
1321 let iter = iterable.into_iter().copied();
1322 self.extend(iter);
1323 }
1324}
1325
1326impl<T, S> Default for IndexSet<T, S>
1327where
1328 S: Default,
1329{
1330 /// Return an empty [`IndexSet`]
1331 fn default() -> Self {
1332 IndexSet {
1333 map: IndexMap::default(),
1334 }
1335 }
1336}
1337
1338impl<T, S1, S2> PartialEq<IndexSet<T, S2>> for IndexSet<T, S1>
1339where
1340 T: Hash + Eq,
1341 S1: BuildHasher,
1342 S2: BuildHasher,
1343{
1344 fn eq(&self, other: &IndexSet<T, S2>) -> bool {
1345 self.len() == other.len() && self.is_subset(other)
1346 }
1347}
1348
1349impl<T, S> Eq for IndexSet<T, S>
1350where
1351 T: Eq + Hash,
1352 S: BuildHasher,
1353{
1354}
1355
1356impl<T, S> IndexSet<T, S>
1357where
1358 T: Eq + Hash,
1359 S: BuildHasher,
1360{
1361 /// Returns `true` if `self` has no elements in common with `other`.
1362 pub fn is_disjoint<S2>(&self, other: &IndexSet<T, S2>) -> bool
1363 where
1364 S2: BuildHasher,
1365 {
1366 if self.len() <= other.len() {
1367 self.iter().all(move |value| !other.contains(value))
1368 } else {
1369 other.iter().all(move |value| !self.contains(value))
1370 }
1371 }
1372
1373 /// Returns `true` if all elements of `self` are contained in `other`.
1374 pub fn is_subset<S2>(&self, other: &IndexSet<T, S2>) -> bool
1375 where
1376 S2: BuildHasher,
1377 {
1378 self.len() <= other.len() && self.iter().all(move |value| other.contains(value))
1379 }
1380
1381 /// Returns `true` if all elements of `other` are contained in `self`.
1382 pub fn is_superset<S2>(&self, other: &IndexSet<T, S2>) -> bool
1383 where
1384 S2: BuildHasher,
1385 {
1386 other.is_subset(self)
1387 }
1388}
1389
1390impl<T, S1, S2> BitAnd<&IndexSet<T, S2>> for &IndexSet<T, S1>
1391where
1392 T: Eq + Hash + Clone,
1393 S1: BuildHasher + Default,
1394 S2: BuildHasher,
1395{
1396 type Output = IndexSet<T, S1>;
1397
1398 /// Returns the set intersection, cloned into a new set.
1399 ///
1400 /// Values are collected in the same order that they appear in `self`.
1401 fn bitand(self, other: &IndexSet<T, S2>) -> Self::Output {
1402 self.intersection(other).cloned().collect()
1403 }
1404}
1405
1406impl<T, S1, S2> BitOr<&IndexSet<T, S2>> for &IndexSet<T, S1>
1407where
1408 T: Eq + Hash + Clone,
1409 S1: BuildHasher + Default,
1410 S2: BuildHasher,
1411{
1412 type Output = IndexSet<T, S1>;
1413
1414 /// Returns the set union, cloned into a new set.
1415 ///
1416 /// Values from `self` are collected in their original order, followed by
1417 /// values that are unique to `other` in their original order.
1418 fn bitor(self, other: &IndexSet<T, S2>) -> Self::Output {
1419 self.union(other).cloned().collect()
1420 }
1421}
1422
1423impl<T, S1, S2> BitXor<&IndexSet<T, S2>> for &IndexSet<T, S1>
1424where
1425 T: Eq + Hash + Clone,
1426 S1: BuildHasher + Default,
1427 S2: BuildHasher,
1428{
1429 type Output = IndexSet<T, S1>;
1430
1431 /// Returns the set symmetric-difference, cloned into a new set.
1432 ///
1433 /// Values from `self` are collected in their original order, followed by
1434 /// values from `other` in their original order.
1435 fn bitxor(self, other: &IndexSet<T, S2>) -> Self::Output {
1436 self.symmetric_difference(other).cloned().collect()
1437 }
1438}
1439
1440impl<T, S1, S2> Sub<&IndexSet<T, S2>> for &IndexSet<T, S1>
1441where
1442 T: Eq + Hash + Clone,
1443 S1: BuildHasher + Default,
1444 S2: BuildHasher,
1445{
1446 type Output = IndexSet<T, S1>;
1447
1448 /// Returns the set difference, cloned into a new set.
1449 ///
1450 /// Values are collected in the same order that they appear in `self`.
1451 fn sub(self, other: &IndexSet<T, S2>) -> Self::Output {
1452 self.difference(other).cloned().collect()
1453 }
1454}