indexmap/
set.rs

1//! A hash set implemented using [`IndexMap`]
2
3mod iter;
4mod mutable;
5mod slice;
6
7#[cfg(test)]
8mod tests;
9
10pub use self::iter::{
11    Difference, Drain, ExtractIf, Intersection, IntoIter, Iter, Splice, SymmetricDifference, Union,
12};
13pub use self::mutable::MutableValues;
14pub use self::slice::Slice;
15
16#[cfg(feature = "rayon")]
17pub use crate::rayon::set as rayon;
18use crate::TryReserveError;
19
20#[cfg(feature = "std")]
21use std::collections::hash_map::RandomState;
22
23use crate::util::try_simplify_range;
24use alloc::boxed::Box;
25use alloc::vec::Vec;
26use core::cmp::Ordering;
27use core::fmt;
28use core::hash::{BuildHasher, Hash};
29use core::ops::{BitAnd, BitOr, BitXor, Index, RangeBounds, Sub};
30
31use super::{Equivalent, IndexMap};
32
33type Bucket<T> = super::Bucket<T, ()>;
34
35/// A hash set where the iteration order of the values is independent of their
36/// hash values.
37///
38/// The interface is closely compatible with the standard
39/// [`HashSet`][std::collections::HashSet],
40/// but also has additional features.
41///
42/// # Order
43///
44/// The values have a consistent order that is determined by the sequence of
45/// insertion and removal calls on the set. The order does not depend on the
46/// values or the hash function at all. Note that insertion order and value
47/// are not affected if a re-insertion is attempted once an element is
48/// already present.
49///
50/// All iterators traverse the set *in order*.  Set operation iterators like
51/// [`IndexSet::union`] produce a concatenated order, as do their matching "bitwise"
52/// operators.  See their documentation for specifics.
53///
54/// The insertion order is preserved, with **notable exceptions** like the
55/// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods.
56/// Methods such as [`.sort_by()`][Self::sort_by] of
57/// course result in a new order, depending on the sorting order.
58///
59/// # Indices
60///
61/// The values are indexed in a compact range without holes in the range
62/// `0..self.len()`. For example, the method `.get_full` looks up the index for
63/// a value, and the method `.get_index` looks up the value by index.
64///
65/// # Complexity
66///
67/// Internally, `IndexSet<T, S>` just holds an [`IndexMap<T, (), S>`](IndexMap). Thus the complexity
68/// of the two are the same for most methods.
69///
70/// # Examples
71///
72/// ```
73/// use indexmap::IndexSet;
74///
75/// // Collects which letters appear in a sentence.
76/// let letters: IndexSet<_> = "a short treatise on fungi".chars().collect();
77///
78/// assert!(letters.contains(&'s'));
79/// assert!(letters.contains(&'t'));
80/// assert!(letters.contains(&'u'));
81/// assert!(!letters.contains(&'y'));
82/// ```
83#[cfg(feature = "std")]
84pub struct IndexSet<T, S = RandomState> {
85    pub(crate) map: IndexMap<T, (), S>,
86}
87#[cfg(not(feature = "std"))]
88pub struct IndexSet<T, S> {
89    pub(crate) map: IndexMap<T, (), S>,
90}
91
92impl<T, S> Clone for IndexSet<T, S>
93where
94    T: Clone,
95    S: Clone,
96{
97    fn clone(&self) -> Self {
98        IndexSet {
99            map: self.map.clone(),
100        }
101    }
102
103    fn clone_from(&mut self, other: &Self) {
104        self.map.clone_from(&other.map);
105    }
106}
107
108impl<T, S> fmt::Debug for IndexSet<T, S>
109where
110    T: fmt::Debug,
111{
112    #[cfg(not(feature = "test_debug"))]
113    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
114        f.debug_set().entries(self.iter()).finish()
115    }
116
117    #[cfg(feature = "test_debug")]
118    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
119        // Let the inner `IndexMap` print all of its details
120        f.debug_struct("IndexSet").field("map", &self.map).finish()
121    }
122}
123
124#[cfg(feature = "std")]
125#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
126impl<T> IndexSet<T> {
127    /// Create a new set. (Does not allocate.)
128    pub fn new() -> Self {
129        IndexSet {
130            map: IndexMap::new(),
131        }
132    }
133
134    /// Create a new set with capacity for `n` elements.
135    /// (Does not allocate if `n` is zero.)
136    ///
137    /// Computes in **O(n)** time.
138    pub fn with_capacity(n: usize) -> Self {
139        IndexSet {
140            map: IndexMap::with_capacity(n),
141        }
142    }
143}
144
145impl<T, S> IndexSet<T, S> {
146    /// Create a new set with capacity for `n` elements.
147    /// (Does not allocate if `n` is zero.)
148    ///
149    /// Computes in **O(n)** time.
150    pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self {
151        IndexSet {
152            map: IndexMap::with_capacity_and_hasher(n, hash_builder),
153        }
154    }
155
156    /// Create a new set with `hash_builder`.
157    ///
158    /// This function is `const`, so it
159    /// can be called in `static` contexts.
160    pub const fn with_hasher(hash_builder: S) -> Self {
161        IndexSet {
162            map: IndexMap::with_hasher(hash_builder),
163        }
164    }
165
166    #[inline]
167    pub(crate) fn into_entries(self) -> Vec<Bucket<T>> {
168        self.map.into_entries()
169    }
170
171    #[inline]
172    pub(crate) fn as_entries(&self) -> &[Bucket<T>] {
173        self.map.as_entries()
174    }
175
176    pub(crate) fn with_entries<F>(&mut self, f: F)
177    where
178        F: FnOnce(&mut [Bucket<T>]),
179    {
180        self.map.with_entries(f);
181    }
182
183    /// Return the number of elements the set can hold without reallocating.
184    ///
185    /// This number is a lower bound; the set might be able to hold more,
186    /// but is guaranteed to be able to hold at least this many.
187    ///
188    /// Computes in **O(1)** time.
189    pub fn capacity(&self) -> usize {
190        self.map.capacity()
191    }
192
193    /// Return a reference to the set's `BuildHasher`.
194    pub fn hasher(&self) -> &S {
195        self.map.hasher()
196    }
197
198    /// Return the number of elements in the set.
199    ///
200    /// Computes in **O(1)** time.
201    pub fn len(&self) -> usize {
202        self.map.len()
203    }
204
205    /// Returns true if the set contains no elements.
206    ///
207    /// Computes in **O(1)** time.
208    pub fn is_empty(&self) -> bool {
209        self.map.is_empty()
210    }
211
212    /// Return an iterator over the values of the set, in their order
213    pub fn iter(&self) -> Iter<'_, T> {
214        Iter::new(self.as_entries())
215    }
216
217    /// Remove all elements in the set, while preserving its capacity.
218    ///
219    /// Computes in **O(n)** time.
220    pub fn clear(&mut self) {
221        self.map.clear();
222    }
223
224    /// Shortens the set, keeping the first `len` elements and dropping the rest.
225    ///
226    /// If `len` is greater than the set's current length, this has no effect.
227    pub fn truncate(&mut self, len: usize) {
228        self.map.truncate(len);
229    }
230
231    /// Clears the `IndexSet` in the given index range, returning those values
232    /// as a drain iterator.
233    ///
234    /// The range may be any type that implements [`RangeBounds<usize>`],
235    /// including all of the `std::ops::Range*` types, or even a tuple pair of
236    /// `Bound` start and end values. To drain the set entirely, use `RangeFull`
237    /// like `set.drain(..)`.
238    ///
239    /// This shifts down all entries following the drained range to fill the
240    /// gap, and keeps the allocated memory for reuse.
241    ///
242    /// ***Panics*** if the starting point is greater than the end point or if
243    /// the end point is greater than the length of the set.
244    #[track_caller]
245    pub fn drain<R>(&mut self, range: R) -> Drain<'_, T>
246    where
247        R: RangeBounds<usize>,
248    {
249        Drain::new(self.map.core.drain(range))
250    }
251
252    /// Creates an iterator which uses a closure to determine if a value should be removed,
253    /// for all values in the given range.
254    ///
255    /// If the closure returns true, then the value is removed and yielded.
256    /// If the closure returns false, the value will remain in the list and will not be yielded
257    /// by the iterator.
258    ///
259    /// The range may be any type that implements [`RangeBounds<usize>`],
260    /// including all of the `std::ops::Range*` types, or even a tuple pair of
261    /// `Bound` start and end values. To check the entire set, use `RangeFull`
262    /// like `set.extract_if(.., predicate)`.
263    ///
264    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
265    /// or the iteration short-circuits, then the remaining elements will be retained.
266    /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
267    ///
268    /// [`retain`]: IndexSet::retain
269    ///
270    /// ***Panics*** if the starting point is greater than the end point or if
271    /// the end point is greater than the length of the set.
272    ///
273    /// # Examples
274    ///
275    /// Splitting a set into even and odd values, reusing the original set:
276    ///
277    /// ```
278    /// use indexmap::IndexSet;
279    ///
280    /// let mut set: IndexSet<i32> = (0..8).collect();
281    /// let extracted: IndexSet<i32> = set.extract_if(.., |v| v % 2 == 0).collect();
282    ///
283    /// let evens = extracted.into_iter().collect::<Vec<_>>();
284    /// let odds = set.into_iter().collect::<Vec<_>>();
285    ///
286    /// assert_eq!(evens, vec![0, 2, 4, 6]);
287    /// assert_eq!(odds, vec![1, 3, 5, 7]);
288    /// ```
289    #[track_caller]
290    pub fn extract_if<F, R>(&mut self, range: R, pred: F) -> ExtractIf<'_, T, F>
291    where
292        F: FnMut(&T) -> bool,
293        R: RangeBounds<usize>,
294    {
295        ExtractIf::new(&mut self.map.core, range, pred)
296    }
297
298    /// Splits the collection into two at the given index.
299    ///
300    /// Returns a newly allocated set containing the elements in the range
301    /// `[at, len)`. After the call, the original set will be left containing
302    /// the elements `[0, at)` with its previous capacity unchanged.
303    ///
304    /// ***Panics*** if `at > len`.
305    #[track_caller]
306    pub fn split_off(&mut self, at: usize) -> Self
307    where
308        S: Clone,
309    {
310        Self {
311            map: self.map.split_off(at),
312        }
313    }
314
315    /// Reserve capacity for `additional` more values.
316    ///
317    /// Computes in **O(n)** time.
318    pub fn reserve(&mut self, additional: usize) {
319        self.map.reserve(additional);
320    }
321
322    /// Reserve capacity for `additional` more values, without over-allocating.
323    ///
324    /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid
325    /// frequent re-allocations. However, the underlying data structures may still have internal
326    /// capacity requirements, and the allocator itself may give more space than requested, so this
327    /// cannot be relied upon to be precisely minimal.
328    ///
329    /// Computes in **O(n)** time.
330    pub fn reserve_exact(&mut self, additional: usize) {
331        self.map.reserve_exact(additional);
332    }
333
334    /// Try to reserve capacity for `additional` more values.
335    ///
336    /// Computes in **O(n)** time.
337    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
338        self.map.try_reserve(additional)
339    }
340
341    /// Try to reserve capacity for `additional` more values, without over-allocating.
342    ///
343    /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid
344    /// frequent re-allocations. However, the underlying data structures may still have internal
345    /// capacity requirements, and the allocator itself may give more space than requested, so this
346    /// cannot be relied upon to be precisely minimal.
347    ///
348    /// Computes in **O(n)** time.
349    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
350        self.map.try_reserve_exact(additional)
351    }
352
353    /// Shrink the capacity of the set as much as possible.
354    ///
355    /// Computes in **O(n)** time.
356    pub fn shrink_to_fit(&mut self) {
357        self.map.shrink_to_fit();
358    }
359
360    /// Shrink the capacity of the set with a lower limit.
361    ///
362    /// Computes in **O(n)** time.
363    pub fn shrink_to(&mut self, min_capacity: usize) {
364        self.map.shrink_to(min_capacity);
365    }
366}
367
368impl<T, S> IndexSet<T, S>
369where
370    T: Hash + Eq,
371    S: BuildHasher,
372{
373    /// Insert the value into the set.
374    ///
375    /// If an equivalent item already exists in the set, it returns
376    /// `false` leaving the original value in the set and without
377    /// altering its insertion order. Otherwise, it inserts the new
378    /// item and returns `true`.
379    ///
380    /// Computes in **O(1)** time (amortized average).
381    pub fn insert(&mut self, value: T) -> bool {
382        self.map.insert(value, ()).is_none()
383    }
384
385    /// Insert the value into the set, and get its index.
386    ///
387    /// If an equivalent item already exists in the set, it returns
388    /// the index of the existing item and `false`, leaving the
389    /// original value in the set and without altering its insertion
390    /// order. Otherwise, it inserts the new item and returns the index
391    /// of the inserted item and `true`.
392    ///
393    /// Computes in **O(1)** time (amortized average).
394    pub fn insert_full(&mut self, value: T) -> (usize, bool) {
395        let (index, existing) = self.map.insert_full(value, ());
396        (index, existing.is_none())
397    }
398
399    /// Insert the value into the set at its ordered position among sorted values.
400    ///
401    /// This is equivalent to finding the position with
402    /// [`binary_search`][Self::binary_search], and if needed calling
403    /// [`insert_before`][Self::insert_before] for a new value.
404    ///
405    /// If the sorted item is found in the set, it returns the index of that
406    /// existing item and `false`, without any change. Otherwise, it inserts the
407    /// new item and returns its sorted index and `true`.
408    ///
409    /// If the existing items are **not** already sorted, then the insertion
410    /// index is unspecified (like [`slice::binary_search`]), but the value
411    /// is moved to or inserted at that position regardless.
412    ///
413    /// Computes in **O(n)** time (average). Instead of repeating calls to
414    /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert]
415    /// or [`extend`][Self::extend] and only call [`sort`][Self::sort] or
416    /// [`sort_unstable`][Self::sort_unstable] once.
417    pub fn insert_sorted(&mut self, value: T) -> (usize, bool)
418    where
419        T: Ord,
420    {
421        let (index, existing) = self.map.insert_sorted(value, ());
422        (index, existing.is_none())
423    }
424
425    /// Insert the value into the set at its ordered position among values
426    /// sorted by `cmp`.
427    ///
428    /// This is equivalent to finding the position with
429    /// [`binary_search_by`][Self::binary_search_by], then calling
430    /// [`insert_before`][Self::insert_before].
431    ///
432    /// If the existing items are **not** already sorted, then the insertion
433    /// index is unspecified (like [`slice::binary_search`]), but the value
434    /// is moved to or inserted at that position regardless.
435    ///
436    /// Computes in **O(n)** time (average).
437    pub fn insert_sorted_by<F>(&mut self, value: T, mut cmp: F) -> (usize, bool)
438    where
439        T: Ord,
440        F: FnMut(&T, &T) -> Ordering,
441    {
442        let (index, existing) = self
443            .map
444            .insert_sorted_by(value, (), |a, (), b, ()| cmp(a, b));
445        (index, existing.is_none())
446    }
447
448    /// Insert the value into the set at its ordered position among values
449    /// using a sort-key extraction function.
450    ///
451    /// This is equivalent to finding the position with
452    /// [`binary_search_by_key`][Self::binary_search_by_key] with `sort_key(key)`,
453    /// then calling [`insert_before`][Self::insert_before].
454    ///
455    /// If the existing items are **not** already sorted, then the insertion
456    /// index is unspecified (like [`slice::binary_search`]), but the value
457    /// is moved to or inserted at that position regardless.
458    ///
459    /// Computes in **O(n)** time (average).
460    pub fn insert_sorted_by_key<B, F>(&mut self, value: T, mut sort_key: F) -> (usize, bool)
461    where
462        B: Ord,
463        F: FnMut(&T) -> B,
464    {
465        let (index, existing) = self.map.insert_sorted_by_key(value, (), |k, _| sort_key(k));
466        (index, existing.is_none())
467    }
468
469    /// Insert the value into the set before the value at the given index, or at the end.
470    ///
471    /// If an equivalent item already exists in the set, it returns `false` leaving the
472    /// original value in the set, but moved to the new position. The returned index
473    /// will either be the given index or one less, depending on how the value moved.
474    /// (See [`shift_insert`](Self::shift_insert) for different behavior here.)
475    ///
476    /// Otherwise, it inserts the new value exactly at the given index and returns `true`.
477    ///
478    /// ***Panics*** if `index` is out of bounds.
479    /// Valid indices are `0..=set.len()` (inclusive).
480    ///
481    /// Computes in **O(n)** time (average).
482    ///
483    /// # Examples
484    ///
485    /// ```
486    /// use indexmap::IndexSet;
487    /// let mut set: IndexSet<char> = ('a'..='z').collect();
488    ///
489    /// // The new value '*' goes exactly at the given index.
490    /// assert_eq!(set.get_index_of(&'*'), None);
491    /// assert_eq!(set.insert_before(10, '*'), (10, true));
492    /// assert_eq!(set.get_index_of(&'*'), Some(10));
493    ///
494    /// // Moving the value 'a' up will shift others down, so this moves *before* 10 to index 9.
495    /// assert_eq!(set.insert_before(10, 'a'), (9, false));
496    /// assert_eq!(set.get_index_of(&'a'), Some(9));
497    /// assert_eq!(set.get_index_of(&'*'), Some(10));
498    ///
499    /// // Moving the value 'z' down will shift others up, so this moves to exactly 10.
500    /// assert_eq!(set.insert_before(10, 'z'), (10, false));
501    /// assert_eq!(set.get_index_of(&'z'), Some(10));
502    /// assert_eq!(set.get_index_of(&'*'), Some(11));
503    ///
504    /// // Moving or inserting before the endpoint is also valid.
505    /// assert_eq!(set.len(), 27);
506    /// assert_eq!(set.insert_before(set.len(), '*'), (26, false));
507    /// assert_eq!(set.get_index_of(&'*'), Some(26));
508    /// assert_eq!(set.insert_before(set.len(), '+'), (27, true));
509    /// assert_eq!(set.get_index_of(&'+'), Some(27));
510    /// assert_eq!(set.len(), 28);
511    /// ```
512    #[track_caller]
513    pub fn insert_before(&mut self, index: usize, value: T) -> (usize, bool) {
514        let (index, existing) = self.map.insert_before(index, value, ());
515        (index, existing.is_none())
516    }
517
518    /// Insert the value into the set at the given index.
519    ///
520    /// If an equivalent item already exists in the set, it returns `false` leaving
521    /// the original value in the set, but moved to the given index.
522    /// Note that existing values **cannot** be moved to `index == set.len()`!
523    /// (See [`insert_before`](Self::insert_before) for different behavior here.)
524    ///
525    /// Otherwise, it inserts the new value at the given index and returns `true`.
526    ///
527    /// ***Panics*** if `index` is out of bounds.
528    /// Valid indices are `0..set.len()` (exclusive) when moving an existing value, or
529    /// `0..=set.len()` (inclusive) when inserting a new value.
530    ///
531    /// Computes in **O(n)** time (average).
532    ///
533    /// # Examples
534    ///
535    /// ```
536    /// use indexmap::IndexSet;
537    /// let mut set: IndexSet<char> = ('a'..='z').collect();
538    ///
539    /// // The new value '*' goes exactly at the given index.
540    /// assert_eq!(set.get_index_of(&'*'), None);
541    /// assert_eq!(set.shift_insert(10, '*'), true);
542    /// assert_eq!(set.get_index_of(&'*'), Some(10));
543    ///
544    /// // Moving the value 'a' up to 10 will shift others down, including the '*' that was at 10.
545    /// assert_eq!(set.shift_insert(10, 'a'), false);
546    /// assert_eq!(set.get_index_of(&'a'), Some(10));
547    /// assert_eq!(set.get_index_of(&'*'), Some(9));
548    ///
549    /// // Moving the value 'z' down to 9 will shift others up, including the '*' that was at 9.
550    /// assert_eq!(set.shift_insert(9, 'z'), false);
551    /// assert_eq!(set.get_index_of(&'z'), Some(9));
552    /// assert_eq!(set.get_index_of(&'*'), Some(10));
553    ///
554    /// // Existing values can move to len-1 at most, but new values can insert at the endpoint.
555    /// assert_eq!(set.len(), 27);
556    /// assert_eq!(set.shift_insert(set.len() - 1, '*'), false);
557    /// assert_eq!(set.get_index_of(&'*'), Some(26));
558    /// assert_eq!(set.shift_insert(set.len(), '+'), true);
559    /// assert_eq!(set.get_index_of(&'+'), Some(27));
560    /// assert_eq!(set.len(), 28);
561    /// ```
562    ///
563    /// ```should_panic
564    /// use indexmap::IndexSet;
565    /// let mut set: IndexSet<char> = ('a'..='z').collect();
566    ///
567    /// // This is an invalid index for moving an existing value!
568    /// set.shift_insert(set.len(), 'a');
569    /// ```
570    #[track_caller]
571    pub fn shift_insert(&mut self, index: usize, value: T) -> bool {
572        self.map.shift_insert(index, value, ()).is_none()
573    }
574
575    /// Adds a value to the set, replacing the existing value, if any, that is
576    /// equal to the given one, without altering its insertion order. Returns
577    /// the replaced value.
578    ///
579    /// Computes in **O(1)** time (average).
580    pub fn replace(&mut self, value: T) -> Option<T> {
581        self.replace_full(value).1
582    }
583
584    /// Adds a value to the set, replacing the existing value, if any, that is
585    /// equal to the given one, without altering its insertion order. Returns
586    /// the index of the item and its replaced value.
587    ///
588    /// Computes in **O(1)** time (average).
589    pub fn replace_full(&mut self, value: T) -> (usize, Option<T>) {
590        let hash = self.map.hash(&value);
591        match self.map.core.replace_full(hash, value, ()) {
592            (i, Some((replaced, ()))) => (i, Some(replaced)),
593            (i, None) => (i, None),
594        }
595    }
596
597    /// Replaces the value at the given index. The new value does not need to be
598    /// equivalent to the one it is replacing, but it must be unique to the rest
599    /// of the set.
600    ///
601    /// Returns `Ok(old_value)` if successful, or `Err((other_index, value))` if
602    /// an equivalent value already exists at a different index. The set will be
603    /// unchanged in the error case.
604    ///
605    /// ***Panics*** if `index` is out of bounds.
606    ///
607    /// Computes in **O(1)** time (average).
608    #[track_caller]
609    pub fn replace_index(&mut self, index: usize, value: T) -> Result<T, (usize, T)> {
610        self.map.replace_index(index, value)
611    }
612
613    /// Return an iterator over the values that are in `self` but not `other`.
614    ///
615    /// Values are produced in the same order that they appear in `self`.
616    pub fn difference<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Difference<'a, T, S2>
617    where
618        S2: BuildHasher,
619    {
620        Difference::new(self, other)
621    }
622
623    /// Return an iterator over the values that are in `self` or `other`,
624    /// but not in both.
625    ///
626    /// Values from `self` are produced in their original order, followed by
627    /// values from `other` in their original order.
628    pub fn symmetric_difference<'a, S2>(
629        &'a self,
630        other: &'a IndexSet<T, S2>,
631    ) -> SymmetricDifference<'a, T, S, S2>
632    where
633        S2: BuildHasher,
634    {
635        SymmetricDifference::new(self, other)
636    }
637
638    /// Return an iterator over the values that are in both `self` and `other`.
639    ///
640    /// Values are produced in the same order that they appear in `self`.
641    pub fn intersection<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Intersection<'a, T, S2>
642    where
643        S2: BuildHasher,
644    {
645        Intersection::new(self, other)
646    }
647
648    /// Return an iterator over all values that are in `self` or `other`.
649    ///
650    /// Values from `self` are produced in their original order, followed by
651    /// values that are unique to `other` in their original order.
652    pub fn union<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Union<'a, T, S>
653    where
654        S2: BuildHasher,
655    {
656        Union::new(self, other)
657    }
658
659    /// Creates a splicing iterator that replaces the specified range in the set
660    /// with the given `replace_with` iterator and yields the removed items.
661    /// `replace_with` does not need to be the same length as `range`.
662    ///
663    /// The `range` is removed even if the iterator is not consumed until the
664    /// end. It is unspecified how many elements are removed from the set if the
665    /// `Splice` value is leaked.
666    ///
667    /// The input iterator `replace_with` is only consumed when the `Splice`
668    /// value is dropped. If a value from the iterator matches an existing entry
669    /// in the set (outside of `range`), then the original will be unchanged.
670    /// Otherwise, the new value will be inserted in the replaced `range`.
671    ///
672    /// ***Panics*** if the starting point is greater than the end point or if
673    /// the end point is greater than the length of the set.
674    ///
675    /// # Examples
676    ///
677    /// ```
678    /// use indexmap::IndexSet;
679    ///
680    /// let mut set = IndexSet::from([0, 1, 2, 3, 4]);
681    /// let new = [5, 4, 3, 2, 1];
682    /// let removed: Vec<_> = set.splice(2..4, new).collect();
683    ///
684    /// // 1 and 4 kept their positions, while 5, 3, and 2 were newly inserted.
685    /// assert!(set.into_iter().eq([0, 1, 5, 3, 2, 4]));
686    /// assert_eq!(removed, &[2, 3]);
687    /// ```
688    #[track_caller]
689    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, T, S>
690    where
691        R: RangeBounds<usize>,
692        I: IntoIterator<Item = T>,
693    {
694        Splice::new(self, range, replace_with.into_iter())
695    }
696
697    /// Moves all values from `other` into `self`, leaving `other` empty.
698    ///
699    /// This is equivalent to calling [`insert`][Self::insert] for each value
700    /// from `other` in order, which means that values that already exist
701    /// in `self` are unchanged in their current position.
702    ///
703    /// See also [`union`][Self::union] to iterate the combined values by
704    /// reference, without modifying `self` or `other`.
705    ///
706    /// # Examples
707    ///
708    /// ```
709    /// use indexmap::IndexSet;
710    ///
711    /// let mut a = IndexSet::from([3, 2, 1]);
712    /// let mut b = IndexSet::from([3, 4, 5]);
713    /// let old_capacity = b.capacity();
714    ///
715    /// a.append(&mut b);
716    ///
717    /// assert_eq!(a.len(), 5);
718    /// assert_eq!(b.len(), 0);
719    /// assert_eq!(b.capacity(), old_capacity);
720    ///
721    /// assert!(a.iter().eq(&[3, 2, 1, 4, 5]));
722    /// ```
723    pub fn append<S2>(&mut self, other: &mut IndexSet<T, S2>) {
724        self.map.append(&mut other.map);
725    }
726}
727
728impl<T, S> IndexSet<T, S>
729where
730    S: BuildHasher,
731{
732    /// Return `true` if an equivalent to `value` exists in the set.
733    ///
734    /// Computes in **O(1)** time (average).
735    pub fn contains<Q>(&self, value: &Q) -> bool
736    where
737        Q: ?Sized + Hash + Equivalent<T>,
738    {
739        self.map.contains_key(value)
740    }
741
742    /// Return a reference to the value stored in the set, if it is present,
743    /// else `None`.
744    ///
745    /// Computes in **O(1)** time (average).
746    pub fn get<Q>(&self, value: &Q) -> Option<&T>
747    where
748        Q: ?Sized + Hash + Equivalent<T>,
749    {
750        self.map.get_key_value(value).map(|(x, &())| x)
751    }
752
753    /// Return item index and value
754    pub fn get_full<Q>(&self, value: &Q) -> Option<(usize, &T)>
755    where
756        Q: ?Sized + Hash + Equivalent<T>,
757    {
758        self.map.get_full(value).map(|(i, x, &())| (i, x))
759    }
760
761    /// Return item index, if it exists in the set
762    ///
763    /// Computes in **O(1)** time (average).
764    pub fn get_index_of<Q>(&self, value: &Q) -> Option<usize>
765    where
766        Q: ?Sized + Hash + Equivalent<T>,
767    {
768        self.map.get_index_of(value)
769    }
770
771    /// Remove the value from the set, and return `true` if it was present.
772    ///
773    /// **NOTE:** This is equivalent to [`.swap_remove(value)`][Self::swap_remove], replacing this
774    /// value's position with the last element, and it is deprecated in favor of calling that
775    /// explicitly. If you need to preserve the relative order of the values in the set, use
776    /// [`.shift_remove(value)`][Self::shift_remove] instead.
777    #[deprecated(note = "`remove` disrupts the set order -- \
778        use `swap_remove` or `shift_remove` for explicit behavior.")]
779    pub fn remove<Q>(&mut self, value: &Q) -> bool
780    where
781        Q: ?Sized + Hash + Equivalent<T>,
782    {
783        self.swap_remove(value)
784    }
785
786    /// Remove the value from the set, and return `true` if it was present.
787    ///
788    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
789    /// last element of the set and popping it off. **This perturbs
790    /// the position of what used to be the last element!**
791    ///
792    /// Return `false` if `value` was not in the set.
793    ///
794    /// Computes in **O(1)** time (average).
795    pub fn swap_remove<Q>(&mut self, value: &Q) -> bool
796    where
797        Q: ?Sized + Hash + Equivalent<T>,
798    {
799        self.map.swap_remove(value).is_some()
800    }
801
802    /// Remove the value from the set, and return `true` if it was present.
803    ///
804    /// Like [`Vec::remove`], the value is removed by shifting all of the
805    /// elements that follow it, preserving their relative order.
806    /// **This perturbs the index of all of those elements!**
807    ///
808    /// Return `false` if `value` was not in the set.
809    ///
810    /// Computes in **O(n)** time (average).
811    pub fn shift_remove<Q>(&mut self, value: &Q) -> bool
812    where
813        Q: ?Sized + Hash + Equivalent<T>,
814    {
815        self.map.shift_remove(value).is_some()
816    }
817
818    /// Removes and returns the value in the set, if any, that is equal to the
819    /// given one.
820    ///
821    /// **NOTE:** This is equivalent to [`.swap_take(value)`][Self::swap_take], replacing this
822    /// value's position with the last element, and it is deprecated in favor of calling that
823    /// explicitly. If you need to preserve the relative order of the values in the set, use
824    /// [`.shift_take(value)`][Self::shift_take] instead.
825    #[deprecated(note = "`take` disrupts the set order -- \
826        use `swap_take` or `shift_take` for explicit behavior.")]
827    pub fn take<Q>(&mut self, value: &Q) -> Option<T>
828    where
829        Q: ?Sized + Hash + Equivalent<T>,
830    {
831        self.swap_take(value)
832    }
833
834    /// Removes and returns the value in the set, if any, that is equal to the
835    /// given one.
836    ///
837    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
838    /// last element of the set and popping it off. **This perturbs
839    /// the position of what used to be the last element!**
840    ///
841    /// Return `None` if `value` was not in the set.
842    ///
843    /// Computes in **O(1)** time (average).
844    pub fn swap_take<Q>(&mut self, value: &Q) -> Option<T>
845    where
846        Q: ?Sized + Hash + Equivalent<T>,
847    {
848        self.map.swap_remove_entry(value).map(|(x, ())| x)
849    }
850
851    /// Removes and returns the value in the set, if any, that is equal to the
852    /// given one.
853    ///
854    /// Like [`Vec::remove`], the value is removed by shifting all of the
855    /// elements that follow it, preserving their relative order.
856    /// **This perturbs the index of all of those elements!**
857    ///
858    /// Return `None` if `value` was not in the set.
859    ///
860    /// Computes in **O(n)** time (average).
861    pub fn shift_take<Q>(&mut self, value: &Q) -> Option<T>
862    where
863        Q: ?Sized + Hash + Equivalent<T>,
864    {
865        self.map.shift_remove_entry(value).map(|(x, ())| x)
866    }
867
868    /// Remove the value from the set return it and the index it had.
869    ///
870    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
871    /// last element of the set and popping it off. **This perturbs
872    /// the position of what used to be the last element!**
873    ///
874    /// Return `None` if `value` was not in the set.
875    pub fn swap_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)>
876    where
877        Q: ?Sized + Hash + Equivalent<T>,
878    {
879        self.map.swap_remove_full(value).map(|(i, x, ())| (i, x))
880    }
881
882    /// Remove the value from the set return it and the index it had.
883    ///
884    /// Like [`Vec::remove`], the value is removed by shifting all of the
885    /// elements that follow it, preserving their relative order.
886    /// **This perturbs the index of all of those elements!**
887    ///
888    /// Return `None` if `value` was not in the set.
889    pub fn shift_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)>
890    where
891        Q: ?Sized + Hash + Equivalent<T>,
892    {
893        self.map.shift_remove_full(value).map(|(i, x, ())| (i, x))
894    }
895}
896
897impl<T, S> IndexSet<T, S> {
898    /// Remove the last value
899    ///
900    /// This preserves the order of the remaining elements.
901    ///
902    /// Computes in **O(1)** time (average).
903    #[doc(alias = "pop_last")] // like `BTreeSet`
904    pub fn pop(&mut self) -> Option<T> {
905        self.map.pop().map(|(x, ())| x)
906    }
907
908    /// Scan through each value in the set and keep those where the
909    /// closure `keep` returns `true`.
910    ///
911    /// The elements are visited in order, and remaining elements keep their
912    /// order.
913    ///
914    /// Computes in **O(n)** time (average).
915    pub fn retain<F>(&mut self, mut keep: F)
916    where
917        F: FnMut(&T) -> bool,
918    {
919        self.map.retain(move |x, &mut ()| keep(x))
920    }
921
922    /// Sort the set's values by their default ordering.
923    ///
924    /// This is a stable sort -- but equivalent values should not normally coexist in
925    /// a set at all, so [`sort_unstable`][Self::sort_unstable] is preferred
926    /// because it is generally faster and doesn't allocate auxiliary memory.
927    ///
928    /// See [`sort_by`](Self::sort_by) for details.
929    pub fn sort(&mut self)
930    where
931        T: Ord,
932    {
933        self.map.sort_keys()
934    }
935
936    /// Sort the set's values in place using the comparison function `cmp`.
937    ///
938    /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable.
939    pub fn sort_by<F>(&mut self, mut cmp: F)
940    where
941        F: FnMut(&T, &T) -> Ordering,
942    {
943        self.map.sort_by(move |a, (), b, ()| cmp(a, b));
944    }
945
946    /// Sort the values of the set and return a by-value iterator of
947    /// the values with the result.
948    ///
949    /// The sort is stable.
950    pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<T>
951    where
952        F: FnMut(&T, &T) -> Ordering,
953    {
954        let mut entries = self.into_entries();
955        entries.sort_by(move |a, b| cmp(&a.key, &b.key));
956        IntoIter::new(entries)
957    }
958
959    /// Sort the set's values in place using a key extraction function.
960    ///
961    /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable.
962    pub fn sort_by_key<K, F>(&mut self, mut sort_key: F)
963    where
964        K: Ord,
965        F: FnMut(&T) -> K,
966    {
967        self.with_entries(move |entries| {
968            entries.sort_by_key(move |a| sort_key(&a.key));
969        });
970    }
971
972    /// Sort the set's values by their default ordering.
973    ///
974    /// See [`sort_unstable_by`](Self::sort_unstable_by) for details.
975    pub fn sort_unstable(&mut self)
976    where
977        T: Ord,
978    {
979        self.map.sort_unstable_keys()
980    }
981
982    /// Sort the set's values in place using the comparison function `cmp`.
983    ///
984    /// Computes in **O(n log n)** time. The sort is unstable.
985    pub fn sort_unstable_by<F>(&mut self, mut cmp: F)
986    where
987        F: FnMut(&T, &T) -> Ordering,
988    {
989        self.map.sort_unstable_by(move |a, _, b, _| cmp(a, b))
990    }
991
992    /// Sort the values of the set and return a by-value iterator of
993    /// the values with the result.
994    pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<T>
995    where
996        F: FnMut(&T, &T) -> Ordering,
997    {
998        let mut entries = self.into_entries();
999        entries.sort_unstable_by(move |a, b| cmp(&a.key, &b.key));
1000        IntoIter::new(entries)
1001    }
1002
1003    /// Sort the set's values in place using a key extraction function.
1004    ///
1005    /// Computes in **O(n log n)** time. The sort is unstable.
1006    pub fn sort_unstable_by_key<K, F>(&mut self, mut sort_key: F)
1007    where
1008        K: Ord,
1009        F: FnMut(&T) -> K,
1010    {
1011        self.with_entries(move |entries| {
1012            entries.sort_unstable_by_key(move |a| sort_key(&a.key));
1013        });
1014    }
1015
1016    /// Sort the set's values in place using a key extraction function.
1017    ///
1018    /// During sorting, the function is called at most once per entry, by using temporary storage
1019    /// to remember the results of its evaluation. The order of calls to the function is
1020    /// unspecified and may change between versions of `indexmap` or the standard library.
1021    ///
1022    /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is
1023    /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable.
1024    pub fn sort_by_cached_key<K, F>(&mut self, mut sort_key: F)
1025    where
1026        K: Ord,
1027        F: FnMut(&T) -> K,
1028    {
1029        self.with_entries(move |entries| {
1030            entries.sort_by_cached_key(move |a| sort_key(&a.key));
1031        });
1032    }
1033
1034    /// Search over a sorted set for a value.
1035    ///
1036    /// Returns the position where that value is present, or the position where it can be inserted
1037    /// to maintain the sort. See [`slice::binary_search`] for more details.
1038    ///
1039    /// Computes in **O(log(n))** time, which is notably less scalable than looking the value up
1040    /// using [`get_index_of`][IndexSet::get_index_of], but this can also position missing values.
1041    pub fn binary_search(&self, x: &T) -> Result<usize, usize>
1042    where
1043        T: Ord,
1044    {
1045        self.as_slice().binary_search(x)
1046    }
1047
1048    /// Search over a sorted set with a comparator function.
1049    ///
1050    /// Returns the position where that value is present, or the position where it can be inserted
1051    /// to maintain the sort. See [`slice::binary_search_by`] for more details.
1052    ///
1053    /// Computes in **O(log(n))** time.
1054    #[inline]
1055    pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
1056    where
1057        F: FnMut(&'a T) -> Ordering,
1058    {
1059        self.as_slice().binary_search_by(f)
1060    }
1061
1062    /// Search over a sorted set with an extraction function.
1063    ///
1064    /// Returns the position where that value is present, or the position where it can be inserted
1065    /// to maintain the sort. See [`slice::binary_search_by_key`] for more details.
1066    ///
1067    /// Computes in **O(log(n))** time.
1068    #[inline]
1069    pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize>
1070    where
1071        F: FnMut(&'a T) -> B,
1072        B: Ord,
1073    {
1074        self.as_slice().binary_search_by_key(b, f)
1075    }
1076
1077    /// Checks if the values of this set are sorted.
1078    #[inline]
1079    pub fn is_sorted(&self) -> bool
1080    where
1081        T: PartialOrd,
1082    {
1083        self.as_slice().is_sorted()
1084    }
1085
1086    /// Checks if this set is sorted using the given comparator function.
1087    #[inline]
1088    pub fn is_sorted_by<'a, F>(&'a self, cmp: F) -> bool
1089    where
1090        F: FnMut(&'a T, &'a T) -> bool,
1091    {
1092        self.as_slice().is_sorted_by(cmp)
1093    }
1094
1095    /// Checks if this set is sorted using the given sort-key function.
1096    #[inline]
1097    pub fn is_sorted_by_key<'a, F, K>(&'a self, sort_key: F) -> bool
1098    where
1099        F: FnMut(&'a T) -> K,
1100        K: PartialOrd,
1101    {
1102        self.as_slice().is_sorted_by_key(sort_key)
1103    }
1104
1105    /// Returns the index of the partition point of a sorted set according to the given predicate
1106    /// (the index of the first element of the second partition).
1107    ///
1108    /// See [`slice::partition_point`] for more details.
1109    ///
1110    /// Computes in **O(log(n))** time.
1111    #[must_use]
1112    pub fn partition_point<P>(&self, pred: P) -> usize
1113    where
1114        P: FnMut(&T) -> bool,
1115    {
1116        self.as_slice().partition_point(pred)
1117    }
1118
1119    /// Reverses the order of the set's values in place.
1120    ///
1121    /// Computes in **O(n)** time and **O(1)** space.
1122    pub fn reverse(&mut self) {
1123        self.map.reverse()
1124    }
1125
1126    /// Returns a slice of all the values in the set.
1127    ///
1128    /// Computes in **O(1)** time.
1129    pub fn as_slice(&self) -> &Slice<T> {
1130        Slice::from_slice(self.as_entries())
1131    }
1132
1133    /// Converts into a boxed slice of all the values in the set.
1134    ///
1135    /// Note that this will drop the inner hash table and any excess capacity.
1136    pub fn into_boxed_slice(self) -> Box<Slice<T>> {
1137        Slice::from_boxed(self.into_entries().into_boxed_slice())
1138    }
1139
1140    /// Get a value by index
1141    ///
1142    /// Valid indices are `0 <= index < self.len()`.
1143    ///
1144    /// Computes in **O(1)** time.
1145    pub fn get_index(&self, index: usize) -> Option<&T> {
1146        self.as_entries().get(index).map(Bucket::key_ref)
1147    }
1148
1149    /// Returns a slice of values in the given range of indices.
1150    ///
1151    /// Valid indices are `0 <= index < self.len()`.
1152    ///
1153    /// Computes in **O(1)** time.
1154    pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<T>> {
1155        let entries = self.as_entries();
1156        let range = try_simplify_range(range, entries.len())?;
1157        entries.get(range).map(Slice::from_slice)
1158    }
1159
1160    /// Get the first value
1161    ///
1162    /// Computes in **O(1)** time.
1163    pub fn first(&self) -> Option<&T> {
1164        self.as_entries().first().map(Bucket::key_ref)
1165    }
1166
1167    /// Get the last value
1168    ///
1169    /// Computes in **O(1)** time.
1170    pub fn last(&self) -> Option<&T> {
1171        self.as_entries().last().map(Bucket::key_ref)
1172    }
1173
1174    /// Remove the value by index
1175    ///
1176    /// Valid indices are `0 <= index < self.len()`.
1177    ///
1178    /// Like [`Vec::swap_remove`], the value is removed by swapping it with the
1179    /// last element of the set and popping it off. **This perturbs
1180    /// the position of what used to be the last element!**
1181    ///
1182    /// Computes in **O(1)** time (average).
1183    pub fn swap_remove_index(&mut self, index: usize) -> Option<T> {
1184        self.map.swap_remove_index(index).map(|(x, ())| x)
1185    }
1186
1187    /// Remove the value by index
1188    ///
1189    /// Valid indices are `0 <= index < self.len()`.
1190    ///
1191    /// Like [`Vec::remove`], the value is removed by shifting all of the
1192    /// elements that follow it, preserving their relative order.
1193    /// **This perturbs the index of all of those elements!**
1194    ///
1195    /// Computes in **O(n)** time (average).
1196    pub fn shift_remove_index(&mut self, index: usize) -> Option<T> {
1197        self.map.shift_remove_index(index).map(|(x, ())| x)
1198    }
1199
1200    /// Moves the position of a value from one index to another
1201    /// by shifting all other values in-between.
1202    ///
1203    /// * If `from < to`, the other values will shift down while the targeted value moves up.
1204    /// * If `from > to`, the other values will shift up while the targeted value moves down.
1205    ///
1206    /// ***Panics*** if `from` or `to` are out of bounds.
1207    ///
1208    /// Computes in **O(n)** time (average).
1209    #[track_caller]
1210    pub fn move_index(&mut self, from: usize, to: usize) {
1211        self.map.move_index(from, to)
1212    }
1213
1214    /// Swaps the position of two values in the set.
1215    ///
1216    /// ***Panics*** if `a` or `b` are out of bounds.
1217    ///
1218    /// Computes in **O(1)** time (average).
1219    #[track_caller]
1220    pub fn swap_indices(&mut self, a: usize, b: usize) {
1221        self.map.swap_indices(a, b)
1222    }
1223}
1224
1225/// Access [`IndexSet`] values at indexed positions.
1226///
1227/// # Examples
1228///
1229/// ```
1230/// use indexmap::IndexSet;
1231///
1232/// let mut set = IndexSet::new();
1233/// for word in "Lorem ipsum dolor sit amet".split_whitespace() {
1234///     set.insert(word.to_string());
1235/// }
1236/// assert_eq!(set[0], "Lorem");
1237/// assert_eq!(set[1], "ipsum");
1238/// set.reverse();
1239/// assert_eq!(set[0], "amet");
1240/// assert_eq!(set[1], "sit");
1241/// set.sort();
1242/// assert_eq!(set[0], "Lorem");
1243/// assert_eq!(set[1], "amet");
1244/// ```
1245///
1246/// ```should_panic
1247/// use indexmap::IndexSet;
1248///
1249/// let mut set = IndexSet::new();
1250/// set.insert("foo");
1251/// println!("{:?}", set[10]); // panics!
1252/// ```
1253impl<T, S> Index<usize> for IndexSet<T, S> {
1254    type Output = T;
1255
1256    /// Returns a reference to the value at the supplied `index`.
1257    ///
1258    /// ***Panics*** if `index` is out of bounds.
1259    fn index(&self, index: usize) -> &T {
1260        if let Some(value) = self.get_index(index) {
1261            value
1262        } else {
1263            panic!(
1264                "index out of bounds: the len is {len} but the index is {index}",
1265                len = self.len()
1266            );
1267        }
1268    }
1269}
1270
1271impl<T, S> FromIterator<T> for IndexSet<T, S>
1272where
1273    T: Hash + Eq,
1274    S: BuildHasher + Default,
1275{
1276    fn from_iter<I: IntoIterator<Item = T>>(iterable: I) -> Self {
1277        let iter = iterable.into_iter().map(|x| (x, ()));
1278        IndexSet {
1279            map: IndexMap::from_iter(iter),
1280        }
1281    }
1282}
1283
1284#[cfg(feature = "std")]
1285#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
1286impl<T, const N: usize> From<[T; N]> for IndexSet<T, RandomState>
1287where
1288    T: Eq + Hash,
1289{
1290    /// # Examples
1291    ///
1292    /// ```
1293    /// use indexmap::IndexSet;
1294    ///
1295    /// let set1 = IndexSet::from([1, 2, 3, 4]);
1296    /// let set2: IndexSet<_> = [1, 2, 3, 4].into();
1297    /// assert_eq!(set1, set2);
1298    /// ```
1299    fn from(arr: [T; N]) -> Self {
1300        Self::from_iter(arr)
1301    }
1302}
1303
1304impl<T, S> Extend<T> for IndexSet<T, S>
1305where
1306    T: Hash + Eq,
1307    S: BuildHasher,
1308{
1309    fn extend<I: IntoIterator<Item = T>>(&mut self, iterable: I) {
1310        let iter = iterable.into_iter().map(|x| (x, ()));
1311        self.map.extend(iter);
1312    }
1313}
1314
1315impl<'a, T, S> Extend<&'a T> for IndexSet<T, S>
1316where
1317    T: Hash + Eq + Copy + 'a,
1318    S: BuildHasher,
1319{
1320    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iterable: I) {
1321        let iter = iterable.into_iter().copied();
1322        self.extend(iter);
1323    }
1324}
1325
1326impl<T, S> Default for IndexSet<T, S>
1327where
1328    S: Default,
1329{
1330    /// Return an empty [`IndexSet`]
1331    fn default() -> Self {
1332        IndexSet {
1333            map: IndexMap::default(),
1334        }
1335    }
1336}
1337
1338impl<T, S1, S2> PartialEq<IndexSet<T, S2>> for IndexSet<T, S1>
1339where
1340    T: Hash + Eq,
1341    S1: BuildHasher,
1342    S2: BuildHasher,
1343{
1344    fn eq(&self, other: &IndexSet<T, S2>) -> bool {
1345        self.len() == other.len() && self.is_subset(other)
1346    }
1347}
1348
1349impl<T, S> Eq for IndexSet<T, S>
1350where
1351    T: Eq + Hash,
1352    S: BuildHasher,
1353{
1354}
1355
1356impl<T, S> IndexSet<T, S>
1357where
1358    T: Eq + Hash,
1359    S: BuildHasher,
1360{
1361    /// Returns `true` if `self` has no elements in common with `other`.
1362    pub fn is_disjoint<S2>(&self, other: &IndexSet<T, S2>) -> bool
1363    where
1364        S2: BuildHasher,
1365    {
1366        if self.len() <= other.len() {
1367            self.iter().all(move |value| !other.contains(value))
1368        } else {
1369            other.iter().all(move |value| !self.contains(value))
1370        }
1371    }
1372
1373    /// Returns `true` if all elements of `self` are contained in `other`.
1374    pub fn is_subset<S2>(&self, other: &IndexSet<T, S2>) -> bool
1375    where
1376        S2: BuildHasher,
1377    {
1378        self.len() <= other.len() && self.iter().all(move |value| other.contains(value))
1379    }
1380
1381    /// Returns `true` if all elements of `other` are contained in `self`.
1382    pub fn is_superset<S2>(&self, other: &IndexSet<T, S2>) -> bool
1383    where
1384        S2: BuildHasher,
1385    {
1386        other.is_subset(self)
1387    }
1388}
1389
1390impl<T, S1, S2> BitAnd<&IndexSet<T, S2>> for &IndexSet<T, S1>
1391where
1392    T: Eq + Hash + Clone,
1393    S1: BuildHasher + Default,
1394    S2: BuildHasher,
1395{
1396    type Output = IndexSet<T, S1>;
1397
1398    /// Returns the set intersection, cloned into a new set.
1399    ///
1400    /// Values are collected in the same order that they appear in `self`.
1401    fn bitand(self, other: &IndexSet<T, S2>) -> Self::Output {
1402        self.intersection(other).cloned().collect()
1403    }
1404}
1405
1406impl<T, S1, S2> BitOr<&IndexSet<T, S2>> for &IndexSet<T, S1>
1407where
1408    T: Eq + Hash + Clone,
1409    S1: BuildHasher + Default,
1410    S2: BuildHasher,
1411{
1412    type Output = IndexSet<T, S1>;
1413
1414    /// Returns the set union, cloned into a new set.
1415    ///
1416    /// Values from `self` are collected in their original order, followed by
1417    /// values that are unique to `other` in their original order.
1418    fn bitor(self, other: &IndexSet<T, S2>) -> Self::Output {
1419        self.union(other).cloned().collect()
1420    }
1421}
1422
1423impl<T, S1, S2> BitXor<&IndexSet<T, S2>> for &IndexSet<T, S1>
1424where
1425    T: Eq + Hash + Clone,
1426    S1: BuildHasher + Default,
1427    S2: BuildHasher,
1428{
1429    type Output = IndexSet<T, S1>;
1430
1431    /// Returns the set symmetric-difference, cloned into a new set.
1432    ///
1433    /// Values from `self` are collected in their original order, followed by
1434    /// values from `other` in their original order.
1435    fn bitxor(self, other: &IndexSet<T, S2>) -> Self::Output {
1436        self.symmetric_difference(other).cloned().collect()
1437    }
1438}
1439
1440impl<T, S1, S2> Sub<&IndexSet<T, S2>> for &IndexSet<T, S1>
1441where
1442    T: Eq + Hash + Clone,
1443    S1: BuildHasher + Default,
1444    S2: BuildHasher,
1445{
1446    type Output = IndexSet<T, S1>;
1447
1448    /// Returns the set difference, cloned into a new set.
1449    ///
1450    /// Values are collected in the same order that they appear in `self`.
1451    fn sub(self, other: &IndexSet<T, S2>) -> Self::Output {
1452        self.difference(other).cloned().collect()
1453    }
1454}