1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
/*!
A 128-bit vector implementation of the "packed pair" SIMD algorithm.
The "packed pair" algorithm is based on the [generic SIMD] algorithm. The main
difference is that it (by default) uses a background distribution of byte
frequencies to heuristically select the pair of bytes to search for.
[generic SIMD]: http://0x80.pl/articles/simd-strfind.html#first-and-last
*/
use core::arch::x86_64::__m128i;
use crate::arch::{all::packedpair::Pair, generic::packedpair};
/// A "packed pair" finder that uses 128-bit vector operations.
///
/// This finder picks two bytes that it believes have high predictive power
/// for indicating an overall match of a needle. Depending on whether
/// `Finder::find` or `Finder::find_prefilter` is used, it reports offsets
/// where the needle matches or could match. In the prefilter case, candidates
/// are reported whenever the [`Pair`] of bytes given matches.
#[derive(Clone, Copy, Debug)]
pub struct Finder(packedpair::Finder<__m128i>);
impl Finder {
/// Create a new pair searcher. The searcher returned can either report
/// exact matches of `needle` or act as a prefilter and report candidate
/// positions of `needle`.
///
/// If SSE2 is unavailable in the current environment or if a [`Pair`]
/// could not be constructed from the needle given, then `None` is
/// returned.
#[inline]
pub fn new(needle: &[u8]) -> Option<Finder> {
Finder::with_pair(needle, Pair::new(needle)?)
}
/// Create a new "packed pair" finder using the pair of bytes given.
///
/// This constructor permits callers to control precisely which pair of
/// bytes is used as a predicate.
///
/// If SSE2 is unavailable in the current environment, then `None` is
/// returned.
#[inline]
pub fn with_pair(needle: &[u8], pair: Pair) -> Option<Finder> {
if Finder::is_available() {
// SAFETY: we check that sse2 is available above. We are also
// guaranteed to have needle.len() > 1 because we have a valid
// Pair.
unsafe { Some(Finder::with_pair_impl(needle, pair)) }
} else {
None
}
}
/// Create a new `Finder` specific to SSE2 vectors and routines.
///
/// # Safety
///
/// Same as the safety for `packedpair::Finder::new`, and callers must also
/// ensure that SSE2 is available.
#[target_feature(enable = "sse2")]
#[inline]
unsafe fn with_pair_impl(needle: &[u8], pair: Pair) -> Finder {
let finder = packedpair::Finder::<__m128i>::new(needle, pair);
Finder(finder)
}
/// Returns true when this implementation is available in the current
/// environment.
///
/// When this is true, it is guaranteed that [`Finder::with_pair`] will
/// return a `Some` value. Similarly, when it is false, it is guaranteed
/// that `Finder::with_pair` will return a `None` value. Notice that this
/// does not guarantee that [`Finder::new`] will return a `Finder`. Namely,
/// even when `Finder::is_available` is true, it is not guaranteed that a
/// valid [`Pair`] can be found from the needle given.
///
/// Note also that for the lifetime of a single program, if this returns
/// true then it will always return true.
#[inline]
pub fn is_available() -> bool {
#[cfg(not(target_feature = "sse2"))]
{
false
}
#[cfg(target_feature = "sse2")]
{
true
}
}
/// Execute a search using SSE2 vectors and routines.
///
/// # Panics
///
/// When `haystack.len()` is less than [`Finder::min_haystack_len`].
#[inline]
pub fn find(&self, haystack: &[u8], needle: &[u8]) -> Option<usize> {
// SAFETY: Building a `Finder` means it's safe to call 'sse2' routines.
unsafe { self.find_impl(haystack, needle) }
}
/// Run this finder on the given haystack as a prefilter.
///
/// If a candidate match is found, then an offset where the needle *could*
/// begin in the haystack is returned.
///
/// # Panics
///
/// When `haystack.len()` is less than [`Finder::min_haystack_len`].
#[inline]
pub fn find_prefilter(&self, haystack: &[u8]) -> Option<usize> {
// SAFETY: Building a `Finder` means it's safe to call 'sse2' routines.
unsafe { self.find_prefilter_impl(haystack) }
}
/// Execute a search using SSE2 vectors and routines.
///
/// # Panics
///
/// When `haystack.len()` is less than [`Finder::min_haystack_len`].
///
/// # Safety
///
/// (The target feature safety obligation is automatically fulfilled by
/// virtue of being a method on `Finder`, which can only be constructed
/// when it is safe to call `sse2` routines.)
#[target_feature(enable = "sse2")]
#[inline]
unsafe fn find_impl(
&self,
haystack: &[u8],
needle: &[u8],
) -> Option<usize> {
self.0.find(haystack, needle)
}
/// Execute a prefilter search using SSE2 vectors and routines.
///
/// # Panics
///
/// When `haystack.len()` is less than [`Finder::min_haystack_len`].
///
/// # Safety
///
/// (The target feature safety obligation is automatically fulfilled by
/// virtue of being a method on `Finder`, which can only be constructed
/// when it is safe to call `sse2` routines.)
#[target_feature(enable = "sse2")]
#[inline]
unsafe fn find_prefilter_impl(&self, haystack: &[u8]) -> Option<usize> {
self.0.find_prefilter(haystack)
}
/// Returns the pair of offsets (into the needle) used to check as a
/// predicate before confirming whether a needle exists at a particular
/// position.
#[inline]
pub fn pair(&self) -> &Pair {
self.0.pair()
}
/// Returns the minimum haystack length that this `Finder` can search.
///
/// Using a haystack with length smaller than this in a search will result
/// in a panic. The reason for this restriction is that this finder is
/// meant to be a low-level component that is part of a larger substring
/// strategy. In that sense, it avoids trying to handle all cases and
/// instead only handles the cases that it can handle very well.
#[inline]
pub fn min_haystack_len(&self) -> usize {
self.0.min_haystack_len()
}
}
#[cfg(test)]
mod tests {
use super::*;
fn find(haystack: &[u8], needle: &[u8]) -> Option<Option<usize>> {
let f = Finder::new(needle)?;
if haystack.len() < f.min_haystack_len() {
return None;
}
Some(f.find(haystack, needle))
}
define_substring_forward_quickcheck!(find);
#[test]
fn forward_substring() {
crate::tests::substring::Runner::new().fwd(find).run()
}
#[test]
fn forward_packedpair() {
fn find(
haystack: &[u8],
needle: &[u8],
index1: u8,
index2: u8,
) -> Option<Option<usize>> {
let pair = Pair::with_indices(needle, index1, index2)?;
let f = Finder::with_pair(needle, pair)?;
if haystack.len() < f.min_haystack_len() {
return None;
}
Some(f.find(haystack, needle))
}
crate::tests::packedpair::Runner::new().fwd(find).run()
}
#[test]
fn forward_packedpair_prefilter() {
fn find(
haystack: &[u8],
needle: &[u8],
index1: u8,
index2: u8,
) -> Option<Option<usize>> {
let pair = Pair::with_indices(needle, index1, index2)?;
let f = Finder::with_pair(needle, pair)?;
if haystack.len() < f.min_haystack_len() {
return None;
}
Some(f.find_prefilter(haystack))
}
crate::tests::packedpair::Runner::new().fwd(find).run()
}
}