1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
/*!
Types and routines specific to lazy DFAs.
This module is the home of [`hybrid::dfa::DFA`](DFA).
This module also contains a [`hybrid::dfa::Builder`](Builder) and a
[`hybrid::dfa::Config`](Config) for configuring and building a lazy DFA.
*/
use core::{iter, mem::size_of};
use alloc::vec::Vec;
use crate::{
hybrid::{
error::{BuildError, CacheError, StartError},
id::{LazyStateID, LazyStateIDError},
search,
},
nfa::thompson,
util::{
alphabet::{self, ByteClasses, ByteSet},
determinize::{self, State, StateBuilderEmpty, StateBuilderNFA},
empty,
prefilter::Prefilter,
primitives::{PatternID, StateID as NFAStateID},
search::{
Anchored, HalfMatch, Input, MatchError, MatchKind, PatternSet,
},
sparse_set::SparseSets,
start::{self, Start, StartByteMap},
},
};
/// The minimum number of states that a lazy DFA's cache size must support.
///
/// This is checked at time of construction to ensure that at least some small
/// number of states can fit in the given capacity allotment. If we can't fit
/// at least this number of states, then the thinking is that it's pretty
/// senseless to use the lazy DFA. More to the point, parts of the code do
/// assume that the cache can fit at least some small number of states.
const MIN_STATES: usize = SENTINEL_STATES + 2;
/// The number of "sentinel" states that get added to every lazy DFA.
///
/// These are special states indicating status conditions of a search: unknown,
/// dead and quit. These states in particular also use zero NFA states, so
/// their memory usage is quite small. This is relevant for computing the
/// minimum memory needed for a lazy DFA cache.
const SENTINEL_STATES: usize = 3;
/// A hybrid NFA/DFA (also called a "lazy DFA") for regex searching.
///
/// A lazy DFA is a DFA that builds itself at search time. It otherwise has
/// very similar characteristics as a [`dense::DFA`](crate::dfa::dense::DFA).
/// Indeed, both support precisely the same regex features with precisely the
/// same semantics.
///
/// Where as a `dense::DFA` must be completely built to handle any input before
/// it may be used for search, a lazy DFA starts off effectively empty. During
/// a search, a lazy DFA will build itself depending on whether it has already
/// computed the next transition or not. If it has, then it looks a lot like
/// a `dense::DFA` internally: it does a very fast table based access to find
/// the next transition. Otherwise, if the state hasn't been computed, then it
/// does determinization _for that specific transition_ to compute the next DFA
/// state.
///
/// The main selling point of a lazy DFA is that, in practice, it has
/// the performance profile of a `dense::DFA` without the weakness of it
/// taking worst case exponential time to build. Indeed, for each byte of
/// input, the lazy DFA will construct as most one new DFA state. Thus, a
/// lazy DFA achieves worst case `O(mn)` time for regex search (where `m ~
/// pattern.len()` and `n ~ haystack.len()`).
///
/// The main downsides of a lazy DFA are:
///
/// 1. It requires mutable "cache" space during search. This is where the
/// transition table, among other things, is stored.
/// 2. In pathological cases (e.g., if the cache is too small), it will run
/// out of room and either require a bigger cache capacity or will repeatedly
/// clear the cache and thus repeatedly regenerate DFA states. Overall, this
/// will tend to be slower than a typical NFA simulation.
///
/// # Capabilities
///
/// Like a `dense::DFA`, a single lazy DFA fundamentally supports the following
/// operations:
///
/// 1. Detection of a match.
/// 2. Location of the end of a match.
/// 3. In the case of a lazy DFA with multiple patterns, which pattern matched
/// is reported as well.
///
/// A notable absence from the above list of capabilities is the location of
/// the *start* of a match. In order to provide both the start and end of
/// a match, *two* lazy DFAs are required. This functionality is provided by a
/// [`Regex`](crate::hybrid::regex::Regex).
///
/// # Example
///
/// This shows how to build a lazy DFA with the default configuration and
/// execute a search. Notice how, in contrast to a `dense::DFA`, we must create
/// a cache and pass it to our search routine.
///
/// ```
/// use regex_automata::{hybrid::dfa::DFA, HalfMatch, Input};
///
/// let dfa = DFA::new("foo[0-9]+")?;
/// let mut cache = dfa.create_cache();
///
/// let expected = Some(HalfMatch::must(0, 8));
/// assert_eq!(expected, dfa.try_search_fwd(
/// &mut cache, &Input::new("foo12345"))?,
/// );
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Debug)]
pub struct DFA {
config: Config,
nfa: thompson::NFA,
stride2: usize,
start_map: StartByteMap,
classes: ByteClasses,
quitset: ByteSet,
cache_capacity: usize,
}
impl DFA {
/// Parse the given regular expression using a default configuration and
/// return the corresponding lazy DFA.
///
/// If you want a non-default configuration, then use the [`Builder`] to
/// set your own configuration.
///
/// # Example
///
/// ```
/// use regex_automata::{hybrid::dfa::DFA, HalfMatch, Input};
///
/// let dfa = DFA::new("foo[0-9]+bar")?;
/// let mut cache = dfa.create_cache();
///
/// let expected = HalfMatch::must(0, 11);
/// assert_eq!(
/// Some(expected),
/// dfa.try_search_fwd(&mut cache, &Input::new("foo12345bar"))?,
/// );
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "syntax")]
pub fn new(pattern: &str) -> Result<DFA, BuildError> {
DFA::builder().build(pattern)
}
/// Parse the given regular expressions using a default configuration and
/// return the corresponding lazy multi-DFA.
///
/// If you want a non-default configuration, then use the [`Builder`] to
/// set your own configuration.
///
/// # Example
///
/// ```
/// use regex_automata::{hybrid::dfa::DFA, HalfMatch, Input};
///
/// let dfa = DFA::new_many(&["[0-9]+", "[a-z]+"])?;
/// let mut cache = dfa.create_cache();
///
/// let expected = HalfMatch::must(1, 3);
/// assert_eq!(
/// Some(expected),
/// dfa.try_search_fwd(&mut cache, &Input::new("foo12345bar"))?,
/// );
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "syntax")]
pub fn new_many<P: AsRef<str>>(patterns: &[P]) -> Result<DFA, BuildError> {
DFA::builder().build_many(patterns)
}
/// Create a new lazy DFA that matches every input.
///
/// # Example
///
/// ```
/// use regex_automata::{hybrid::dfa::DFA, HalfMatch, Input};
///
/// let dfa = DFA::always_match()?;
/// let mut cache = dfa.create_cache();
///
/// let expected = HalfMatch::must(0, 0);
/// assert_eq!(Some(expected), dfa.try_search_fwd(
/// &mut cache, &Input::new(""))?,
/// );
/// assert_eq!(Some(expected), dfa.try_search_fwd(
/// &mut cache, &Input::new("foo"))?,
/// );
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn always_match() -> Result<DFA, BuildError> {
let nfa = thompson::NFA::always_match();
Builder::new().build_from_nfa(nfa)
}
/// Create a new lazy DFA that never matches any input.
///
/// # Example
///
/// ```
/// use regex_automata::{hybrid::dfa::DFA, Input};
///
/// let dfa = DFA::never_match()?;
/// let mut cache = dfa.create_cache();
///
/// assert_eq!(None, dfa.try_search_fwd(&mut cache, &Input::new(""))?);
/// assert_eq!(None, dfa.try_search_fwd(&mut cache, &Input::new("foo"))?);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn never_match() -> Result<DFA, BuildError> {
let nfa = thompson::NFA::never_match();
Builder::new().build_from_nfa(nfa)
}
/// Return a default configuration for a `DFA`.
///
/// This is a convenience routine to avoid needing to import the [`Config`]
/// type when customizing the construction of a lazy DFA.
///
/// # Example
///
/// This example shows how to build a lazy DFA that heuristically supports
/// Unicode word boundaries.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{hybrid::dfa::DFA, HalfMatch, MatchError, Input};
///
/// let re = DFA::builder()
/// .configure(DFA::config().unicode_word_boundary(true))
/// .build(r"\b\w+\b")?;
/// let mut cache = re.create_cache();
///
/// // Since our haystack is all ASCII, the DFA search sees then and knows
/// // it is legal to interpret Unicode word boundaries as ASCII word
/// // boundaries.
/// let input = Input::new("!!foo!!");
/// let expected = HalfMatch::must(0, 5);
/// assert_eq!(Some(expected), re.try_search_fwd(&mut cache, &input)?);
///
/// // But if our haystack contains non-ASCII, then the search will fail
/// // with an error.
/// let input = Input::new("!!βββ!!");
/// let expected = MatchError::quit(b'\xCE', 2);
/// assert_eq!(Err(expected), re.try_search_fwd(&mut cache, &input));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn config() -> Config {
Config::new()
}
/// Return a builder for configuring the construction of a `Regex`.
///
/// This is a convenience routine to avoid needing to import the
/// [`Builder`] type in common cases.
///
/// # Example
///
/// This example shows how to use the builder to disable UTF-8 mode
/// everywhere for lazy DFAs.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{hybrid::dfa::DFA, util::syntax, HalfMatch, Input};
///
/// let re = DFA::builder()
/// .syntax(syntax::Config::new().utf8(false))
/// .build(r"foo(?-u:[^b])ar.*")?;
/// let mut cache = re.create_cache();
///
/// let input = Input::new(b"\xFEfoo\xFFarzz\xE2\x98\xFF\n");
/// let expected = Some(HalfMatch::must(0, 9));
/// let got = re.try_search_fwd(&mut cache, &input)?;
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn builder() -> Builder {
Builder::new()
}
/// Create a new cache for this lazy DFA.
///
/// The cache returned should only be used for searches for this
/// lazy DFA. If you want to reuse the cache for another DFA, then
/// you must call [`Cache::reset`] with that DFA (or, equivalently,
/// [`DFA::reset_cache`]).
pub fn create_cache(&self) -> Cache {
Cache::new(self)
}
/// Reset the given cache such that it can be used for searching with the
/// this lazy DFA (and only this DFA).
///
/// A cache reset permits reusing memory already allocated in this cache
/// with a different lazy DFA.
///
/// Resetting a cache sets its "clear count" to 0. This is relevant if the
/// lazy DFA has been configured to "give up" after it has cleared the
/// cache a certain number of times.
///
/// Any lazy state ID generated by the cache prior to resetting it is
/// invalid after the reset.
///
/// # Example
///
/// This shows how to re-purpose a cache for use with a different DFA.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{hybrid::dfa::DFA, HalfMatch, Input};
///
/// let dfa1 = DFA::new(r"\w")?;
/// let dfa2 = DFA::new(r"\W")?;
///
/// let mut cache = dfa1.create_cache();
/// assert_eq!(
/// Some(HalfMatch::must(0, 2)),
/// dfa1.try_search_fwd(&mut cache, &Input::new("Δ"))?,
/// );
///
/// // Using 'cache' with dfa2 is not allowed. It may result in panics or
/// // incorrect results. In order to re-purpose the cache, we must reset
/// // it with the DFA we'd like to use it with.
/// //
/// // Similarly, after this reset, using the cache with 'dfa1' is also not
/// // allowed.
/// dfa2.reset_cache(&mut cache);
/// assert_eq!(
/// Some(HalfMatch::must(0, 3)),
/// dfa2.try_search_fwd(&mut cache, &Input::new("☃"))?,
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn reset_cache(&self, cache: &mut Cache) {
Lazy::new(self, cache).reset_cache()
}
/// Returns the total number of patterns compiled into this lazy DFA.
///
/// In the case of a DFA that contains no patterns, this returns `0`.
///
/// # Example
///
/// This example shows the pattern length for a DFA that never matches:
///
/// ```
/// use regex_automata::hybrid::dfa::DFA;
///
/// let dfa = DFA::never_match()?;
/// assert_eq!(dfa.pattern_len(), 0);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// And another example for a DFA that matches at every position:
///
/// ```
/// use regex_automata::hybrid::dfa::DFA;
///
/// let dfa = DFA::always_match()?;
/// assert_eq!(dfa.pattern_len(), 1);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// And finally, a DFA that was constructed from multiple patterns:
///
/// ```
/// use regex_automata::hybrid::dfa::DFA;
///
/// let dfa = DFA::new_many(&["[0-9]+", "[a-z]+", "[A-Z]+"])?;
/// assert_eq!(dfa.pattern_len(), 3);
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn pattern_len(&self) -> usize {
self.nfa.pattern_len()
}
/// Returns the equivalence classes that make up the alphabet for this DFA.
///
/// Unless [`Config::byte_classes`] was disabled, it is possible that
/// multiple distinct bytes are grouped into the same equivalence class
/// if it is impossible for them to discriminate between a match and a
/// non-match. This has the effect of reducing the overall alphabet size
/// and in turn potentially substantially reducing the size of the DFA's
/// transition table.
///
/// The downside of using equivalence classes like this is that every state
/// transition will automatically use this map to convert an arbitrary
/// byte to its corresponding equivalence class. In practice this has a
/// negligible impact on performance.
pub fn byte_classes(&self) -> &ByteClasses {
&self.classes
}
/// Returns this lazy DFA's configuration.
pub fn get_config(&self) -> &Config {
&self.config
}
/// Returns a reference to the underlying NFA.
pub fn get_nfa(&self) -> &thompson::NFA {
&self.nfa
}
/// Returns the stride, as a base-2 exponent, required for these
/// equivalence classes.
///
/// The stride is always the smallest power of 2 that is greater than or
/// equal to the alphabet length. This is done so that converting between
/// state IDs and indices can be done with shifts alone, which is much
/// faster than integer division.
fn stride2(&self) -> usize {
self.stride2
}
/// Returns the total stride for every state in this lazy DFA. This
/// corresponds to the total number of transitions used by each state in
/// this DFA's transition table.
fn stride(&self) -> usize {
1 << self.stride2()
}
/// Returns the memory usage, in bytes, of this lazy DFA.
///
/// This does **not** include the stack size used up by this lazy DFA. To
/// compute that, use `std::mem::size_of::<DFA>()`. This also does not
/// include the size of the `Cache` used.
///
/// This also does not include any heap memory used by the NFA inside of
/// this hybrid NFA/DFA. This is because the NFA's ownership is shared, and
/// thus not owned by this hybrid NFA/DFA. More practically, several regex
/// engines in this crate embed an NFA, and reporting the NFA's memory
/// usage in all of them would likely result in reporting higher heap
/// memory than is actually used.
pub fn memory_usage(&self) -> usize {
// The only thing that uses heap memory in a DFA is the NFA. But the
// NFA has shared ownership, so reporting its memory as part of the
// hybrid DFA is likely to lead to double-counting the NFA memory
// somehow. In particular, this DFA does not really own an NFA, so
// including it in the DFA's memory usage doesn't seem semantically
// correct.
0
}
}
impl DFA {
/// Executes a forward search and returns the end position of the leftmost
/// match that is found. If no match exists, then `None` is returned.
///
/// In particular, this method continues searching even after it enters
/// a match state. The search only terminates once it has reached the
/// end of the input or when it has entered a dead or quit state. Upon
/// termination, the position of the last byte seen while still in a match
/// state is returned.
///
/// # Errors
///
/// This routine errors if the search could not complete. This can occur
/// in a number of circumstances:
///
/// * The configuration of the lazy DFA may permit it to "quit" the search.
/// For example, setting quit bytes or enabling heuristic support for
/// Unicode word boundaries. The default configuration does not enable any
/// option that could result in the lazy DFA quitting.
/// * The configuration of the lazy DFA may also permit it to "give up"
/// on a search if it makes ineffective use of its transition table
/// cache. The default configuration does not enable this by default,
/// although it is typically a good idea to.
/// * When the provided `Input` configuration is not supported. For
/// example, by providing an unsupported anchor mode.
///
/// When a search returns an error, callers cannot know whether a match
/// exists or not.
///
/// # Example
///
/// This example shows how to run a basic search.
///
/// ```
/// use regex_automata::{hybrid::dfa::DFA, HalfMatch, Input};
///
/// let dfa = DFA::new("foo[0-9]+")?;
/// let mut cache = dfa.create_cache();
/// let expected = HalfMatch::must(0, 8);
/// assert_eq!(Some(expected), dfa.try_search_fwd(
/// &mut cache, &Input::new("foo12345"))?,
/// );
///
/// // Even though a match is found after reading the first byte (`a`),
/// // the leftmost first match semantics demand that we find the earliest
/// // match that prefers earlier parts of the pattern over later parts.
/// let dfa = DFA::new("abc|a")?;
/// let mut cache = dfa.create_cache();
/// let expected = HalfMatch::must(0, 3);
/// assert_eq!(Some(expected), dfa.try_search_fwd(
/// &mut cache, &Input::new("abc"))?,
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: specific pattern search
///
/// This example shows how to build a lazy multi-DFA that permits searching
/// for specific patterns.
///
/// ```
/// use regex_automata::{
/// hybrid::dfa::DFA,
/// Anchored, HalfMatch, PatternID, Input,
/// };
///
/// let dfa = DFA::builder()
/// .configure(DFA::config().starts_for_each_pattern(true))
/// .build_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?;
/// let mut cache = dfa.create_cache();
/// let haystack = "foo123";
///
/// // Since we are using the default leftmost-first match and both
/// // patterns match at the same starting position, only the first pattern
/// // will be returned in this case when doing a search for any of the
/// // patterns.
/// let expected = Some(HalfMatch::must(0, 6));
/// let got = dfa.try_search_fwd(&mut cache, &Input::new(haystack))?;
/// assert_eq!(expected, got);
///
/// // But if we want to check whether some other pattern matches, then we
/// // can provide its pattern ID.
/// let expected = Some(HalfMatch::must(1, 6));
/// let input = Input::new(haystack)
/// .anchored(Anchored::Pattern(PatternID::must(1)));
/// let got = dfa.try_search_fwd(&mut cache, &input)?;
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: specifying the bounds of a search
///
/// This example shows how providing the bounds of a search can produce
/// different results than simply sub-slicing the haystack.
///
/// ```
/// use regex_automata::{hybrid::dfa::DFA, HalfMatch, Input};
///
/// // N.B. We disable Unicode here so that we use a simple ASCII word
/// // boundary. Alternatively, we could enable heuristic support for
/// // Unicode word boundaries since our haystack is pure ASCII.
/// let dfa = DFA::new(r"(?-u)\b[0-9]{3}\b")?;
/// let mut cache = dfa.create_cache();
/// let haystack = "foo123bar";
///
/// // Since we sub-slice the haystack, the search doesn't know about the
/// // larger context and assumes that `123` is surrounded by word
/// // boundaries. And of course, the match position is reported relative
/// // to the sub-slice as well, which means we get `3` instead of `6`.
/// let expected = Some(HalfMatch::must(0, 3));
/// let got = dfa.try_search_fwd(
/// &mut cache,
/// &Input::new(&haystack[3..6]),
/// )?;
/// assert_eq!(expected, got);
///
/// // But if we provide the bounds of the search within the context of the
/// // entire haystack, then the search can take the surrounding context
/// // into account. (And if we did find a match, it would be reported
/// // as a valid offset into `haystack` instead of its sub-slice.)
/// let expected = None;
/// let got = dfa.try_search_fwd(
/// &mut cache,
/// &Input::new(haystack).range(3..6),
/// )?;
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn try_search_fwd(
&self,
cache: &mut Cache,
input: &Input<'_>,
) -> Result<Option<HalfMatch>, MatchError> {
let utf8empty = self.get_nfa().has_empty() && self.get_nfa().is_utf8();
let hm = match search::find_fwd(self, cache, input)? {
None => return Ok(None),
Some(hm) if !utf8empty => return Ok(Some(hm)),
Some(hm) => hm,
};
// We get to this point when we know our DFA can match the empty string
// AND when UTF-8 mode is enabled. In this case, we skip any matches
// whose offset splits a codepoint. Such a match is necessarily a
// zero-width match, because UTF-8 mode requires the underlying NFA
// to be built such that all non-empty matches span valid UTF-8.
// Therefore, any match that ends in the middle of a codepoint cannot
// be part of a span of valid UTF-8 and thus must be an empty match.
// In such cases, we skip it, so as not to report matches that split a
// codepoint.
//
// Note that this is not a checked assumption. Callers *can* provide an
// NFA with UTF-8 mode enabled but produces non-empty matches that span
// invalid UTF-8. But doing so is documented to result in unspecified
// behavior.
empty::skip_splits_fwd(input, hm, hm.offset(), |input| {
let got = search::find_fwd(self, cache, input)?;
Ok(got.map(|hm| (hm, hm.offset())))
})
}
/// Executes a reverse search and returns the start of the position of the
/// leftmost match that is found. If no match exists, then `None` is
/// returned.
///
/// # Errors
///
/// This routine errors if the search could not complete. This can occur
/// in a number of circumstances:
///
/// * The configuration of the lazy DFA may permit it to "quit" the search.
/// For example, setting quit bytes or enabling heuristic support for
/// Unicode word boundaries. The default configuration does not enable any
/// option that could result in the lazy DFA quitting.
/// * The configuration of the lazy DFA may also permit it to "give up"
/// on a search if it makes ineffective use of its transition table
/// cache. The default configuration does not enable this by default,
/// although it is typically a good idea to.
/// * When the provided `Input` configuration is not supported. For
/// example, by providing an unsupported anchor mode.
///
/// When a search returns an error, callers cannot know whether a match
/// exists or not.
///
/// # Example
///
/// This routine is principally useful when used in
/// conjunction with the
/// [`nfa::thompson::Config::reverse`](crate::nfa::thompson::Config::reverse)
/// configuration. In general, it's unlikely to be correct to use both
/// `try_search_fwd` and `try_search_rev` with the same DFA since any
/// particular DFA will only support searching in one direction with
/// respect to the pattern.
///
/// ```
/// use regex_automata::{
/// nfa::thompson,
/// hybrid::dfa::DFA,
/// HalfMatch, Input,
/// };
///
/// let dfa = DFA::builder()
/// .thompson(thompson::Config::new().reverse(true))
/// .build("foo[0-9]+")?;
/// let mut cache = dfa.create_cache();
/// let expected = HalfMatch::must(0, 0);
/// assert_eq!(
/// Some(expected),
/// dfa.try_search_rev(&mut cache, &Input::new("foo12345"))?,
/// );
///
/// // Even though a match is found after reading the last byte (`c`),
/// // the leftmost first match semantics demand that we find the earliest
/// // match that prefers earlier parts of the pattern over latter parts.
/// let dfa = DFA::builder()
/// .thompson(thompson::Config::new().reverse(true))
/// .build("abc|c")?;
/// let mut cache = dfa.create_cache();
/// let expected = HalfMatch::must(0, 0);
/// assert_eq!(Some(expected), dfa.try_search_rev(
/// &mut cache, &Input::new("abc"))?,
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: UTF-8 mode
///
/// This examples demonstrates that UTF-8 mode applies to reverse
/// DFAs. When UTF-8 mode is enabled in the underlying NFA, then all
/// matches reported must correspond to valid UTF-8 spans. This includes
/// prohibiting zero-width matches that split a codepoint.
///
/// UTF-8 mode is enabled by default. Notice below how the only zero-width
/// matches reported are those at UTF-8 boundaries:
///
/// ```
/// use regex_automata::{
/// hybrid::dfa::DFA,
/// nfa::thompson,
/// HalfMatch, Input, MatchKind,
/// };
///
/// let dfa = DFA::builder()
/// .thompson(thompson::Config::new().reverse(true))
/// .build(r"")?;
/// let mut cache = dfa.create_cache();
///
/// // Run the reverse DFA to collect all matches.
/// let mut input = Input::new("☃");
/// let mut matches = vec![];
/// loop {
/// match dfa.try_search_rev(&mut cache, &input)? {
/// None => break,
/// Some(hm) => {
/// matches.push(hm);
/// if hm.offset() == 0 || input.end() == 0 {
/// break;
/// } else if hm.offset() < input.end() {
/// input.set_end(hm.offset());
/// } else {
/// // This is only necessary to handle zero-width
/// // matches, which of course occur in this example.
/// // Without this, the search would never advance
/// // backwards beyond the initial match.
/// input.set_end(input.end() - 1);
/// }
/// }
/// }
/// }
///
/// // No matches split a codepoint.
/// let expected = vec![
/// HalfMatch::must(0, 3),
/// HalfMatch::must(0, 0),
/// ];
/// assert_eq!(expected, matches);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Now let's look at the same example, but with UTF-8 mode on the
/// underlying NFA disabled:
///
/// ```
/// use regex_automata::{
/// hybrid::dfa::DFA,
/// nfa::thompson,
/// HalfMatch, Input, MatchKind,
/// };
///
/// let dfa = DFA::builder()
/// .thompson(thompson::Config::new().reverse(true).utf8(false))
/// .build(r"")?;
/// let mut cache = dfa.create_cache();
///
/// // Run the reverse DFA to collect all matches.
/// let mut input = Input::new("☃");
/// let mut matches = vec![];
/// loop {
/// match dfa.try_search_rev(&mut cache, &input)? {
/// None => break,
/// Some(hm) => {
/// matches.push(hm);
/// if hm.offset() == 0 || input.end() == 0 {
/// break;
/// } else if hm.offset() < input.end() {
/// input.set_end(hm.offset());
/// } else {
/// // This is only necessary to handle zero-width
/// // matches, which of course occur in this example.
/// // Without this, the search would never advance
/// // backwards beyond the initial match.
/// input.set_end(input.end() - 1);
/// }
/// }
/// }
/// }
///
/// // No matches split a codepoint.
/// let expected = vec![
/// HalfMatch::must(0, 3),
/// HalfMatch::must(0, 2),
/// HalfMatch::must(0, 1),
/// HalfMatch::must(0, 0),
/// ];
/// assert_eq!(expected, matches);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn try_search_rev(
&self,
cache: &mut Cache,
input: &Input<'_>,
) -> Result<Option<HalfMatch>, MatchError> {
let utf8empty = self.get_nfa().has_empty() && self.get_nfa().is_utf8();
let hm = match search::find_rev(self, cache, input)? {
None => return Ok(None),
Some(hm) if !utf8empty => return Ok(Some(hm)),
Some(hm) => hm,
};
empty::skip_splits_rev(input, hm, hm.offset(), |input| {
let got = search::find_rev(self, cache, input)?;
Ok(got.map(|hm| (hm, hm.offset())))
})
}
/// Executes an overlapping forward search and returns the end position of
/// matches as they are found. If no match exists, then `None` is returned.
///
/// This routine is principally only useful when searching for multiple
/// patterns on inputs where multiple patterns may match the same regions
/// of text. In particular, callers must preserve the automaton's search
/// state from prior calls so that the implementation knows where the last
/// match occurred.
///
/// When using this routine to implement an iterator of overlapping
/// matches, the `start` of the search should remain invariant throughout
/// iteration. The `OverlappingState` given to the search will keep track
/// of the current position of the search. (This is because multiple
/// matches may be reported at the same position, so only the search
/// implementation itself knows when to advance the position.)
///
/// If for some reason you want the search to forget about its previous
/// state and restart the search at a particular position, then setting the
/// state to [`OverlappingState::start`] will accomplish that.
///
/// # Errors
///
/// This routine errors if the search could not complete. This can occur
/// in a number of circumstances:
///
/// * The configuration of the lazy DFA may permit it to "quit" the search.
/// For example, setting quit bytes or enabling heuristic support for
/// Unicode word boundaries. The default configuration does not enable any
/// option that could result in the lazy DFA quitting.
/// * The configuration of the lazy DFA may also permit it to "give up"
/// on a search if it makes ineffective use of its transition table
/// cache. The default configuration does not enable this by default,
/// although it is typically a good idea to.
/// * When the provided `Input` configuration is not supported. For
/// example, by providing an unsupported anchor mode.
///
/// When a search returns an error, callers cannot know whether a match
/// exists or not.
///
/// # Example
///
/// This example shows how to run a basic overlapping search. Notice
/// that we build the automaton with a `MatchKind::All` configuration.
/// Overlapping searches are unlikely to work as one would expect when
/// using the default `MatchKind::LeftmostFirst` match semantics, since
/// leftmost-first matching is fundamentally incompatible with overlapping
/// searches. Namely, overlapping searches need to report matches as they
/// are seen, where as leftmost-first searches will continue searching even
/// after a match has been observed in order to find the conventional end
/// position of the match. More concretely, leftmost-first searches use
/// dead states to terminate a search after a specific match can no longer
/// be extended. Overlapping searches instead do the opposite by continuing
/// the search to find totally new matches (potentially of other patterns).
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
/// hybrid::dfa::{DFA, OverlappingState},
/// HalfMatch, Input, MatchKind,
/// };
///
/// let dfa = DFA::builder()
/// .configure(DFA::config().match_kind(MatchKind::All))
/// .build_many(&[r"\w+$", r"\S+$"])?;
/// let mut cache = dfa.create_cache();
///
/// let haystack = "@foo";
/// let mut state = OverlappingState::start();
///
/// let expected = Some(HalfMatch::must(1, 4));
/// dfa.try_search_overlapping_fwd(
/// &mut cache, &Input::new(haystack), &mut state,
/// )?;
/// assert_eq!(expected, state.get_match());
///
/// // The first pattern also matches at the same position, so re-running
/// // the search will yield another match. Notice also that the first
/// // pattern is returned after the second. This is because the second
/// // pattern begins its match before the first, is therefore an earlier
/// // match and is thus reported first.
/// let expected = Some(HalfMatch::must(0, 4));
/// dfa.try_search_overlapping_fwd(
/// &mut cache, &Input::new(haystack), &mut state,
/// )?;
/// assert_eq!(expected, state.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn try_search_overlapping_fwd(
&self,
cache: &mut Cache,
input: &Input<'_>,
state: &mut OverlappingState,
) -> Result<(), MatchError> {
let utf8empty = self.get_nfa().has_empty() && self.get_nfa().is_utf8();
search::find_overlapping_fwd(self, cache, input, state)?;
match state.get_match() {
None => Ok(()),
Some(_) if !utf8empty => Ok(()),
Some(_) => skip_empty_utf8_splits_overlapping(
input,
state,
|input, state| {
search::find_overlapping_fwd(self, cache, input, state)
},
),
}
}
/// Executes a reverse overlapping search and returns the start of the
/// position of the leftmost match that is found. If no match exists, then
/// `None` is returned.
///
/// When using this routine to implement an iterator of overlapping
/// matches, the `start` of the search should remain invariant throughout
/// iteration. The `OverlappingState` given to the search will keep track
/// of the current position of the search. (This is because multiple
/// matches may be reported at the same position, so only the search
/// implementation itself knows when to advance the position.)
///
/// If for some reason you want the search to forget about its previous
/// state and restart the search at a particular position, then setting the
/// state to [`OverlappingState::start`] will accomplish that.
///
/// # Errors
///
/// This routine errors if the search could not complete. This can occur
/// in a number of circumstances:
///
/// * The configuration of the lazy DFA may permit it to "quit" the search.
/// For example, setting quit bytes or enabling heuristic support for
/// Unicode word boundaries. The default configuration does not enable any
/// option that could result in the lazy DFA quitting.
/// * The configuration of the lazy DFA may also permit it to "give up"
/// on a search if it makes ineffective use of its transition table
/// cache. The default configuration does not enable this by default,
/// although it is typically a good idea to.
/// * When the provided `Input` configuration is not supported. For
/// example, by providing an unsupported anchor mode.
///
/// When a search returns an error, callers cannot know whether a match
/// exists or not.
///
/// # Example: UTF-8 mode
///
/// This examples demonstrates that UTF-8 mode applies to reverse
/// DFAs. When UTF-8 mode is enabled in the underlying NFA, then all
/// matches reported must correspond to valid UTF-8 spans. This includes
/// prohibiting zero-width matches that split a codepoint.
///
/// UTF-8 mode is enabled by default. Notice below how the only zero-width
/// matches reported are those at UTF-8 boundaries:
///
/// ```
/// use regex_automata::{
/// hybrid::dfa::{DFA, OverlappingState},
/// nfa::thompson,
/// HalfMatch, Input, MatchKind,
/// };
///
/// let dfa = DFA::builder()
/// .configure(DFA::config().match_kind(MatchKind::All))
/// .thompson(thompson::Config::new().reverse(true))
/// .build_many(&[r"", r"☃"])?;
/// let mut cache = dfa.create_cache();
///
/// // Run the reverse DFA to collect all matches.
/// let input = Input::new("☃");
/// let mut state = OverlappingState::start();
/// let mut matches = vec![];
/// loop {
/// dfa.try_search_overlapping_rev(&mut cache, &input, &mut state)?;
/// match state.get_match() {
/// None => break,
/// Some(hm) => matches.push(hm),
/// }
/// }
///
/// // No matches split a codepoint.
/// let expected = vec![
/// HalfMatch::must(0, 3),
/// HalfMatch::must(1, 0),
/// HalfMatch::must(0, 0),
/// ];
/// assert_eq!(expected, matches);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Now let's look at the same example, but with UTF-8 mode on the
/// underlying NFA disabled:
///
/// ```
/// use regex_automata::{
/// hybrid::dfa::{DFA, OverlappingState},
/// nfa::thompson,
/// HalfMatch, Input, MatchKind,
/// };
///
/// let dfa = DFA::builder()
/// .configure(DFA::config().match_kind(MatchKind::All))
/// .thompson(thompson::Config::new().reverse(true).utf8(false))
/// .build_many(&[r"", r"☃"])?;
/// let mut cache = dfa.create_cache();
///
/// // Run the reverse DFA to collect all matches.
/// let input = Input::new("☃");
/// let mut state = OverlappingState::start();
/// let mut matches = vec![];
/// loop {
/// dfa.try_search_overlapping_rev(&mut cache, &input, &mut state)?;
/// match state.get_match() {
/// None => break,
/// Some(hm) => matches.push(hm),
/// }
/// }
///
/// // Now *all* positions match, even within a codepoint,
/// // because we lifted the requirement that matches
/// // correspond to valid UTF-8 spans.
/// let expected = vec![
/// HalfMatch::must(0, 3),
/// HalfMatch::must(0, 2),
/// HalfMatch::must(0, 1),
/// HalfMatch::must(1, 0),
/// HalfMatch::must(0, 0),
/// ];
/// assert_eq!(expected, matches);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn try_search_overlapping_rev(
&self,
cache: &mut Cache,
input: &Input<'_>,
state: &mut OverlappingState,
) -> Result<(), MatchError> {
let utf8empty = self.get_nfa().has_empty() && self.get_nfa().is_utf8();
search::find_overlapping_rev(self, cache, input, state)?;
match state.get_match() {
None => Ok(()),
Some(_) if !utf8empty => Ok(()),
Some(_) => skip_empty_utf8_splits_overlapping(
input,
state,
|input, state| {
search::find_overlapping_rev(self, cache, input, state)
},
),
}
}
/// Writes the set of patterns that match anywhere in the given search
/// configuration to `patset`. If multiple patterns match at the same
/// position and the underlying DFA supports overlapping matches, then all
/// matching patterns are written to the given set.
///
/// Unless all of the patterns in this DFA are anchored, then generally
/// speaking, this will visit every byte in the haystack.
///
/// This search routine *does not* clear the pattern set. This gives some
/// flexibility to the caller (e.g., running multiple searches with the
/// same pattern set), but does make the API bug-prone if you're reusing
/// the same pattern set for multiple searches but intended them to be
/// independent.
///
/// If a pattern ID matched but the given `PatternSet` does not have
/// sufficient capacity to store it, then it is not inserted and silently
/// dropped.
///
/// # Errors
///
/// This routine errors if the search could not complete. This can occur
/// in a number of circumstances:
///
/// * The configuration of the lazy DFA may permit it to "quit" the search.
/// For example, setting quit bytes or enabling heuristic support for
/// Unicode word boundaries. The default configuration does not enable any
/// option that could result in the lazy DFA quitting.
/// * The configuration of the lazy DFA may also permit it to "give up"
/// on a search if it makes ineffective use of its transition table
/// cache. The default configuration does not enable this by default,
/// although it is typically a good idea to.
/// * When the provided `Input` configuration is not supported. For
/// example, by providing an unsupported anchor mode.
///
/// When a search returns an error, callers cannot know whether a match
/// exists or not.
///
/// # Example
///
/// This example shows how to find all matching patterns in a haystack,
/// even when some patterns match at the same position as other patterns.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
/// hybrid::dfa::DFA,
/// Input, MatchKind, PatternSet,
/// };
///
/// let patterns = &[
/// r"\w+", r"\d+", r"\pL+", r"foo", r"bar", r"barfoo", r"foobar",
/// ];
/// let dfa = DFA::builder()
/// .configure(DFA::config().match_kind(MatchKind::All))
/// .build_many(patterns)?;
/// let mut cache = dfa.create_cache();
///
/// let input = Input::new("foobar");
/// let mut patset = PatternSet::new(dfa.pattern_len());
/// dfa.try_which_overlapping_matches(&mut cache, &input, &mut patset)?;
/// let expected = vec![0, 2, 3, 4, 6];
/// let got: Vec<usize> = patset.iter().map(|p| p.as_usize()).collect();
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn try_which_overlapping_matches(
&self,
cache: &mut Cache,
input: &Input<'_>,
patset: &mut PatternSet,
) -> Result<(), MatchError> {
let mut state = OverlappingState::start();
while let Some(m) = {
self.try_search_overlapping_fwd(cache, input, &mut state)?;
state.get_match()
} {
let _ = patset.try_insert(m.pattern());
// There's nothing left to find, so we can stop. Or the caller
// asked us to.
if patset.is_full() || input.get_earliest() {
break;
}
}
Ok(())
}
}
impl DFA {
/// Transitions from the current state to the next state, given the next
/// byte of input.
///
/// The given cache is used to either reuse pre-computed state
/// transitions, or to store this newly computed transition for future
/// reuse. Thus, this routine guarantees that it will never return a state
/// ID that has an "unknown" tag.
///
/// # State identifier validity
///
/// The only valid value for `current` is the lazy state ID returned
/// by the most recent call to `next_state`, `next_state_untagged`,
/// `next_state_untagged_unchecked`, `start_state_forward` or
/// `state_state_reverse` for the given `cache`. Any state ID returned from
/// prior calls to these routines (with the same `cache`) is considered
/// invalid (even if it gives an appearance of working). State IDs returned
/// from _any_ prior call for different `cache` values are also always
/// invalid.
///
/// The returned ID is always a valid ID when `current` refers to a valid
/// ID. Moreover, this routine is defined for all possible values of
/// `input`.
///
/// These validity rules are not checked, even in debug mode. Callers are
/// required to uphold these rules themselves.
///
/// Violating these state ID validity rules will not sacrifice memory
/// safety, but _may_ produce an incorrect result or a panic.
///
/// # Panics
///
/// If the given ID does not refer to a valid state, then this routine
/// may panic but it also may not panic and instead return an invalid or
/// incorrect ID.
///
/// # Example
///
/// This shows a simplistic example for walking a lazy DFA for a given
/// haystack by using the `next_state` method.
///
/// ```
/// use regex_automata::{hybrid::dfa::DFA, Input};
///
/// let dfa = DFA::new(r"[a-z]+r")?;
/// let mut cache = dfa.create_cache();
/// let haystack = "bar".as_bytes();
///
/// // The start state is determined by inspecting the position and the
/// // initial bytes of the haystack.
/// let mut sid = dfa.start_state_forward(
/// &mut cache, &Input::new(haystack),
/// )?;
/// // Walk all the bytes in the haystack.
/// for &b in haystack {
/// sid = dfa.next_state(&mut cache, sid, b)?;
/// }
/// // Matches are always delayed by 1 byte, so we must explicitly walk the
/// // special "EOI" transition at the end of the search.
/// sid = dfa.next_eoi_state(&mut cache, sid)?;
/// assert!(sid.is_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn next_state(
&self,
cache: &mut Cache,
current: LazyStateID,
input: u8,
) -> Result<LazyStateID, CacheError> {
let class = usize::from(self.classes.get(input));
let offset = current.as_usize_untagged() + class;
let sid = cache.trans[offset];
if !sid.is_unknown() {
return Ok(sid);
}
let unit = alphabet::Unit::u8(input);
Lazy::new(self, cache).cache_next_state(current, unit)
}
/// Transitions from the current state to the next state, given the next
/// byte of input and a state ID that is not tagged.
///
/// The only reason to use this routine is performance. In particular, the
/// `next_state` method needs to do some additional checks, among them is
/// to account for identifiers to states that are not yet computed. In
/// such a case, the transition is computed on the fly. However, if it is
/// known that the `current` state ID is untagged, then these checks can be
/// omitted.
///
/// Since this routine does not compute states on the fly, it does not
/// modify the cache and thus cannot return an error. Consequently, `cache`
/// does not need to be mutable and it is possible for this routine to
/// return a state ID corresponding to the special "unknown" state. In
/// this case, it is the caller's responsibility to use the prior state
/// ID and `input` with `next_state` in order to force the computation of
/// the unknown transition. Otherwise, trying to use the "unknown" state
/// ID will just result in transitioning back to itself, and thus never
/// terminating. (This is technically a special exemption to the state ID
/// validity rules, but is permissible since this routine is guarateed to
/// never mutate the given `cache`, and thus the identifier is guaranteed
/// to remain valid.)
///
/// See [`LazyStateID`] for more details on what it means for a state ID
/// to be tagged. Also, see
/// [`next_state_untagged_unchecked`](DFA::next_state_untagged_unchecked)
/// for this same idea, but with bounds checks forcefully elided.
///
/// # State identifier validity
///
/// The only valid value for `current` is an **untagged** lazy
/// state ID returned by the most recent call to `next_state`,
/// `next_state_untagged`, `next_state_untagged_unchecked`,
/// `start_state_forward` or `state_state_reverse` for the given `cache`.
/// Any state ID returned from prior calls to these routines (with the
/// same `cache`) is considered invalid (even if it gives an appearance
/// of working). State IDs returned from _any_ prior call for different
/// `cache` values are also always invalid.
///
/// The returned ID is always a valid ID when `current` refers to a valid
/// ID, although it may be tagged. Moreover, this routine is defined for
/// all possible values of `input`.
///
/// Not all validity rules are checked, even in debug mode. Callers are
/// required to uphold these rules themselves.
///
/// Violating these state ID validity rules will not sacrifice memory
/// safety, but _may_ produce an incorrect result or a panic.
///
/// # Panics
///
/// If the given ID does not refer to a valid state, then this routine
/// may panic but it also may not panic and instead return an invalid or
/// incorrect ID.
///
/// # Example
///
/// This shows a simplistic example for walking a lazy DFA for a given
/// haystack by using the `next_state_untagged` method where possible.
///
/// ```
/// use regex_automata::{hybrid::dfa::DFA, Input};
///
/// let dfa = DFA::new(r"[a-z]+r")?;
/// let mut cache = dfa.create_cache();
/// let haystack = "bar".as_bytes();
///
/// // The start state is determined by inspecting the position and the
/// // initial bytes of the haystack.
/// let mut sid = dfa.start_state_forward(
/// &mut cache, &Input::new(haystack),
/// )?;
/// // Walk all the bytes in the haystack.
/// let mut at = 0;
/// while at < haystack.len() {
/// if sid.is_tagged() {
/// sid = dfa.next_state(&mut cache, sid, haystack[at])?;
/// } else {
/// let mut prev_sid = sid;
/// // We attempt to chew through as much as we can while moving
/// // through untagged state IDs. Thus, the transition function
/// // does less work on average per byte. (Unrolling this loop
/// // may help even more.)
/// while at < haystack.len() {
/// prev_sid = sid;
/// sid = dfa.next_state_untagged(
/// &mut cache, sid, haystack[at],
/// );
/// at += 1;
/// if sid.is_tagged() {
/// break;
/// }
/// }
/// // We must ensure that we never proceed to the next iteration
/// // with an unknown state ID. If we don't account for this
/// // case, then search isn't guaranteed to terminate since all
/// // transitions on unknown states loop back to itself.
/// if sid.is_unknown() {
/// sid = dfa.next_state(
/// &mut cache, prev_sid, haystack[at - 1],
/// )?;
/// }
/// }
/// }
/// // Matches are always delayed by 1 byte, so we must explicitly walk the
/// // special "EOI" transition at the end of the search.
/// sid = dfa.next_eoi_state(&mut cache, sid)?;
/// assert!(sid.is_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn next_state_untagged(
&self,
cache: &Cache,
current: LazyStateID,
input: u8,
) -> LazyStateID {
debug_assert!(!current.is_tagged());
let class = usize::from(self.classes.get(input));
let offset = current.as_usize_unchecked() + class;
cache.trans[offset]
}
/// Transitions from the current state to the next state, eliding bounds
/// checks, given the next byte of input and a state ID that is not tagged.
///
/// The only reason to use this routine is performance. In particular, the
/// `next_state` method needs to do some additional checks, among them is
/// to account for identifiers to states that are not yet computed. In
/// such a case, the transition is computed on the fly. However, if it is
/// known that the `current` state ID is untagged, then these checks can be
/// omitted.
///
/// Since this routine does not compute states on the fly, it does not
/// modify the cache and thus cannot return an error. Consequently, `cache`
/// does not need to be mutable and it is possible for this routine to
/// return a state ID corresponding to the special "unknown" state. In
/// this case, it is the caller's responsibility to use the prior state
/// ID and `input` with `next_state` in order to force the computation of
/// the unknown transition. Otherwise, trying to use the "unknown" state
/// ID will just result in transitioning back to itself, and thus never
/// terminating. (This is technically a special exemption to the state ID
/// validity rules, but is permissible since this routine is guarateed to
/// never mutate the given `cache`, and thus the identifier is guaranteed
/// to remain valid.)
///
/// See [`LazyStateID`] for more details on what it means for a state ID
/// to be tagged. Also, see
/// [`next_state_untagged`](DFA::next_state_untagged)
/// for this same idea, but with memory safety guaranteed by retaining
/// bounds checks.
///
/// # State identifier validity
///
/// The only valid value for `current` is an **untagged** lazy
/// state ID returned by the most recent call to `next_state`,
/// `next_state_untagged`, `next_state_untagged_unchecked`,
/// `start_state_forward` or `state_state_reverse` for the given `cache`.
/// Any state ID returned from prior calls to these routines (with the
/// same `cache`) is considered invalid (even if it gives an appearance
/// of working). State IDs returned from _any_ prior call for different
/// `cache` values are also always invalid.
///
/// The returned ID is always a valid ID when `current` refers to a valid
/// ID, although it may be tagged. Moreover, this routine is defined for
/// all possible values of `input`.
///
/// Not all validity rules are checked, even in debug mode. Callers are
/// required to uphold these rules themselves.
///
/// Violating these state ID validity rules will not sacrifice memory
/// safety, but _may_ produce an incorrect result or a panic.
///
/// # Safety
///
/// Callers of this method must guarantee that `current` refers to a valid
/// state ID according to the rules described above. If `current` is not a
/// valid state ID for this automaton, then calling this routine may result
/// in undefined behavior.
///
/// If `current` is valid, then the ID returned is valid for all possible
/// values of `input`.
#[inline]
pub unsafe fn next_state_untagged_unchecked(
&self,
cache: &Cache,
current: LazyStateID,
input: u8,
) -> LazyStateID {
debug_assert!(!current.is_tagged());
let class = usize::from(self.classes.get(input));
let offset = current.as_usize_unchecked() + class;
*cache.trans.get_unchecked(offset)
}
/// Transitions from the current state to the next state for the special
/// EOI symbol.
///
/// The given cache is used to either reuse pre-computed state
/// transitions, or to store this newly computed transition for future
/// reuse. Thus, this routine guarantees that it will never return a state
/// ID that has an "unknown" tag.
///
/// This routine must be called at the end of every search in a correct
/// implementation of search. Namely, lazy DFAs in this crate delay matches
/// by one byte in order to support look-around operators. Thus, after
/// reaching the end of a haystack, a search implementation must follow one
/// last EOI transition.
///
/// It is best to think of EOI as an additional symbol in the alphabet of a
/// DFA that is distinct from every other symbol. That is, the alphabet of
/// lazy DFAs in this crate has a logical size of 257 instead of 256, where
/// 256 corresponds to every possible inhabitant of `u8`. (In practice, the
/// physical alphabet size may be smaller because of alphabet compression
/// via equivalence classes, but EOI is always represented somehow in the
/// alphabet.)
///
/// # State identifier validity
///
/// The only valid value for `current` is the lazy state ID returned
/// by the most recent call to `next_state`, `next_state_untagged`,
/// `next_state_untagged_unchecked`, `start_state_forward` or
/// `state_state_reverse` for the given `cache`. Any state ID returned from
/// prior calls to these routines (with the same `cache`) is considered
/// invalid (even if it gives an appearance of working). State IDs returned
/// from _any_ prior call for different `cache` values are also always
/// invalid.
///
/// The returned ID is always a valid ID when `current` refers to a valid
/// ID.
///
/// These validity rules are not checked, even in debug mode. Callers are
/// required to uphold these rules themselves.
///
/// Violating these state ID validity rules will not sacrifice memory
/// safety, but _may_ produce an incorrect result or a panic.
///
/// # Panics
///
/// If the given ID does not refer to a valid state, then this routine
/// may panic but it also may not panic and instead return an invalid or
/// incorrect ID.
///
/// # Example
///
/// This shows a simplistic example for walking a DFA for a given haystack,
/// and then finishing the search with the final EOI transition.
///
/// ```
/// use regex_automata::{hybrid::dfa::DFA, Input};
///
/// let dfa = DFA::new(r"[a-z]+r")?;
/// let mut cache = dfa.create_cache();
/// let haystack = "bar".as_bytes();
///
/// // The start state is determined by inspecting the position and the
/// // initial bytes of the haystack.
/// let mut sid = dfa.start_state_forward(
/// &mut cache, &Input::new(haystack),
/// )?;
/// // Walk all the bytes in the haystack.
/// for &b in haystack {
/// sid = dfa.next_state(&mut cache, sid, b)?;
/// }
/// // Matches are always delayed by 1 byte, so we must explicitly walk
/// // the special "EOI" transition at the end of the search. Without this
/// // final transition, the assert below will fail since the DFA will not
/// // have entered a match state yet!
/// sid = dfa.next_eoi_state(&mut cache, sid)?;
/// assert!(sid.is_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn next_eoi_state(
&self,
cache: &mut Cache,
current: LazyStateID,
) -> Result<LazyStateID, CacheError> {
let eoi = self.classes.eoi().as_usize();
let offset = current.as_usize_untagged() + eoi;
let sid = cache.trans[offset];
if !sid.is_unknown() {
return Ok(sid);
}
let unit = self.classes.eoi();
Lazy::new(self, cache).cache_next_state(current, unit)
}
/// Return the ID of the start state for this lazy DFA for the given
/// starting configuration.
///
/// Unlike typical DFA implementations, the start state for DFAs in this
/// crate is dependent on a few different factors:
///
/// * The [`Anchored`] mode of the search. Unanchored, anchored and
/// anchored searches for a specific [`PatternID`] all use different start
/// states.
/// * Whether a "look-behind" byte exists. For example, the `^` anchor
/// matches if and only if there is no look-behind byte.
/// * The specific value of that look-behind byte. For example, a `(?m:^)`
/// assertion only matches when there is either no look-behind byte, or
/// when the look-behind byte is a line terminator.
///
/// The [starting configuration](start::Config) provides the above
/// information.
///
/// This routine can be used for either forward or reverse searches.
/// Although, as a convenience, if you have an [`Input`], then it
/// may be more succinct to use [`DFA::start_state_forward`] or
/// [`DFA::start_state_reverse`]. Note, for example, that the convenience
/// routines return a [`MatchError`] on failure where as this routine
/// returns a [`StartError`].
///
/// # Errors
///
/// This may return a [`StartError`] if the search needs to give up when
/// determining the start state (for example, if it sees a "quit" byte
/// or if the cache has become inefficient). This can also return an
/// error if the given configuration contains an unsupported [`Anchored`]
/// configuration.
#[cfg_attr(feature = "perf-inline", inline(always))]
pub fn start_state(
&self,
cache: &mut Cache,
config: &start::Config,
) -> Result<LazyStateID, StartError> {
let lazy = LazyRef::new(self, cache);
let anchored = config.get_anchored();
let start = match config.get_look_behind() {
None => Start::Text,
Some(byte) => {
if !self.quitset.is_empty() && self.quitset.contains(byte) {
return Err(StartError::quit(byte));
}
self.start_map.get(byte)
}
};
let start_id = lazy.get_cached_start_id(anchored, start)?;
if !start_id.is_unknown() {
return Ok(start_id);
}
Lazy::new(self, cache).cache_start_group(anchored, start)
}
/// Return the ID of the start state for this lazy DFA when executing a
/// forward search.
///
/// This is a convenience routine for calling [`DFA::start_state`] that
/// converts the given [`Input`] to a [start configuration](start::Config).
/// Additionally, if an error occurs, it is converted from a [`StartError`]
/// to a [`MatchError`] using the offset information in the given
/// [`Input`].
///
/// # Errors
///
/// This may return a [`MatchError`] if the search needs to give up when
/// determining the start state (for example, if it sees a "quit" byte or
/// if the cache has become inefficient). This can also return an error if
/// the given `Input` contains an unsupported [`Anchored`] configuration.
#[cfg_attr(feature = "perf-inline", inline(always))]
pub fn start_state_forward(
&self,
cache: &mut Cache,
input: &Input<'_>,
) -> Result<LazyStateID, MatchError> {
let config = start::Config::from_input_forward(input);
self.start_state(cache, &config).map_err(|err| match err {
StartError::Cache { .. } => MatchError::gave_up(input.start()),
StartError::Quit { byte } => {
let offset = input
.start()
.checked_sub(1)
.expect("no quit in start without look-behind");
MatchError::quit(byte, offset)
}
StartError::UnsupportedAnchored { mode } => {
MatchError::unsupported_anchored(mode)
}
})
}
/// Return the ID of the start state for this lazy DFA when executing a
/// reverse search.
///
/// This is a convenience routine for calling [`DFA::start_state`] that
/// converts the given [`Input`] to a [start configuration](start::Config).
/// Additionally, if an error occurs, it is converted from a [`StartError`]
/// to a [`MatchError`] using the offset information in the given
/// [`Input`].
///
/// # Errors
///
/// This may return a [`MatchError`] if the search needs to give up when
/// determining the start state (for example, if it sees a "quit" byte or
/// if the cache has become inefficient). This can also return an error if
/// the given `Input` contains an unsupported [`Anchored`] configuration.
#[cfg_attr(feature = "perf-inline", inline(always))]
pub fn start_state_reverse(
&self,
cache: &mut Cache,
input: &Input<'_>,
) -> Result<LazyStateID, MatchError> {
let config = start::Config::from_input_reverse(input);
self.start_state(cache, &config).map_err(|err| match err {
StartError::Cache { .. } => MatchError::gave_up(input.end()),
StartError::Quit { byte } => {
let offset = input.end();
MatchError::quit(byte, offset)
}
StartError::UnsupportedAnchored { mode } => {
MatchError::unsupported_anchored(mode)
}
})
}
/// Returns the total number of patterns that match in this state.
///
/// If the lazy DFA was compiled with one pattern, then this must
/// necessarily always return `1` for all match states.
///
/// A lazy DFA guarantees that [`DFA::match_pattern`] can be called with
/// indices up to (but not including) the length returned by this routine
/// without panicking.
///
/// # Panics
///
/// If the given state is not a match state, then this may either panic
/// or return an incorrect result.
///
/// # Example
///
/// This example shows a simple instance of implementing overlapping
/// matches. In particular, it shows not only how to determine how many
/// patterns have matched in a particular state, but also how to access
/// which specific patterns have matched.
///
/// Notice that we must use [`MatchKind::All`] when building the DFA. If we
/// used [`MatchKind::LeftmostFirst`] instead, then the DFA would not be
/// constructed in a way that supports overlapping matches. (It would only
/// report a single pattern that matches at any particular point in time.)
///
/// Another thing to take note of is the patterns used and the order in
/// which the pattern IDs are reported. In the example below, pattern `3`
/// is yielded first. Why? Because it corresponds to the match that
/// appears first. Namely, the `@` symbol is part of `\S+` but not part
/// of any of the other patterns. Since the `\S+` pattern has a match that
/// starts to the left of any other pattern, its ID is returned before any
/// other.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{hybrid::dfa::DFA, Input, MatchKind};
///
/// let dfa = DFA::builder()
/// .configure(DFA::config().match_kind(MatchKind::All))
/// .build_many(&[
/// r"\w+", r"[a-z]+", r"[A-Z]+", r"\S+",
/// ])?;
/// let mut cache = dfa.create_cache();
/// let haystack = "@bar".as_bytes();
///
/// // The start state is determined by inspecting the position and the
/// // initial bytes of the haystack.
/// let mut sid = dfa.start_state_forward(
/// &mut cache, &Input::new(haystack),
/// )?;
/// // Walk all the bytes in the haystack.
/// for &b in haystack {
/// sid = dfa.next_state(&mut cache, sid, b)?;
/// }
/// sid = dfa.next_eoi_state(&mut cache, sid)?;
///
/// assert!(sid.is_match());
/// assert_eq!(dfa.match_len(&mut cache, sid), 3);
/// // The following calls are guaranteed to not panic since `match_len`
/// // returned `3` above.
/// assert_eq!(dfa.match_pattern(&mut cache, sid, 0).as_usize(), 3);
/// assert_eq!(dfa.match_pattern(&mut cache, sid, 1).as_usize(), 0);
/// assert_eq!(dfa.match_pattern(&mut cache, sid, 2).as_usize(), 1);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn match_len(&self, cache: &Cache, id: LazyStateID) -> usize {
assert!(id.is_match());
LazyRef::new(self, cache).get_cached_state(id).match_len()
}
/// Returns the pattern ID corresponding to the given match index in the
/// given state.
///
/// See [`DFA::match_len`] for an example of how to use this method
/// correctly. Note that if you know your lazy DFA is configured with a
/// single pattern, then this routine is never necessary since it will
/// always return a pattern ID of `0` for an index of `0` when `id`
/// corresponds to a match state.
///
/// Typically, this routine is used when implementing an overlapping
/// search, as the example for `DFA::match_len` does.
///
/// # Panics
///
/// If the state ID is not a match state or if the match index is out
/// of bounds for the given state, then this routine may either panic
/// or produce an incorrect result. If the state ID is correct and the
/// match index is correct, then this routine always produces a valid
/// `PatternID`.
#[inline]
pub fn match_pattern(
&self,
cache: &Cache,
id: LazyStateID,
match_index: usize,
) -> PatternID {
// This is an optimization for the very common case of a DFA with a
// single pattern. This conditional avoids a somewhat more costly path
// that finds the pattern ID from the corresponding `State`, which
// requires a bit of slicing/pointer-chasing. This optimization tends
// to only matter when matches are frequent.
if self.pattern_len() == 1 {
return PatternID::ZERO;
}
LazyRef::new(self, cache)
.get_cached_state(id)
.match_pattern(match_index)
}
}
/// A cache represents a partially computed DFA.
///
/// A cache is the key component that differentiates a classical DFA and a
/// hybrid NFA/DFA (also called a "lazy DFA"). Where a classical DFA builds a
/// complete transition table that can handle all possible inputs, a hybrid
/// NFA/DFA starts with an empty transition table and builds only the parts
/// required during search. The parts that are built are stored in a cache. For
/// this reason, a cache is a required parameter for nearly every operation on
/// a [`DFA`].
///
/// Caches can be created from their corresponding DFA via
/// [`DFA::create_cache`]. A cache can only be used with either the DFA that
/// created it, or the DFA that was most recently used to reset it with
/// [`Cache::reset`]. Using a cache with any other DFA may result in panics
/// or incorrect results.
#[derive(Clone, Debug)]
pub struct Cache {
// N.B. If you're looking to understand how determinization works, it
// is probably simpler to first grok src/dfa/determinize.rs, since that
// doesn't have the "laziness" component.
/// The transition table.
///
/// Given a `current` LazyStateID and an `input` byte, the next state can
/// be computed via `trans[untagged(current) + equiv_class(input)]`. Notice
/// that no multiplication is used. That's because state identifiers are
/// "premultiplied."
///
/// Note that the next state may be the "unknown" state. In this case, the
/// next state is not known and determinization for `current` on `input`
/// must be performed.
trans: Vec<LazyStateID>,
/// The starting states for this DFA.
///
/// These are computed lazily. Initially, these are all set to "unknown"
/// lazy state IDs.
///
/// When 'starts_for_each_pattern' is disabled (the default), then the size
/// of this is constrained to the possible starting configurations based
/// on the search parameters. (At time of writing, that's 4.) However,
/// when starting states for each pattern is enabled, then there are N
/// additional groups of starting states, where each group reflects the
/// different possible configurations and N is the number of patterns.
starts: Vec<LazyStateID>,
/// A sequence of NFA/DFA powerset states that have been computed for this
/// lazy DFA. This sequence is indexable by untagged LazyStateIDs. (Every
/// tagged LazyStateID can be used to index this sequence by converting it
/// to its untagged form.)
states: Vec<State>,
/// A map from states to their corresponding IDs. This map may be accessed
/// via the raw byte representation of a state, which means that a `State`
/// does not need to be allocated to determine whether it already exists
/// in this map. Indeed, the existence of such a state is what determines
/// whether we allocate a new `State` or not.
///
/// The higher level idea here is that we do just enough determinization
/// for a state to check whether we've already computed it. If we have,
/// then we can save a little (albeit not much) work. The real savings is
/// in memory usage. If we never checked for trivially duplicate states,
/// then our memory usage would explode to unreasonable levels.
states_to_id: StateMap,
/// Sparse sets used to track which NFA states have been visited during
/// various traversals.
sparses: SparseSets,
/// Scratch space for traversing the NFA graph. (We use space on the heap
/// instead of the call stack.)
stack: Vec<NFAStateID>,
/// Scratch space for building a NFA/DFA powerset state. This is used to
/// help amortize allocation since not every powerset state generated is
/// added to the cache. In particular, if it already exists in the cache,
/// then there is no need to allocate a new `State` for it.
scratch_state_builder: StateBuilderEmpty,
/// A simple abstraction for handling the saving of at most a single state
/// across a cache clearing. This is required for correctness. Namely, if
/// adding a new state after clearing the cache fails, then the caller
/// must retain the ability to continue using the state ID given. The
/// state corresponding to the state ID is what we preserve across cache
/// clearings.
state_saver: StateSaver,
/// The memory usage, in bytes, used by 'states' and 'states_to_id'. We
/// track this as new states are added since states use a variable amount
/// of heap. Tracking this as we add states makes it possible to compute
/// the total amount of memory used by the determinizer in constant time.
memory_usage_state: usize,
/// The number of times the cache has been cleared. When a minimum cache
/// clear count is set, then the cache will return an error instead of
/// clearing the cache if the count has been exceeded.
clear_count: usize,
/// The total number of bytes searched since the last time this cache was
/// cleared, not including the current search.
///
/// This can be added to the length of the current search to get the true
/// total number of bytes searched.
///
/// This is generally only non-zero when the
/// `Cache::search_{start,update,finish}` APIs are used to track search
/// progress.
bytes_searched: usize,
/// The progress of the current search.
///
/// This is only non-`None` when callers utlize the `Cache::search_start`,
/// `Cache::search_update` and `Cache::search_finish` APIs.
///
/// The purpose of recording search progress is to be able to make a
/// determination about the efficiency of the cache. Namely, by keeping
/// track of the
progress: Option<SearchProgress>,
}
impl Cache {
/// Create a new cache for the given lazy DFA.
///
/// The cache returned should only be used for searches for the given DFA.
/// If you want to reuse the cache for another DFA, then you must call
/// [`Cache::reset`] with that DFA.
pub fn new(dfa: &DFA) -> Cache {
let mut cache = Cache {
trans: alloc::vec![],
starts: alloc::vec![],
states: alloc::vec![],
states_to_id: StateMap::new(),
sparses: SparseSets::new(dfa.get_nfa().states().len()),
stack: alloc::vec![],
scratch_state_builder: StateBuilderEmpty::new(),
state_saver: StateSaver::none(),
memory_usage_state: 0,
clear_count: 0,
bytes_searched: 0,
progress: None,
};
debug!("pre-init lazy DFA cache size: {}", cache.memory_usage());
Lazy { dfa, cache: &mut cache }.init_cache();
debug!("post-init lazy DFA cache size: {}", cache.memory_usage());
cache
}
/// Reset this cache such that it can be used for searching with the given
/// lazy DFA (and only that DFA).
///
/// A cache reset permits reusing memory already allocated in this cache
/// with a different lazy DFA.
///
/// Resetting a cache sets its "clear count" to 0. This is relevant if the
/// lazy DFA has been configured to "give up" after it has cleared the
/// cache a certain number of times.
///
/// Any lazy state ID generated by the cache prior to resetting it is
/// invalid after the reset.
///
/// # Example
///
/// This shows how to re-purpose a cache for use with a different DFA.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{hybrid::dfa::DFA, HalfMatch, Input};
///
/// let dfa1 = DFA::new(r"\w")?;
/// let dfa2 = DFA::new(r"\W")?;
///
/// let mut cache = dfa1.create_cache();
/// assert_eq!(
/// Some(HalfMatch::must(0, 2)),
/// dfa1.try_search_fwd(&mut cache, &Input::new("Δ"))?,
/// );
///
/// // Using 'cache' with dfa2 is not allowed. It may result in panics or
/// // incorrect results. In order to re-purpose the cache, we must reset
/// // it with the DFA we'd like to use it with.
/// //
/// // Similarly, after this reset, using the cache with 'dfa1' is also not
/// // allowed.
/// cache.reset(&dfa2);
/// assert_eq!(
/// Some(HalfMatch::must(0, 3)),
/// dfa2.try_search_fwd(&mut cache, &Input::new("☃"))?,
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn reset(&mut self, dfa: &DFA) {
Lazy::new(dfa, self).reset_cache()
}
/// Initializes a new search starting at the given position.
///
/// If a previous search was unfinished, then it is finished automatically
/// and a new search is begun.
///
/// Note that keeping track of search progress is _not necessary_
/// for correct implementations of search using a lazy DFA. Keeping
/// track of search progress is only necessary if you want the
/// [`Config::minimum_bytes_per_state`] configuration knob to work.
#[inline]
pub fn search_start(&mut self, at: usize) {
// If a previous search wasn't marked as finished, then finish it
// now automatically.
if let Some(p) = self.progress.take() {
self.bytes_searched += p.len();
}
self.progress = Some(SearchProgress { start: at, at });
}
/// Updates the current search to indicate that it has search to the
/// current position.
///
/// No special care needs to be taken for reverse searches. Namely, the
/// position given may be _less than_ the starting position of the search.
///
/// # Panics
///
/// This panics if no search has been started by [`Cache::search_start`].
#[inline]
pub fn search_update(&mut self, at: usize) {
let p =
self.progress.as_mut().expect("no in-progress search to update");
p.at = at;
}
/// Indicates that a search has finished at the given position.
///
/// # Panics
///
/// This panics if no search has been started by [`Cache::search_start`].
#[inline]
pub fn search_finish(&mut self, at: usize) {
let mut p =
self.progress.take().expect("no in-progress search to finish");
p.at = at;
self.bytes_searched += p.len();
}
/// Returns the total number of bytes that have been searched since this
/// cache was last cleared.
///
/// This is useful for determining the efficiency of the cache. For
/// example, the lazy DFA uses this value in conjunction with the
/// [`Config::minimum_bytes_per_state`] knob to help determine whether it
/// should quit searching.
///
/// This always returns `0` if search progress isn't being tracked. Note
/// that the lazy DFA search routines in this crate always track search
/// progress.
pub fn search_total_len(&self) -> usize {
self.bytes_searched + self.progress.as_ref().map_or(0, |p| p.len())
}
/// Returns the total number of times this cache has been cleared since it
/// was either created or last reset.
///
/// This is useful for informational purposes or if you want to change
/// search strategies based on the number of times the cache has been
/// cleared.
pub fn clear_count(&self) -> usize {
self.clear_count
}
/// Returns the heap memory usage, in bytes, of this cache.
///
/// This does **not** include the stack size used up by this cache. To
/// compute that, use `std::mem::size_of::<Cache>()`.
pub fn memory_usage(&self) -> usize {
const ID_SIZE: usize = size_of::<LazyStateID>();
const STATE_SIZE: usize = size_of::<State>();
// NOTE: If you make changes to the below, then
// 'minimum_cache_capacity' should be updated correspondingly.
self.trans.len() * ID_SIZE
+ self.starts.len() * ID_SIZE
+ self.states.len() * STATE_SIZE
// Maps likely use more memory than this, but it's probably close.
+ self.states_to_id.len() * (STATE_SIZE + ID_SIZE)
+ self.sparses.memory_usage()
+ self.stack.capacity() * ID_SIZE
+ self.scratch_state_builder.capacity()
// Heap memory used by 'State' in both 'states' and 'states_to_id'.
+ self.memory_usage_state
}
}
/// Keeps track of the progress of the current search.
///
/// This is updated via the `Cache::search_{start,update,finish}` APIs to
/// record how many bytes have been searched. This permits computing a
/// heuristic that represents the efficiency of a cache, and thus helps inform
/// whether the lazy DFA should give up or not.
#[derive(Clone, Debug)]
struct SearchProgress {
start: usize,
at: usize,
}
impl SearchProgress {
/// Returns the length, in bytes, of this search so far.
///
/// This automatically handles the case of a reverse search, where `at`
/// is likely to be less than `start`.
fn len(&self) -> usize {
if self.start <= self.at {
self.at - self.start
} else {
self.start - self.at
}
}
}
/// A map from states to state identifiers. When using std, we use a standard
/// hashmap, since it's a bit faster for this use case. (Other maps, like
/// one's based on FNV, have not yet been benchmarked.)
///
/// The main purpose of this map is to reuse states where possible. This won't
/// fully minimize the DFA, but it works well in a lot of cases.
#[cfg(feature = "std")]
type StateMap = std::collections::HashMap<State, LazyStateID>;
#[cfg(not(feature = "std"))]
type StateMap = alloc::collections::BTreeMap<State, LazyStateID>;
/// A type that groups methods that require the base NFA/DFA and writable
/// access to the cache.
#[derive(Debug)]
struct Lazy<'i, 'c> {
dfa: &'i DFA,
cache: &'c mut Cache,
}
impl<'i, 'c> Lazy<'i, 'c> {
/// Creates a new 'Lazy' wrapper for a DFA and its corresponding cache.
fn new(dfa: &'i DFA, cache: &'c mut Cache) -> Lazy<'i, 'c> {
Lazy { dfa, cache }
}
/// Return an immutable view by downgrading a writable cache to a read-only
/// cache.
fn as_ref<'a>(&'a self) -> LazyRef<'i, 'a> {
LazyRef::new(self.dfa, self.cache)
}
/// This is marked as 'inline(never)' to avoid bloating methods on 'DFA'
/// like 'next_state' and 'next_eoi_state' that are called in critical
/// areas. The idea is to let the optimizer focus on the other areas of
/// those methods as the hot path.
///
/// Here's an example that justifies 'inline(never)'
///
/// ```ignore
/// regex-cli find match hybrid \
/// --cache-capacity 100000000 \
/// -p '\pL{100}'
/// all-codepoints-utf8-100x
/// ```
///
/// Where 'all-codepoints-utf8-100x' is the UTF-8 encoding of every
/// codepoint, in sequence, repeated 100 times.
///
/// With 'inline(never)' hyperfine reports 1.1s per run. With
/// 'inline(always)', hyperfine reports 1.23s. So that's a 10% improvement.
#[cold]
#[inline(never)]
fn cache_next_state(
&mut self,
mut current: LazyStateID,
unit: alphabet::Unit,
) -> Result<LazyStateID, CacheError> {
let stride2 = self.dfa.stride2();
let empty_builder = self.get_state_builder();
let builder = determinize::next(
self.dfa.get_nfa(),
self.dfa.get_config().get_match_kind(),
&mut self.cache.sparses,
&mut self.cache.stack,
&self.cache.states[current.as_usize_untagged() >> stride2],
unit,
empty_builder,
);
let save_state = !self.as_ref().state_builder_fits_in_cache(&builder);
if save_state {
self.save_state(current);
}
let next = self.add_builder_state(builder, |sid| sid)?;
if save_state {
current = self.saved_state_id();
}
// This is the payoff. The next time 'next_state' is called with this
// state and alphabet unit, it will find this transition and avoid
// having to re-determinize this transition.
self.set_transition(current, unit, next);
Ok(next)
}
/// Compute and cache the starting state for the given pattern ID (if
/// present) and the starting configuration.
///
/// This panics if a pattern ID is given and the DFA isn't configured to
/// build anchored start states for each pattern.
///
/// This will never return an unknown lazy state ID.
///
/// If caching this state would otherwise result in a cache that has been
/// cleared too many times, then an error is returned.
#[cold]
#[inline(never)]
fn cache_start_group(
&mut self,
anchored: Anchored,
start: Start,
) -> Result<LazyStateID, StartError> {
let nfa_start_id = match anchored {
Anchored::No => self.dfa.get_nfa().start_unanchored(),
Anchored::Yes => self.dfa.get_nfa().start_anchored(),
Anchored::Pattern(pid) => {
if !self.dfa.get_config().get_starts_for_each_pattern() {
return Err(StartError::unsupported_anchored(anchored));
}
match self.dfa.get_nfa().start_pattern(pid) {
None => return Ok(self.as_ref().dead_id()),
Some(sid) => sid,
}
}
};
let id = self
.cache_start_one(nfa_start_id, start)
.map_err(StartError::cache)?;
self.set_start_state(anchored, start, id);
Ok(id)
}
/// Compute and cache the starting state for the given NFA state ID and the
/// starting configuration. The NFA state ID might be one of the following:
///
/// 1) An unanchored start state to match any pattern.
/// 2) An anchored start state to match any pattern.
/// 3) An anchored start state for a particular pattern.
///
/// This will never return an unknown lazy state ID.
///
/// If caching this state would otherwise result in a cache that has been
/// cleared too many times, then an error is returned.
fn cache_start_one(
&mut self,
nfa_start_id: NFAStateID,
start: Start,
) -> Result<LazyStateID, CacheError> {
let mut builder_matches = self.get_state_builder().into_matches();
determinize::set_lookbehind_from_start(
self.dfa.get_nfa(),
&start,
&mut builder_matches,
);
self.cache.sparses.set1.clear();
determinize::epsilon_closure(
self.dfa.get_nfa(),
nfa_start_id,
builder_matches.look_have(),
&mut self.cache.stack,
&mut self.cache.sparses.set1,
);
let mut builder = builder_matches.into_nfa();
determinize::add_nfa_states(
&self.dfa.get_nfa(),
&self.cache.sparses.set1,
&mut builder,
);
let tag_starts = self.dfa.get_config().get_specialize_start_states();
self.add_builder_state(builder, |id| {
if tag_starts {
id.to_start()
} else {
id
}
})
}
/// Either add the given builder state to this cache, or return an ID to an
/// equivalent state already in this cache.
///
/// In the case where no equivalent state exists, the idmap function given
/// may be used to transform the identifier allocated. This is useful if
/// the caller needs to tag the ID with additional information.
///
/// This will never return an unknown lazy state ID.
///
/// If caching this state would otherwise result in a cache that has been
/// cleared too many times, then an error is returned.
fn add_builder_state(
&mut self,
builder: StateBuilderNFA,
idmap: impl Fn(LazyStateID) -> LazyStateID,
) -> Result<LazyStateID, CacheError> {
if let Some(&cached_id) =
self.cache.states_to_id.get(builder.as_bytes())
{
// Since we have a cached state, put the constructed state's
// memory back into our scratch space, so that it can be reused.
self.put_state_builder(builder);
return Ok(cached_id);
}
let result = self.add_state(builder.to_state(), idmap);
self.put_state_builder(builder);
result
}
/// Allocate a new state ID and add the given state to this cache.
///
/// The idmap function given may be used to transform the identifier
/// allocated. This is useful if the caller needs to tag the ID with
/// additional information.
///
/// This will never return an unknown lazy state ID.
///
/// If caching this state would otherwise result in a cache that has been
/// cleared too many times, then an error is returned.
fn add_state(
&mut self,
state: State,
idmap: impl Fn(LazyStateID) -> LazyStateID,
) -> Result<LazyStateID, CacheError> {
if !self.as_ref().state_fits_in_cache(&state) {
self.try_clear_cache()?;
}
// It's important for this to come second, since the above may clear
// the cache. If we clear the cache after ID generation, then the ID
// is likely bunk since it would have been generated based on a larger
// transition table.
let mut id = idmap(self.next_state_id()?);
if state.is_match() {
id = id.to_match();
}
// Add room in the transition table. Since this is a fresh state, all
// of its transitions are unknown.
self.cache.trans.extend(
iter::repeat(self.as_ref().unknown_id()).take(self.dfa.stride()),
);
// When we add a sentinel state, we never want to set any quit
// transitions. Technically, this is harmless, since sentinel states
// have all of their transitions set to loop back to themselves. But
// when creating sentinel states before the quit sentinel state,
// this will try to call 'set_transition' on a state ID that doesn't
// actually exist yet, which isn't allowed. So we just skip doing so
// entirely.
if !self.dfa.quitset.is_empty() && !self.as_ref().is_sentinel(id) {
let quit_id = self.as_ref().quit_id();
for b in self.dfa.quitset.iter() {
self.set_transition(id, alphabet::Unit::u8(b), quit_id);
}
}
self.cache.memory_usage_state += state.memory_usage();
self.cache.states.push(state.clone());
self.cache.states_to_id.insert(state, id);
Ok(id)
}
/// Allocate a new state ID.
///
/// This will never return an unknown lazy state ID.
///
/// If caching this state would otherwise result in a cache that has been
/// cleared too many times, then an error is returned.
fn next_state_id(&mut self) -> Result<LazyStateID, CacheError> {
let sid = match LazyStateID::new(self.cache.trans.len()) {
Ok(sid) => sid,
Err(_) => {
self.try_clear_cache()?;
// This has to pass since we check that ID capacity at
// construction time can fit at least MIN_STATES states.
LazyStateID::new(self.cache.trans.len()).unwrap()
}
};
Ok(sid)
}
/// Attempt to clear the cache used by this lazy DFA.
///
/// If clearing the cache exceeds the minimum number of required cache
/// clearings, then this will return a cache error. In this case,
/// callers should bubble this up as the cache can't be used until it is
/// reset. Implementations of search should convert this error into a
/// [`MatchError::gave_up`].
///
/// If 'self.state_saver' is set to save a state, then this state is
/// persisted through cache clearing. Otherwise, the cache is returned to
/// its state after initialization with two exceptions: its clear count
/// is incremented and some of its memory likely has additional capacity.
/// That is, clearing a cache does _not_ release memory.
///
/// Otherwise, any lazy state ID generated by the cache prior to resetting
/// it is invalid after the reset.
fn try_clear_cache(&mut self) -> Result<(), CacheError> {
let c = self.dfa.get_config();
if let Some(min_count) = c.get_minimum_cache_clear_count() {
if self.cache.clear_count >= min_count {
if let Some(min_bytes_per) = c.get_minimum_bytes_per_state() {
let len = self.cache.search_total_len();
let min_bytes =
min_bytes_per.saturating_mul(self.cache.states.len());
// If we've searched 0 bytes then probably something has
// gone wrong and the lazy DFA search implementation isn't
// correctly updating the search progress state.
if len == 0 {
trace!(
"number of bytes searched is 0, but \
a minimum bytes per state searched ({}) is \
enabled, maybe Cache::search_update \
is not being used?",
min_bytes_per,
);
}
if len < min_bytes {
trace!(
"lazy DFA cache has been cleared {} times, \
which exceeds the limit of {}, \
AND its bytes searched per state is less \
than the configured minimum of {}, \
therefore lazy DFA is giving up \
(bytes searched since cache clear = {}, \
number of states = {})",
self.cache.clear_count,
min_count,
min_bytes_per,
len,
self.cache.states.len(),
);
return Err(CacheError::bad_efficiency());
} else {
trace!(
"lazy DFA cache has been cleared {} times, \
which exceeds the limit of {}, \
AND its bytes searched per state is greater \
than the configured minimum of {}, \
therefore lazy DFA is continuing! \
(bytes searched since cache clear = {}, \
number of states = {})",
self.cache.clear_count,
min_count,
min_bytes_per,
len,
self.cache.states.len(),
);
}
} else {
trace!(
"lazy DFA cache has been cleared {} times, \
which exceeds the limit of {}, \
since there is no configured bytes per state \
minimum, lazy DFA is giving up",
self.cache.clear_count,
min_count,
);
return Err(CacheError::too_many_cache_clears());
}
}
}
self.clear_cache();
Ok(())
}
/// Clears _and_ resets the cache. Resetting the cache means that no
/// states are persisted and the clear count is reset to 0. No heap memory
/// is released.
///
/// Note that the caller may reset a cache with a different DFA than what
/// it was created from. In which case, the cache can now be used with the
/// new DFA (and not the old DFA).
fn reset_cache(&mut self) {
self.cache.state_saver = StateSaver::none();
self.clear_cache();
// If a new DFA is used, it might have a different number of NFA
// states, so we need to make sure our sparse sets have the appropriate
// size.
self.cache.sparses.resize(self.dfa.get_nfa().states().len());
self.cache.clear_count = 0;
self.cache.progress = None;
}
/// Clear the cache used by this lazy DFA.
///
/// If 'self.state_saver' is set to save a state, then this state is
/// persisted through cache clearing. Otherwise, the cache is returned to
/// its state after initialization with two exceptions: its clear count
/// is incremented and some of its memory likely has additional capacity.
/// That is, clearing a cache does _not_ release memory.
///
/// Otherwise, any lazy state ID generated by the cache prior to resetting
/// it is invalid after the reset.
fn clear_cache(&mut self) {
self.cache.trans.clear();
self.cache.starts.clear();
self.cache.states.clear();
self.cache.states_to_id.clear();
self.cache.memory_usage_state = 0;
self.cache.clear_count += 1;
self.cache.bytes_searched = 0;
if let Some(ref mut progress) = self.cache.progress {
progress.start = progress.at;
}
trace!(
"lazy DFA cache has been cleared (count: {})",
self.cache.clear_count
);
self.init_cache();
// If the state we want to save is one of the sentinel
// (unknown/dead/quit) states, then 'init_cache' adds those back, and
// their identifier values remains invariant. So there's no need to add
// it again. (And indeed, doing so would be incorrect!)
if let Some((old_id, state)) = self.cache.state_saver.take_to_save() {
// If the state is one of the special sentinel states, then it is
// automatically added by cache initialization and its ID always
// remains the same. With that said, this should never occur since
// the sentinel states are all loop states back to themselves. So
// we should never be in a position where we're attempting to save
// a sentinel state since we never compute transitions out of a
// sentinel state.
assert!(
!self.as_ref().is_sentinel(old_id),
"cannot save sentinel state"
);
let new_id = self
.add_state(state, |id| {
if old_id.is_start() {
// We don't need to consult the
// 'specialize_start_states' config knob here, because
// if it's disabled, old_id.is_start() will never
// return true.
id.to_start()
} else {
id
}
})
// The unwrap here is OK because lazy DFA creation ensures that
// we have room in the cache to add MIN_STATES states. Since
// 'init_cache' above adds 3, this adds a 4th.
.expect("adding one state after cache clear must work");
self.cache.state_saver = StateSaver::Saved(new_id);
}
}
/// Initialize this cache from emptiness to a place where it can be used
/// for search.
///
/// This is called both at cache creation time and after the cache has been
/// cleared.
///
/// Primarily, this adds the three sentinel states and allocates some
/// initial memory.
fn init_cache(&mut self) {
// Why multiply by 2 here? Because we make room for both the unanchored
// and anchored start states. Unanchored is first and then anchored.
let mut starts_len = Start::len().checked_mul(2).unwrap();
// ... but if we also want start states for every pattern, we make room
// for that too.
if self.dfa.get_config().get_starts_for_each_pattern() {
starts_len += Start::len() * self.dfa.pattern_len();
}
self.cache
.starts
.extend(iter::repeat(self.as_ref().unknown_id()).take(starts_len));
// This is the set of NFA states that corresponds to each of our three
// sentinel states: the empty set.
let dead = State::dead();
// This sets up some states that we use as sentinels that are present
// in every DFA. While it would be technically possible to implement
// this DFA without explicitly putting these states in the transition
// table, this is convenient to do to make `next_state` correct for all
// valid state IDs without needing explicit conditionals to special
// case these sentinel states.
//
// All three of these states are "dead" states. That is, all of
// them transition only to themselves. So once you enter one of
// these states, it's impossible to leave them. Thus, any correct
// search routine must explicitly check for these state types. (Sans
// `unknown`, since that is only used internally to represent missing
// states.)
let unk_id =
self.add_state(dead.clone(), |id| id.to_unknown()).unwrap();
let dead_id = self.add_state(dead.clone(), |id| id.to_dead()).unwrap();
let quit_id = self.add_state(dead.clone(), |id| id.to_quit()).unwrap();
assert_eq!(unk_id, self.as_ref().unknown_id());
assert_eq!(dead_id, self.as_ref().dead_id());
assert_eq!(quit_id, self.as_ref().quit_id());
// The idea here is that if you start in an unknown/dead/quit state and
// try to transition on them, then you should end up where you started.
self.set_all_transitions(unk_id, unk_id);
self.set_all_transitions(dead_id, dead_id);
self.set_all_transitions(quit_id, quit_id);
// All of these states are technically equivalent from the FSM
// perspective, so putting all three of them in the cache isn't
// possible. (They are distinct merely because we use their
// identifiers as sentinels to mean something, as indicated by the
// names.) Moreover, we wouldn't want to do that. Unknown and quit
// states are special in that they are artificial constructions
// this implementation. But dead states are a natural part of
// determinization. When you reach a point in the NFA where you cannot
// go anywhere else, a dead state will naturally arise and we MUST
// reuse the canonical dead state that we've created here. Why? Because
// it is the state ID that tells the search routine whether a state is
// dead or not, and thus, whether to stop the search. Having a bunch of
// distinct dead states would be quite wasteful!
self.cache.states_to_id.insert(dead, dead_id);
}
/// Save the state corresponding to the ID given such that the state
/// persists through a cache clearing.
///
/// While the state may persist, the ID may not. In order to discover the
/// new state ID, one must call 'saved_state_id' after a cache clearing.
fn save_state(&mut self, id: LazyStateID) {
let state = self.as_ref().get_cached_state(id).clone();
self.cache.state_saver = StateSaver::ToSave { id, state };
}
/// Returns the updated lazy state ID for a state that was persisted
/// through a cache clearing.
///
/// It is only correct to call this routine when both a state has been
/// saved and the cache has just been cleared. Otherwise, this panics.
fn saved_state_id(&mut self) -> LazyStateID {
self.cache
.state_saver
.take_saved()
.expect("state saver does not have saved state ID")
}
/// Set all transitions on the state 'from' to 'to'.
fn set_all_transitions(&mut self, from: LazyStateID, to: LazyStateID) {
for unit in self.dfa.classes.representatives(..) {
self.set_transition(from, unit, to);
}
}
/// Set the transition on 'from' for 'unit' to 'to'.
///
/// This panics if either 'from' or 'to' is invalid.
///
/// All unit values are OK.
fn set_transition(
&mut self,
from: LazyStateID,
unit: alphabet::Unit,
to: LazyStateID,
) {
assert!(self.as_ref().is_valid(from), "invalid 'from' id: {:?}", from);
assert!(self.as_ref().is_valid(to), "invalid 'to' id: {:?}", to);
let offset =
from.as_usize_untagged() + self.dfa.classes.get_by_unit(unit);
self.cache.trans[offset] = to;
}
/// Set the start ID for the given pattern ID (if given) and starting
/// configuration to the ID given.
///
/// This panics if 'id' is not valid or if a pattern ID is given and
/// 'starts_for_each_pattern' is not enabled.
fn set_start_state(
&mut self,
anchored: Anchored,
start: Start,
id: LazyStateID,
) {
assert!(self.as_ref().is_valid(id));
let start_index = start.as_usize();
let index = match anchored {
Anchored::No => start_index,
Anchored::Yes => Start::len() + start_index,
Anchored::Pattern(pid) => {
assert!(
self.dfa.get_config().get_starts_for_each_pattern(),
"attempted to search for a specific pattern \
without enabling starts_for_each_pattern",
);
let pid = pid.as_usize();
(2 * Start::len()) + (Start::len() * pid) + start_index
}
};
self.cache.starts[index] = id;
}
/// Returns a state builder from this DFA that might have existing
/// capacity. This helps avoid allocs in cases where a state is built that
/// turns out to already be cached.
///
/// Callers must put the state builder back with 'put_state_builder',
/// otherwise the allocation reuse won't work.
fn get_state_builder(&mut self) -> StateBuilderEmpty {
core::mem::replace(
&mut self.cache.scratch_state_builder,
StateBuilderEmpty::new(),
)
}
/// Puts the given state builder back into this DFA for reuse.
///
/// Note that building a 'State' from a builder always creates a new alloc,
/// so callers should always put the builder back.
fn put_state_builder(&mut self, builder: StateBuilderNFA) {
let _ = core::mem::replace(
&mut self.cache.scratch_state_builder,
builder.clear(),
);
}
}
/// A type that groups methods that require the base NFA/DFA and read-only
/// access to the cache.
#[derive(Debug)]
struct LazyRef<'i, 'c> {
dfa: &'i DFA,
cache: &'c Cache,
}
impl<'i, 'c> LazyRef<'i, 'c> {
/// Creates a new 'Lazy' wrapper for a DFA and its corresponding cache.
fn new(dfa: &'i DFA, cache: &'c Cache) -> LazyRef<'i, 'c> {
LazyRef { dfa, cache }
}
/// Return the ID of the start state for the given configuration.
///
/// If the start state has not yet been computed, then this returns an
/// unknown lazy state ID.
#[cfg_attr(feature = "perf-inline", inline(always))]
fn get_cached_start_id(
&self,
anchored: Anchored,
start: Start,
) -> Result<LazyStateID, StartError> {
let start_index = start.as_usize();
let index = match anchored {
Anchored::No => start_index,
Anchored::Yes => Start::len() + start_index,
Anchored::Pattern(pid) => {
if !self.dfa.get_config().get_starts_for_each_pattern() {
return Err(StartError::unsupported_anchored(anchored));
}
if pid.as_usize() >= self.dfa.pattern_len() {
return Ok(self.dead_id());
}
(2 * Start::len())
+ (Start::len() * pid.as_usize())
+ start_index
}
};
Ok(self.cache.starts[index])
}
/// Return the cached NFA/DFA powerset state for the given ID.
///
/// This panics if the given ID does not address a valid state.
fn get_cached_state(&self, sid: LazyStateID) -> &State {
let index = sid.as_usize_untagged() >> self.dfa.stride2();
&self.cache.states[index]
}
/// Returns true if and only if the given ID corresponds to a "sentinel"
/// state.
///
/// A sentinel state is a state that signifies a special condition of
/// search, and where every transition maps back to itself. See LazyStateID
/// for more details. Note that start and match states are _not_ sentinels
/// since they may otherwise be real states with non-trivial transitions.
/// The purposes of sentinel states is purely to indicate something. Their
/// transitions are not meant to be followed.
fn is_sentinel(&self, id: LazyStateID) -> bool {
id == self.unknown_id() || id == self.dead_id() || id == self.quit_id()
}
/// Returns the ID of the unknown state for this lazy DFA.
fn unknown_id(&self) -> LazyStateID {
// This unwrap is OK since 0 is always a valid state ID.
LazyStateID::new(0).unwrap().to_unknown()
}
/// Returns the ID of the dead state for this lazy DFA.
fn dead_id(&self) -> LazyStateID {
// This unwrap is OK since the maximum value here is 1 * 512 = 512,
// which is <= 2047 (the maximum state ID on 16-bit systems). Where
// 512 is the worst case for our equivalence classes (every byte is a
// distinct class).
LazyStateID::new(1 << self.dfa.stride2()).unwrap().to_dead()
}
/// Returns the ID of the quit state for this lazy DFA.
fn quit_id(&self) -> LazyStateID {
// This unwrap is OK since the maximum value here is 2 * 512 = 1024,
// which is <= 2047 (the maximum state ID on 16-bit systems). Where
// 512 is the worst case for our equivalence classes (every byte is a
// distinct class).
LazyStateID::new(2 << self.dfa.stride2()).unwrap().to_quit()
}
/// Returns true if and only if the given ID is valid.
///
/// An ID is valid if it is both a valid index into the transition table
/// and is a multiple of the DFA's stride.
fn is_valid(&self, id: LazyStateID) -> bool {
let id = id.as_usize_untagged();
id < self.cache.trans.len() && id % self.dfa.stride() == 0
}
/// Returns true if adding the state given would fit in this cache.
fn state_fits_in_cache(&self, state: &State) -> bool {
let needed = self.cache.memory_usage()
+ self.memory_usage_for_one_more_state(state.memory_usage());
trace!(
"lazy DFA cache capacity check: {:?} ?<=? {:?}",
needed,
self.dfa.cache_capacity
);
needed <= self.dfa.cache_capacity
}
/// Returns true if adding the state to be built by the given builder would
/// fit in this cache.
fn state_builder_fits_in_cache(&self, state: &StateBuilderNFA) -> bool {
let needed = self.cache.memory_usage()
+ self.memory_usage_for_one_more_state(state.as_bytes().len());
needed <= self.dfa.cache_capacity
}
/// Returns the additional memory usage, in bytes, required to add one more
/// state to this cache. The given size should be the heap size, in bytes,
/// that would be used by the new state being added.
fn memory_usage_for_one_more_state(
&self,
state_heap_size: usize,
) -> usize {
const ID_SIZE: usize = size_of::<LazyStateID>();
const STATE_SIZE: usize = size_of::<State>();
self.dfa.stride() * ID_SIZE // additional space needed in trans table
+ STATE_SIZE // space in cache.states
+ (STATE_SIZE + ID_SIZE) // space in cache.states_to_id
+ state_heap_size // heap memory used by state itself
}
}
/// A simple type that encapsulates the saving of a state ID through a cache
/// clearing.
///
/// A state ID can be marked for saving with ToSave, while a state ID can be
/// saved itself with Saved.
#[derive(Clone, Debug)]
enum StateSaver {
/// An empty state saver. In this case, no states (other than the special
/// sentinel states) are preserved after clearing the cache.
None,
/// An ID of a state (and the state itself) that should be preserved after
/// the lazy DFA's cache has been cleared. After clearing, the updated ID
/// is stored in 'Saved' since it may have changed.
ToSave { id: LazyStateID, state: State },
/// An ID that of a state that has been persisted through a lazy DFA
/// cache clearing. The ID recorded here corresponds to an ID that was
/// once marked as ToSave. The IDs are likely not equivalent even though
/// the states they point to are.
Saved(LazyStateID),
}
impl StateSaver {
/// Create an empty state saver.
fn none() -> StateSaver {
StateSaver::None
}
/// Replace this state saver with an empty saver, and if this saver is a
/// request to save a state, return that request.
fn take_to_save(&mut self) -> Option<(LazyStateID, State)> {
match core::mem::replace(self, StateSaver::None) {
StateSaver::None | StateSaver::Saved(_) => None,
StateSaver::ToSave { id, state } => Some((id, state)),
}
}
/// Replace this state saver with an empty saver, and if this saver is a
/// saved state (or a request to save a state), return that state's ID.
///
/// The idea here is that a request to save a state isn't necessarily
/// honored because it might not be needed. e.g., Some higher level code
/// might request a state to be saved on the off chance that the cache gets
/// cleared when a new state is added at a lower level. But if that new
/// state is never added, then the cache is never cleared and the state and
/// its ID remain unchanged.
fn take_saved(&mut self) -> Option<LazyStateID> {
match core::mem::replace(self, StateSaver::None) {
StateSaver::None => None,
StateSaver::Saved(id) | StateSaver::ToSave { id, .. } => Some(id),
}
}
}
/// The configuration used for building a lazy DFA.
///
/// As a convenience, [`DFA::config`] is an alias for [`Config::new`]. The
/// advantage of the former is that it often lets you avoid importing the
/// `Config` type directly.
///
/// A lazy DFA configuration is a simple data object that is typically used
/// with [`Builder::configure`].
///
/// The default configuration guarantees that a search will never return a
/// "gave up" or "quit" error, although it is possible for a search to fail
/// if [`Config::starts_for_each_pattern`] wasn't enabled (which it is not by
/// default) and an [`Anchored::Pattern`] mode is requested via [`Input`].
#[derive(Clone, Debug, Default)]
pub struct Config {
// As with other configuration types in this crate, we put all our knobs
// in options so that we can distinguish between "default" and "not set."
// This makes it possible to easily combine multiple configurations
// without default values overwriting explicitly specified values. See the
// 'overwrite' method.
//
// For docs on the fields below, see the corresponding method setters.
match_kind: Option<MatchKind>,
pre: Option<Option<Prefilter>>,
starts_for_each_pattern: Option<bool>,
byte_classes: Option<bool>,
unicode_word_boundary: Option<bool>,
quitset: Option<ByteSet>,
specialize_start_states: Option<bool>,
cache_capacity: Option<usize>,
skip_cache_capacity_check: Option<bool>,
minimum_cache_clear_count: Option<Option<usize>>,
minimum_bytes_per_state: Option<Option<usize>>,
}
impl Config {
/// Return a new default lazy DFA builder configuration.
pub fn new() -> Config {
Config::default()
}
/// Set the desired match semantics.
///
/// The default is [`MatchKind::LeftmostFirst`], which corresponds to the
/// match semantics of Perl-like regex engines. That is, when multiple
/// patterns would match at the same leftmost position, the pattern that
/// appears first in the concrete syntax is chosen.
///
/// Currently, the only other kind of match semantics supported is
/// [`MatchKind::All`]. This corresponds to classical DFA construction
/// where all possible matches are added to the lazy DFA.
///
/// Typically, `All` is used when one wants to execute an overlapping
/// search and `LeftmostFirst` otherwise. In particular, it rarely makes
/// sense to use `All` with the various "leftmost" find routines, since the
/// leftmost routines depend on the `LeftmostFirst` automata construction
/// strategy. Specifically, `LeftmostFirst` adds dead states to the
/// lazy DFA as a way to terminate the search and report a match.
/// `LeftmostFirst` also supports non-greedy matches using this strategy
/// where as `All` does not.
///
/// # Example: overlapping search
///
/// This example shows the typical use of `MatchKind::All`, which is to
/// report overlapping matches.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{
/// hybrid::dfa::{DFA, OverlappingState},
/// HalfMatch, Input, MatchKind,
/// };
///
/// let dfa = DFA::builder()
/// .configure(DFA::config().match_kind(MatchKind::All))
/// .build_many(&[r"\w+$", r"\S+$"])?;
/// let mut cache = dfa.create_cache();
/// let haystack = "@foo";
/// let mut state = OverlappingState::start();
///
/// let expected = Some(HalfMatch::must(1, 4));
/// dfa.try_search_overlapping_fwd(
/// &mut cache, &Input::new(haystack), &mut state,
/// )?;
/// assert_eq!(expected, state.get_match());
///
/// // The first pattern also matches at the same position, so re-running
/// // the search will yield another match. Notice also that the first
/// // pattern is returned after the second. This is because the second
/// // pattern begins its match before the first, is therefore an earlier
/// // match and is thus reported first.
/// let expected = Some(HalfMatch::must(0, 4));
/// dfa.try_search_overlapping_fwd(
/// &mut cache, &Input::new(haystack), &mut state,
/// )?;
/// assert_eq!(expected, state.get_match());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: reverse automaton to find start of match
///
/// Another example for using `MatchKind::All` is for constructing a
/// reverse automaton to find the start of a match. `All` semantics are
/// used for this in order to find the longest possible match, which
/// corresponds to the leftmost starting position.
///
/// Note that if you need the starting position then
/// [`hybrid::regex::Regex`](crate::hybrid::regex::Regex) will handle this
/// for you, so it's usually not necessary to do this yourself.
///
/// ```
/// use regex_automata::{
/// hybrid::dfa::DFA,
/// nfa::thompson::NFA,
/// Anchored, HalfMatch, Input, MatchKind,
/// };
///
/// let input = Input::new("123foobar456");
/// let pattern = r"[a-z]+r";
///
/// let dfa_fwd = DFA::new(pattern)?;
/// let dfa_rev = DFA::builder()
/// .thompson(NFA::config().reverse(true))
/// .configure(DFA::config().match_kind(MatchKind::All))
/// .build(pattern)?;
/// let mut cache_fwd = dfa_fwd.create_cache();
/// let mut cache_rev = dfa_rev.create_cache();
///
/// let expected_fwd = HalfMatch::must(0, 9);
/// let expected_rev = HalfMatch::must(0, 3);
/// let got_fwd = dfa_fwd.try_search_fwd(&mut cache_fwd, &input)?.unwrap();
/// // Here we don't specify the pattern to search for since there's only
/// // one pattern and we're doing a leftmost search. But if this were an
/// // overlapping search, you'd need to specify the pattern that matched
/// // in the forward direction. (Otherwise, you might wind up finding the
/// // starting position of a match of some other pattern.) That in turn
/// // requires building the reverse automaton with starts_for_each_pattern
/// // enabled.
/// let input = input
/// .clone()
/// .range(..got_fwd.offset())
/// .anchored(Anchored::Yes);
/// let got_rev = dfa_rev.try_search_rev(&mut cache_rev, &input)?.unwrap();
/// assert_eq!(expected_fwd, got_fwd);
/// assert_eq!(expected_rev, got_rev);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn match_kind(mut self, kind: MatchKind) -> Config {
self.match_kind = Some(kind);
self
}
/// Set a prefilter to be used whenever a start state is entered.
///
/// A [`Prefilter`] in this context is meant to accelerate searches by
/// looking for literal prefixes that every match for the corresponding
/// pattern (or patterns) must start with. Once a prefilter produces a
/// match, the underlying search routine continues on to try and confirm
/// the match.
///
/// Be warned that setting a prefilter does not guarantee that the search
/// will be faster. While it's usually a good bet, if the prefilter
/// produces a lot of false positive candidates (i.e., positions matched
/// by the prefilter but not by the regex), then the overall result can
/// be slower than if you had just executed the regex engine without any
/// prefilters.
///
/// Note that unless [`Config::specialize_start_states`] has been
/// explicitly set, then setting this will also enable (when `pre` is
/// `Some`) or disable (when `pre` is `None`) start state specialization.
/// This occurs because without start state specialization, a prefilter
/// is likely to be less effective. And without a prefilter, start state
/// specialization is usually pointless.
///
/// By default no prefilter is set.
///
/// # Example
///
/// ```
/// use regex_automata::{
/// hybrid::dfa::DFA,
/// util::prefilter::Prefilter,
/// Input, HalfMatch, MatchKind,
/// };
///
/// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["foo", "bar"]);
/// let re = DFA::builder()
/// .configure(DFA::config().prefilter(pre))
/// .build(r"(foo|bar)[a-z]+")?;
/// let mut cache = re.create_cache();
/// let input = Input::new("foo1 barfox bar");
/// assert_eq!(
/// Some(HalfMatch::must(0, 11)),
/// re.try_search_fwd(&mut cache, &input)?,
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Be warned though that an incorrect prefilter can lead to incorrect
/// results!
///
/// ```
/// use regex_automata::{
/// hybrid::dfa::DFA,
/// util::prefilter::Prefilter,
/// Input, HalfMatch, MatchKind,
/// };
///
/// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["foo", "car"]);
/// let re = DFA::builder()
/// .configure(DFA::config().prefilter(pre))
/// .build(r"(foo|bar)[a-z]+")?;
/// let mut cache = re.create_cache();
/// let input = Input::new("foo1 barfox bar");
/// assert_eq!(
/// // No match reported even though there clearly is one!
/// None,
/// re.try_search_fwd(&mut cache, &input)?,
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn prefilter(mut self, pre: Option<Prefilter>) -> Config {
self.pre = Some(pre);
if self.specialize_start_states.is_none() {
self.specialize_start_states =
Some(self.get_prefilter().is_some());
}
self
}
/// Whether to compile a separate start state for each pattern in the
/// lazy DFA.
///
/// When enabled, a separate **anchored** start state is added for each
/// pattern in the lazy DFA. When this start state is used, then the DFA
/// will only search for matches for the pattern specified, even if there
/// are other patterns in the DFA.
///
/// The main downside of this option is that it can potentially increase
/// the size of the DFA and/or increase the time it takes to build the
/// DFA at search time. However, since this is configuration for a lazy
/// DFA, these states aren't actually built unless they're used. Enabling
/// this isn't necessarily free, however, as it may result in higher cache
/// usage.
///
/// There are a few reasons one might want to enable this (it's disabled
/// by default):
///
/// 1. When looking for the start of an overlapping match (using a reverse
/// DFA), doing it correctly requires starting the reverse search using the
/// starting state of the pattern that matched in the forward direction.
/// Indeed, when building a [`Regex`](crate::hybrid::regex::Regex), it
/// will automatically enable this option when building the reverse DFA
/// internally.
/// 2. When you want to use a DFA with multiple patterns to both search
/// for matches of any pattern or to search for anchored matches of one
/// particular pattern while using the same DFA. (Otherwise, you would need
/// to compile a new DFA for each pattern.)
///
/// By default this is disabled.
///
/// # Example
///
/// This example shows how to use this option to permit the same lazy DFA
/// to run both general searches for any pattern and anchored searches for
/// a specific pattern.
///
/// ```
/// use regex_automata::{
/// hybrid::dfa::DFA,
/// Anchored, HalfMatch, Input, PatternID,
/// };
///
/// let dfa = DFA::builder()
/// .configure(DFA::config().starts_for_each_pattern(true))
/// .build_many(&[r"[a-z0-9]{6}", r"[a-z][a-z0-9]{5}"])?;
/// let mut cache = dfa.create_cache();
/// let haystack = "bar foo123";
///
/// // Here's a normal unanchored search that looks for any pattern.
/// let expected = HalfMatch::must(0, 10);
/// let input = Input::new(haystack);
/// assert_eq!(Some(expected), dfa.try_search_fwd(&mut cache, &input)?);
/// // We can also do a normal anchored search for any pattern. Since it's
/// // an anchored search, we position the start of the search where we
/// // know the match will begin.
/// let expected = HalfMatch::must(0, 10);
/// let input = Input::new(haystack).range(4..);
/// assert_eq!(Some(expected), dfa.try_search_fwd(&mut cache, &input)?);
/// // Since we compiled anchored start states for each pattern, we can
/// // also look for matches of other patterns explicitly, even if a
/// // different pattern would have normally matched.
/// let expected = HalfMatch::must(1, 10);
/// let input = Input::new(haystack)
/// .range(4..)
/// .anchored(Anchored::Pattern(PatternID::must(1)));
/// assert_eq!(Some(expected), dfa.try_search_fwd(&mut cache, &input)?);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn starts_for_each_pattern(mut self, yes: bool) -> Config {
self.starts_for_each_pattern = Some(yes);
self
}
/// Whether to attempt to shrink the size of the lazy DFA's alphabet or
/// not.
///
/// This option is enabled by default and should never be disabled unless
/// one is debugging the lazy DFA.
///
/// When enabled, the lazy DFA will use a map from all possible bytes
/// to their corresponding equivalence class. Each equivalence class
/// represents a set of bytes that does not discriminate between a match
/// and a non-match in the DFA. For example, the pattern `[ab]+` has at
/// least two equivalence classes: a set containing `a` and `b` and a set
/// containing every byte except for `a` and `b`. `a` and `b` are in the
/// same equivalence classes because they never discriminate between a
/// match and a non-match.
///
/// The advantage of this map is that the size of the transition table
/// can be reduced drastically from `#states * 256 * sizeof(LazyStateID)`
/// to `#states * k * sizeof(LazyStateID)` where `k` is the number of
/// equivalence classes (rounded up to the nearest power of 2). As a
/// result, total space usage can decrease substantially. Moreover, since a
/// smaller alphabet is used, DFA compilation during search becomes faster
/// as well since it will potentially be able to reuse a single transition
/// for multiple bytes.
///
/// **WARNING:** This is only useful for debugging lazy DFAs. Disabling
/// this does not yield any speed advantages. Namely, even when this is
/// disabled, a byte class map is still used while searching. The only
/// difference is that every byte will be forced into its own distinct
/// equivalence class. This is useful for debugging the actual generated
/// transitions because it lets one see the transitions defined on actual
/// bytes instead of the equivalence classes.
pub fn byte_classes(mut self, yes: bool) -> Config {
self.byte_classes = Some(yes);
self
}
/// Heuristically enable Unicode word boundaries.
///
/// When set, this will attempt to implement Unicode word boundaries as if
/// they were ASCII word boundaries. This only works when the search input
/// is ASCII only. If a non-ASCII byte is observed while searching, then a
/// [`MatchError::quit`] error is returned.
///
/// A possible alternative to enabling this option is to simply use an
/// ASCII word boundary, e.g., via `(?-u:\b)`. The main reason to use this
/// option is if you absolutely need Unicode support. This option lets one
/// use a fast search implementation (a DFA) for some potentially very
/// common cases, while providing the option to fall back to some other
/// regex engine to handle the general case when an error is returned.
///
/// If the pattern provided has no Unicode word boundary in it, then this
/// option has no effect. (That is, quitting on a non-ASCII byte only
/// occurs when this option is enabled _and_ a Unicode word boundary is
/// present in the pattern.)
///
/// This is almost equivalent to setting all non-ASCII bytes to be quit
/// bytes. The only difference is that this will cause non-ASCII bytes to
/// be quit bytes _only_ when a Unicode word boundary is present in the
/// pattern.
///
/// When enabling this option, callers _must_ be prepared to
/// handle a [`MatchError`] error during search. When using a
/// [`Regex`](crate::hybrid::regex::Regex), this corresponds to using the
/// `try_` suite of methods. Alternatively, if callers can guarantee that
/// their input is ASCII only, then a [`MatchError::quit`] error will never
/// be returned while searching.
///
/// This is disabled by default.
///
/// # Example
///
/// This example shows how to heuristically enable Unicode word boundaries
/// in a pattern. It also shows what happens when a search comes across a
/// non-ASCII byte.
///
/// ```
/// use regex_automata::{
/// hybrid::dfa::DFA,
/// HalfMatch, Input, MatchError,
/// };
///
/// let dfa = DFA::builder()
/// .configure(DFA::config().unicode_word_boundary(true))
/// .build(r"\b[0-9]+\b")?;
/// let mut cache = dfa.create_cache();
///
/// // The match occurs before the search ever observes the snowman
/// // character, so no error occurs.
/// let haystack = "foo 123 ☃";
/// let expected = Some(HalfMatch::must(0, 7));
/// let got = dfa.try_search_fwd(&mut cache, &Input::new(haystack))?;
/// assert_eq!(expected, got);
///
/// // Notice that this search fails, even though the snowman character
/// // occurs after the ending match offset. This is because search
/// // routines read one byte past the end of the search to account for
/// // look-around, and indeed, this is required here to determine whether
/// // the trailing \b matches.
/// let haystack = "foo 123 ☃";
/// let expected = MatchError::quit(0xE2, 8);
/// let got = dfa.try_search_fwd(&mut cache, &Input::new(haystack));
/// assert_eq!(Err(expected), got);
///
/// // Another example is executing a search where the span of the haystack
/// // we specify is all ASCII, but there is non-ASCII just before it. This
/// // correctly also reports an error.
/// let input = Input::new("β123").range(2..);
/// let expected = MatchError::quit(0xB2, 1);
/// let got = dfa.try_search_fwd(&mut cache, &input);
/// assert_eq!(Err(expected), got);
///
/// // And similarly for the trailing word boundary.
/// let input = Input::new("123β").range(..3);
/// let expected = MatchError::quit(0xCE, 3);
/// let got = dfa.try_search_fwd(&mut cache, &input);
/// assert_eq!(Err(expected), got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn unicode_word_boundary(mut self, yes: bool) -> Config {
// We have a separate option for this instead of just setting the
// appropriate quit bytes here because we don't want to set quit bytes
// for every regex. We only want to set them when the regex contains a
// Unicode word boundary.
self.unicode_word_boundary = Some(yes);
self
}
/// Add a "quit" byte to the lazy DFA.
///
/// When a quit byte is seen during search time, then search will return a
/// [`MatchError::quit`] error indicating the offset at which the search
/// stopped.
///
/// A quit byte will always overrule any other aspects of a regex. For
/// example, if the `x` byte is added as a quit byte and the regex `\w` is
/// used, then observing `x` will cause the search to quit immediately
/// despite the fact that `x` is in the `\w` class.
///
/// This mechanism is primarily useful for heuristically enabling certain
/// features like Unicode word boundaries in a DFA. Namely, if the input
/// to search is ASCII, then a Unicode word boundary can be implemented
/// via an ASCII word boundary with no change in semantics. Thus, a DFA
/// can attempt to match a Unicode word boundary but give up as soon as it
/// observes a non-ASCII byte. Indeed, if callers set all non-ASCII bytes
/// to be quit bytes, then Unicode word boundaries will be permitted when
/// building lazy DFAs. Of course, callers should enable
/// [`Config::unicode_word_boundary`] if they want this behavior instead.
/// (The advantage being that non-ASCII quit bytes will only be added if a
/// Unicode word boundary is in the pattern.)
///
/// When enabling this option, callers _must_ be prepared to
/// handle a [`MatchError`] error during search. When using a
/// [`Regex`](crate::hybrid::regex::Regex), this corresponds to using the
/// `try_` suite of methods.
///
/// By default, there are no quit bytes set.
///
/// # Panics
///
/// This panics if heuristic Unicode word boundaries are enabled and any
/// non-ASCII byte is removed from the set of quit bytes. Namely, enabling
/// Unicode word boundaries requires setting every non-ASCII byte to a quit
/// byte. So if the caller attempts to undo any of that, then this will
/// panic.
///
/// # Example
///
/// This example shows how to cause a search to terminate if it sees a
/// `\n` byte. This could be useful if, for example, you wanted to prevent
/// a user supplied pattern from matching across a line boundary.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{hybrid::dfa::DFA, MatchError, Input};
///
/// let dfa = DFA::builder()
/// .configure(DFA::config().quit(b'\n', true))
/// .build(r"foo\p{any}+bar")?;
/// let mut cache = dfa.create_cache();
///
/// let haystack = "foo\nbar";
/// // Normally this would produce a match, since \p{any} contains '\n'.
/// // But since we instructed the automaton to enter a quit state if a
/// // '\n' is observed, this produces a match error instead.
/// let expected = MatchError::quit(b'\n', 3);
/// let got = dfa.try_search_fwd(
/// &mut cache,
/// &Input::new(haystack),
/// ).unwrap_err();
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn quit(mut self, byte: u8, yes: bool) -> Config {
if self.get_unicode_word_boundary() && !byte.is_ascii() && !yes {
panic!(
"cannot set non-ASCII byte to be non-quit when \
Unicode word boundaries are enabled"
);
}
if self.quitset.is_none() {
self.quitset = Some(ByteSet::empty());
}
if yes {
self.quitset.as_mut().unwrap().add(byte);
} else {
self.quitset.as_mut().unwrap().remove(byte);
}
self
}
/// Enable specializing start states in the lazy DFA.
///
/// When start states are specialized, an implementor of a search routine
/// using a lazy DFA can tell when the search has entered a starting state.
/// When start states aren't specialized, then it is impossible to know
/// whether the search has entered a start state.
///
/// Ideally, this option wouldn't need to exist and we could always
/// specialize start states. The problem is that start states can be quite
/// active. This in turn means that an efficient search routine is likely
/// to ping-pong between a heavily optimized hot loop that handles most
/// states and to a less optimized specialized handling of start states.
/// This causes branches to get heavily mispredicted and overall can
/// materially decrease throughput. Therefore, specializing start states
/// should only be enabled when it is needed.
///
/// Knowing whether a search is in a start state is typically useful when a
/// prefilter is active for the search. A prefilter is typically only run
/// when in a start state and a prefilter can greatly accelerate a search.
/// Therefore, the possible cost of specializing start states is worth it
/// in this case. Otherwise, if you have no prefilter, there is likely no
/// reason to specialize start states.
///
/// This is disabled by default, but note that it is automatically
/// enabled (or disabled) if [`Config::prefilter`] is set. Namely, unless
/// `specialize_start_states` has already been set, [`Config::prefilter`]
/// will automatically enable or disable it based on whether a prefilter
/// is present or not, respectively. This is done because a prefilter's
/// effectiveness is rooted in being executed whenever the DFA is in a
/// start state, and that's only possible to do when they are specialized.
///
/// Note that it is plausibly reasonable to _disable_ this option
/// explicitly while _enabling_ a prefilter. In that case, a prefilter
/// will still be run at the beginning of a search, but never again. This
/// in theory could strike a good balance if you're in a situation where a
/// prefilter is likely to produce many false positive candidates.
///
/// # Example
///
/// This example shows how to enable start state specialization and then
/// shows how to check whether a state is a start state or not.
///
/// ```
/// use regex_automata::{hybrid::dfa::DFA, MatchError, Input};
///
/// let dfa = DFA::builder()
/// .configure(DFA::config().specialize_start_states(true))
/// .build(r"[a-z]+")?;
/// let mut cache = dfa.create_cache();
///
/// let haystack = "123 foobar 4567".as_bytes();
/// let sid = dfa.start_state_forward(&mut cache, &Input::new(haystack))?;
/// // The ID returned by 'start_state_forward' will always be tagged as
/// // a start state when start state specialization is enabled.
/// assert!(sid.is_tagged());
/// assert!(sid.is_start());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Compare the above with the default lazy DFA configuration where
/// start states are _not_ specialized. In this case, the start state
/// is not tagged and `sid.is_start()` returns false.
///
/// ```
/// use regex_automata::{hybrid::dfa::DFA, MatchError, Input};
///
/// let dfa = DFA::new(r"[a-z]+")?;
/// let mut cache = dfa.create_cache();
///
/// let haystack = "123 foobar 4567".as_bytes();
/// let sid = dfa.start_state_forward(&mut cache, &Input::new(haystack))?;
/// // Start states are not tagged in the default configuration!
/// assert!(!sid.is_tagged());
/// assert!(!sid.is_start());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn specialize_start_states(mut self, yes: bool) -> Config {
self.specialize_start_states = Some(yes);
self
}
/// Sets the maximum amount of heap memory, in bytes, to allocate to the
/// cache for use during a lazy DFA search. If the lazy DFA would otherwise
/// use more heap memory, then, depending on other configuration knobs,
/// either stop the search and return an error or clear the cache and
/// continue the search.
///
/// The default cache capacity is some "reasonable" number that will
/// accommodate most regular expressions. You may find that if you need
/// to build a large DFA then it may be necessary to increase the cache
/// capacity.
///
/// Note that while building a lazy DFA will do a "minimum" check to ensure
/// the capacity is big enough, this is more or less about correctness.
/// If the cache is bigger than the minimum but still "too small," then the
/// lazy DFA could wind up spending a lot of time clearing the cache and
/// recomputing transitions, thus negating the performance benefits of a
/// lazy DFA. Thus, setting the cache capacity is mostly an experimental
/// endeavor. For most common patterns, however, the default should be
/// sufficient.
///
/// For more details on how the lazy DFA's cache is used, see the
/// documentation for [`Cache`].
///
/// # Example
///
/// This example shows what happens if the configured cache capacity is
/// too small. In such cases, one can override the cache capacity to make
/// it bigger. Alternatively, one might want to use less memory by setting
/// a smaller cache capacity.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{hybrid::dfa::DFA, HalfMatch, Input};
///
/// let pattern = r"\p{L}{1000}";
///
/// // The default cache capacity is likely too small to deal with regexes
/// // that are very large. Large repetitions of large Unicode character
/// // classes are a common way to make very large regexes.
/// let _ = DFA::new(pattern).unwrap_err();
/// // Bump up the capacity to something bigger.
/// let dfa = DFA::builder()
/// .configure(DFA::config().cache_capacity(100 * (1<<20))) // 100 MB
/// .build(pattern)?;
/// let mut cache = dfa.create_cache();
///
/// let haystack = "ͰͲͶͿΆΈΉΊΌΎΏΑΒΓΔΕΖΗΘΙ".repeat(50);
/// let expected = Some(HalfMatch::must(0, 2000));
/// let got = dfa.try_search_fwd(&mut cache, &Input::new(&haystack))?;
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn cache_capacity(mut self, bytes: usize) -> Config {
self.cache_capacity = Some(bytes);
self
}
/// Configures construction of a lazy DFA to use the minimum cache capacity
/// if the configured capacity is otherwise too small for the provided NFA.
///
/// This is useful if you never want lazy DFA construction to fail because
/// of a capacity that is too small.
///
/// In general, this option is typically not a good idea. In particular,
/// while a minimum cache capacity does permit the lazy DFA to function
/// where it otherwise couldn't, it's plausible that it may not function
/// well if it's constantly running out of room. In that case, the speed
/// advantages of the lazy DFA may be negated. On the other hand, the
/// "minimum" cache capacity computed may not be completely accurate and
/// could actually be bigger than what is really necessary. Therefore, it
/// is plausible that using the minimum cache capacity could still result
/// in very good performance.
///
/// This is disabled by default.
///
/// # Example
///
/// This example shows what happens if the configured cache capacity is
/// too small. In such cases, one could override the capacity explicitly.
/// An alternative, demonstrated here, let's us force construction to use
/// the minimum cache capacity if the configured capacity is otherwise
/// too small.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{hybrid::dfa::DFA, HalfMatch, Input};
///
/// let pattern = r"\p{L}{1000}";
///
/// // The default cache capacity is likely too small to deal with regexes
/// // that are very large. Large repetitions of large Unicode character
/// // classes are a common way to make very large regexes.
/// let _ = DFA::new(pattern).unwrap_err();
/// // Configure construction such it automatically selects the minimum
/// // cache capacity if it would otherwise be too small.
/// let dfa = DFA::builder()
/// .configure(DFA::config().skip_cache_capacity_check(true))
/// .build(pattern)?;
/// let mut cache = dfa.create_cache();
///
/// let haystack = "ͰͲͶͿΆΈΉΊΌΎΏΑΒΓΔΕΖΗΘΙ".repeat(50);
/// let expected = Some(HalfMatch::must(0, 2000));
/// let got = dfa.try_search_fwd(&mut cache, &Input::new(&haystack))?;
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn skip_cache_capacity_check(mut self, yes: bool) -> Config {
self.skip_cache_capacity_check = Some(yes);
self
}
/// Configure a lazy DFA search to quit after a certain number of cache
/// clearings.
///
/// When a minimum is set, then a lazy DFA search will *possibly* "give
/// up" after the minimum number of cache clearings has occurred. This is
/// typically useful in scenarios where callers want to detect whether the
/// lazy DFA search is "efficient" or not. If the cache is cleared too many
/// times, this is a good indicator that it is not efficient, and thus, the
/// caller may wish to use some other regex engine.
///
/// Note that the number of times a cache is cleared is a property of
/// the cache itself. Thus, if a cache is used in a subsequent search
/// with a similarly configured lazy DFA, then it could cause the
/// search to "give up" if the cache needed to be cleared, depending
/// on its internal count and configured minimum. The cache clear
/// count can only be reset to `0` via [`DFA::reset_cache`] (or
/// [`Regex::reset_cache`](crate::hybrid::regex::Regex::reset_cache) if
/// you're using the `Regex` API).
///
/// By default, no minimum is configured. Thus, a lazy DFA search will
/// never give up due to cache clearings. If you do set this option, you
/// might consider also setting [`Config::minimum_bytes_per_state`] in
/// order for the lazy DFA to take efficiency into account before giving
/// up.
///
/// # Example
///
/// This example uses a somewhat pathological configuration to demonstrate
/// the _possible_ behavior of cache clearing and how it might result
/// in a search that returns an error.
///
/// It is important to note that the precise mechanics of how and when
/// a cache gets cleared is an implementation detail.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::{hybrid::dfa::DFA, Input, MatchError, MatchErrorKind};
///
/// // This is a carefully chosen regex. The idea is to pick one
/// // that requires some decent number of states (hence the bounded
/// // repetition). But we specifically choose to create a class with an
/// // ASCII letter and a non-ASCII letter so that we can check that no new
/// // states are created once the cache is full. Namely, if we fill up the
/// // cache on a haystack of 'a's, then in order to match one 'β', a new
/// // state will need to be created since a 'β' is encoded with multiple
/// // bytes. Since there's no room for this state, the search should quit
/// // at the very first position.
/// let pattern = r"[aβ]{100}";
/// let dfa = DFA::builder()
/// .configure(
/// // Configure it so that we have the minimum cache capacity
/// // possible. And that if any clearings occur, the search quits.
/// DFA::config()
/// .skip_cache_capacity_check(true)
/// .cache_capacity(0)
/// .minimum_cache_clear_count(Some(0)),
/// )
/// .build(pattern)?;
/// let mut cache = dfa.create_cache();
///
/// // Our search will give up before reaching the end!
/// let haystack = "a".repeat(101).into_bytes();
/// let result = dfa.try_search_fwd(&mut cache, &Input::new(&haystack));
/// assert!(matches!(
/// *result.unwrap_err().kind(),
/// MatchErrorKind::GaveUp { .. },
/// ));
///
/// // Now that we know the cache is full, if we search a haystack that we
/// // know will require creating at least one new state, it should not
/// // be able to make much progress.
/// let haystack = "β".repeat(101).into_bytes();
/// let result = dfa.try_search_fwd(&mut cache, &Input::new(&haystack));
/// assert!(matches!(
/// *result.unwrap_err().kind(),
/// MatchErrorKind::GaveUp { .. },
/// ));
///
/// // If we reset the cache, then we should be able to create more states
/// // and make more progress with searching for betas.
/// cache.reset(&dfa);
/// let haystack = "β".repeat(101).into_bytes();
/// let result = dfa.try_search_fwd(&mut cache, &Input::new(&haystack));
/// assert!(matches!(
/// *result.unwrap_err().kind(),
/// MatchErrorKind::GaveUp { .. },
/// ));
///
/// // ... switching back to ASCII still makes progress since it just needs
/// // to set transitions on existing states!
/// let haystack = "a".repeat(101).into_bytes();
/// let result = dfa.try_search_fwd(&mut cache, &Input::new(&haystack));
/// assert!(matches!(
/// *result.unwrap_err().kind(),
/// MatchErrorKind::GaveUp { .. },
/// ));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn minimum_cache_clear_count(mut self, min: Option<usize>) -> Config {
self.minimum_cache_clear_count = Some(min);
self
}
/// Configure a lazy DFA search to quit only when its efficiency drops
/// below the given minimum.
///
/// The efficiency of the cache is determined by the number of DFA states
/// compiled per byte of haystack searched. For example, if the efficiency
/// is 2, then it means the lazy DFA is creating a new DFA state after
/// searching approximately 2 bytes in a haystack. Generally speaking, 2
/// is quite bad and it's likely that even a slower regex engine like the
/// [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM) would be faster.
///
/// This has no effect if [`Config::minimum_cache_clear_count`] is not set.
/// Namely, this option only kicks in when the cache has been cleared more
/// than the minimum number. If no minimum is set, then the cache is simply
/// cleared whenever it fills up and it is impossible for the lazy DFA to
/// quit due to ineffective use of the cache.
///
/// In general, if one is setting [`Config::minimum_cache_clear_count`],
/// then one should probably also set this knob as well. The reason is
/// that the absolute number of times the cache is cleared is generally
/// not a great predictor of efficiency. For example, if a new DFA state
/// is created for every 1,000 bytes searched, then it wouldn't be hard
/// for the cache to get cleared more than `N` times and then cause the
/// lazy DFA to quit. But a new DFA state every 1,000 bytes is likely quite
/// good from a performance perspective, and it's likely that the lazy
/// DFA should continue searching, even if it requires clearing the cache
/// occasionally.
///
/// Finally, note that if you're implementing your own lazy DFA search
/// routine and also want this efficiency check to work correctly, then
/// you'll need to use the following routines to record search progress:
///
/// * Call [`Cache::search_start`] at the beginning of every search.
/// * Call [`Cache::search_update`] whenever [`DFA::next_state`] is
/// called.
/// * Call [`Cache::search_finish`] before completing a search. (It is
/// not strictly necessary to call this when an error is returned, as
/// `Cache::search_start` will automatically finish the previous search
/// for you. But calling it where possible before returning helps improve
/// the accuracy of how many bytes have actually been searched.)
pub fn minimum_bytes_per_state(mut self, min: Option<usize>) -> Config {
self.minimum_bytes_per_state = Some(min);
self
}
/// Returns the match semantics set in this configuration.
pub fn get_match_kind(&self) -> MatchKind {
self.match_kind.unwrap_or(MatchKind::LeftmostFirst)
}
/// Returns the prefilter set in this configuration, if one at all.
pub fn get_prefilter(&self) -> Option<&Prefilter> {
self.pre.as_ref().unwrap_or(&None).as_ref()
}
/// Returns whether this configuration has enabled anchored starting states
/// for every pattern in the DFA.
pub fn get_starts_for_each_pattern(&self) -> bool {
self.starts_for_each_pattern.unwrap_or(false)
}
/// Returns whether this configuration has enabled byte classes or not.
/// This is typically a debugging oriented option, as disabling it confers
/// no speed benefit.
pub fn get_byte_classes(&self) -> bool {
self.byte_classes.unwrap_or(true)
}
/// Returns whether this configuration has enabled heuristic Unicode word
/// boundary support. When enabled, it is possible for a search to return
/// an error.
pub fn get_unicode_word_boundary(&self) -> bool {
self.unicode_word_boundary.unwrap_or(false)
}
/// Returns whether this configuration will instruct the lazy DFA to enter
/// a quit state whenever the given byte is seen during a search. When at
/// least one byte has this enabled, it is possible for a search to return
/// an error.
pub fn get_quit(&self, byte: u8) -> bool {
self.quitset.map_or(false, |q| q.contains(byte))
}
/// Returns whether this configuration will instruct the lazy DFA to
/// "specialize" start states. When enabled, the lazy DFA will tag start
/// states so that search routines using the lazy DFA can detect when
/// it's in a start state and do some kind of optimization (like run a
/// prefilter).
pub fn get_specialize_start_states(&self) -> bool {
self.specialize_start_states.unwrap_or(false)
}
/// Returns the cache capacity set on this configuration.
pub fn get_cache_capacity(&self) -> usize {
self.cache_capacity.unwrap_or(2 * (1 << 20))
}
/// Returns whether the cache capacity check should be skipped.
pub fn get_skip_cache_capacity_check(&self) -> bool {
self.skip_cache_capacity_check.unwrap_or(false)
}
/// Returns, if set, the minimum number of times the cache must be cleared
/// before a lazy DFA search can give up. When no minimum is set, then a
/// search will never quit and will always clear the cache whenever it
/// fills up.
pub fn get_minimum_cache_clear_count(&self) -> Option<usize> {
self.minimum_cache_clear_count.unwrap_or(None)
}
/// Returns, if set, the minimum number of bytes per state that need to be
/// processed in order for the lazy DFA to keep going. If the minimum falls
/// below this number (and the cache has been cleared a minimum number of
/// times), then the lazy DFA will return a "gave up" error.
pub fn get_minimum_bytes_per_state(&self) -> Option<usize> {
self.minimum_bytes_per_state.unwrap_or(None)
}
/// Returns the minimum lazy DFA cache capacity required for the given NFA.
///
/// The cache capacity required for a particular NFA may change without
/// notice. Callers should not rely on it being stable.
///
/// This is useful for informational purposes, but can also be useful for
/// other reasons. For example, if one wants to check the minimum cache
/// capacity themselves or if one wants to set the capacity based on the
/// minimum.
///
/// This may return an error if this configuration does not support all of
/// the instructions used in the given NFA. For example, if the NFA has a
/// Unicode word boundary but this configuration does not enable heuristic
/// support for Unicode word boundaries.
pub fn get_minimum_cache_capacity(
&self,
nfa: &thompson::NFA,
) -> Result<usize, BuildError> {
let quitset = self.quit_set_from_nfa(nfa)?;
let classes = self.byte_classes_from_nfa(nfa, &quitset);
let starts = self.get_starts_for_each_pattern();
Ok(minimum_cache_capacity(nfa, &classes, starts))
}
/// Returns the byte class map used during search from the given NFA.
///
/// If byte classes are disabled on this configuration, then a map is
/// returned that puts each byte in its own equivalent class.
fn byte_classes_from_nfa(
&self,
nfa: &thompson::NFA,
quit: &ByteSet,
) -> ByteClasses {
if !self.get_byte_classes() {
// The lazy DFA will always use the equivalence class map, but
// enabling this option is useful for debugging. Namely, this will
// cause all transitions to be defined over their actual bytes
// instead of an opaque equivalence class identifier. The former is
// much easier to grok as a human.
ByteClasses::singletons()
} else {
let mut set = nfa.byte_class_set().clone();
// It is important to distinguish any "quit" bytes from all other
// bytes. Otherwise, a non-quit byte may end up in the same class
// as a quit byte, and thus cause the DFA stop when it shouldn't.
//
// Test case:
//
// regex-cli find match hybrid --unicode-word-boundary \
// -p '^#' -p '\b10\.55\.182\.100\b' -y @conn.json.1000x.log
if !quit.is_empty() {
set.add_set(&quit);
}
set.byte_classes()
}
}
/// Return the quit set for this configuration and the given NFA.
///
/// This may return an error if the NFA is incompatible with this
/// configuration's quit set. For example, if the NFA has a Unicode word
/// boundary and the quit set doesn't include non-ASCII bytes.
fn quit_set_from_nfa(
&self,
nfa: &thompson::NFA,
) -> Result<ByteSet, BuildError> {
let mut quit = self.quitset.unwrap_or(ByteSet::empty());
if nfa.look_set_any().contains_word_unicode() {
if self.get_unicode_word_boundary() {
for b in 0x80..=0xFF {
quit.add(b);
}
} else {
// If heuristic support for Unicode word boundaries wasn't
// enabled, then we can still check if our quit set is correct.
// If the caller set their quit bytes in a way that causes the
// DFA to quit on at least all non-ASCII bytes, then that's all
// we need for heuristic support to work.
if !quit.contains_range(0x80, 0xFF) {
return Err(
BuildError::unsupported_dfa_word_boundary_unicode(),
);
}
}
}
Ok(quit)
}
/// Overwrite the default configuration such that the options in `o` are
/// always used. If an option in `o` is not set, then the corresponding
/// option in `self` is used. If it's not set in `self` either, then it
/// remains not set.
fn overwrite(&self, o: Config) -> Config {
Config {
match_kind: o.match_kind.or(self.match_kind),
pre: o.pre.or_else(|| self.pre.clone()),
starts_for_each_pattern: o
.starts_for_each_pattern
.or(self.starts_for_each_pattern),
byte_classes: o.byte_classes.or(self.byte_classes),
unicode_word_boundary: o
.unicode_word_boundary
.or(self.unicode_word_boundary),
quitset: o.quitset.or(self.quitset),
specialize_start_states: o
.specialize_start_states
.or(self.specialize_start_states),
cache_capacity: o.cache_capacity.or(self.cache_capacity),
skip_cache_capacity_check: o
.skip_cache_capacity_check
.or(self.skip_cache_capacity_check),
minimum_cache_clear_count: o
.minimum_cache_clear_count
.or(self.minimum_cache_clear_count),
minimum_bytes_per_state: o
.minimum_bytes_per_state
.or(self.minimum_bytes_per_state),
}
}
}
/// A builder for constructing a lazy deterministic finite automaton from
/// regular expressions.
///
/// As a convenience, [`DFA::builder`] is an alias for [`Builder::new`]. The
/// advantage of the former is that it often lets you avoid importing the
/// `Builder` type directly.
///
/// This builder provides two main things:
///
/// 1. It provides a few different `build` routines for actually constructing
/// a DFA from different kinds of inputs. The most convenient is
/// [`Builder::build`], which builds a DFA directly from a pattern string. The
/// most flexible is [`Builder::build_from_nfa`], which builds a DFA straight
/// from an NFA.
/// 2. The builder permits configuring a number of things.
/// [`Builder::configure`] is used with [`Config`] to configure aspects of
/// the DFA and the construction process itself. [`Builder::syntax`] and
/// [`Builder::thompson`] permit configuring the regex parser and Thompson NFA
/// construction, respectively. The syntax and thompson configurations only
/// apply when building from a pattern string.
///
/// This builder always constructs a *single* lazy DFA. As such, this builder
/// can only be used to construct regexes that either detect the presence
/// of a match or find the end location of a match. A single DFA cannot
/// produce both the start and end of a match. For that information, use a
/// [`Regex`](crate::hybrid::regex::Regex), which can be similarly configured
/// using [`regex::Builder`](crate::hybrid::regex::Builder). The main reason
/// to use a DFA directly is if the end location of a match is enough for your
/// use case. Namely, a `Regex` will construct two lazy DFAs instead of one,
/// since a second reverse DFA is needed to find the start of a match.
///
/// # Example
///
/// This example shows how to build a lazy DFA that uses a tiny cache capacity
/// and completely disables Unicode. That is:
///
/// * Things such as `\w`, `.` and `\b` are no longer Unicode-aware. `\w`
/// and `\b` are ASCII-only while `.` matches any byte except for `\n`
/// (instead of any UTF-8 encoding of a Unicode scalar value except for
/// `\n`). Things that are Unicode only, such as `\pL`, are not allowed.
/// * The pattern itself is permitted to match invalid UTF-8. For example,
/// things like `[^a]` that match any byte except for `a` are permitted.
///
/// ```
/// use regex_automata::{
/// hybrid::dfa::DFA,
/// nfa::thompson,
/// util::syntax,
/// HalfMatch, Input,
/// };
///
/// let dfa = DFA::builder()
/// .configure(DFA::config().cache_capacity(5_000))
/// .thompson(thompson::Config::new().utf8(false))
/// .syntax(syntax::Config::new().unicode(false).utf8(false))
/// .build(r"foo[^b]ar.*")?;
/// let mut cache = dfa.create_cache();
///
/// let haystack = b"\xFEfoo\xFFar\xE2\x98\xFF\n";
/// let expected = Some(HalfMatch::must(0, 10));
/// let got = dfa.try_search_fwd(&mut cache, &Input::new(haystack))?;
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Debug)]
pub struct Builder {
config: Config,
#[cfg(feature = "syntax")]
thompson: thompson::Compiler,
}
impl Builder {
/// Create a new lazy DFA builder with the default configuration.
pub fn new() -> Builder {
Builder {
config: Config::default(),
#[cfg(feature = "syntax")]
thompson: thompson::Compiler::new(),
}
}
/// Build a lazy DFA from the given pattern.
///
/// If there was a problem parsing or compiling the pattern, then an error
/// is returned.
#[cfg(feature = "syntax")]
pub fn build(&self, pattern: &str) -> Result<DFA, BuildError> {
self.build_many(&[pattern])
}
/// Build a lazy DFA from the given patterns.
///
/// When matches are returned, the pattern ID corresponds to the index of
/// the pattern in the slice given.
#[cfg(feature = "syntax")]
pub fn build_many<P: AsRef<str>>(
&self,
patterns: &[P],
) -> Result<DFA, BuildError> {
let nfa = self
.thompson
.clone()
// We can always forcefully disable captures because DFAs do not
// support them.
.configure(
thompson::Config::new()
.which_captures(thompson::WhichCaptures::None),
)
.build_many(patterns)
.map_err(BuildError::nfa)?;
self.build_from_nfa(nfa)
}
/// Build a DFA from the given NFA.
///
/// Note that this requires owning a `thompson::NFA`. While this may force
/// you to clone the NFA, such a clone is not a deep clone. Namely, NFAs
/// are defined internally to support shared ownership such that cloning is
/// very cheap.
///
/// # Example
///
/// This example shows how to build a lazy DFA if you already have an NFA
/// in hand.
///
/// ```
/// use regex_automata::{
/// hybrid::dfa::DFA,
/// nfa::thompson,
/// HalfMatch, Input,
/// };
///
/// let haystack = "foo123bar";
///
/// // This shows how to set non-default options for building an NFA.
/// let nfa = thompson::Compiler::new()
/// .configure(thompson::Config::new().shrink(true))
/// .build(r"[0-9]+")?;
/// let dfa = DFA::builder().build_from_nfa(nfa)?;
/// let mut cache = dfa.create_cache();
/// let expected = Some(HalfMatch::must(0, 6));
/// let got = dfa.try_search_fwd(&mut cache, &Input::new(haystack))?;
/// assert_eq!(expected, got);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn build_from_nfa(
&self,
nfa: thompson::NFA,
) -> Result<DFA, BuildError> {
let quitset = self.config.quit_set_from_nfa(&nfa)?;
let classes = self.config.byte_classes_from_nfa(&nfa, &quitset);
// Check that we can fit at least a few states into our cache,
// otherwise it's pretty senseless to use the lazy DFA. This does have
// a possible failure mode though. This assumes the maximum size of a
// state in powerset space (so, the total number of NFA states), which
// may never actually materialize, and could be quite a bit larger
// than the actual biggest state. If this turns out to be a problem,
// we could expose a knob that disables this check. But if so, we have
// to be careful not to panic in other areas of the code (the cache
// clearing and init code) that tend to assume some minimum useful
// cache capacity.
let min_cache = minimum_cache_capacity(
&nfa,
&classes,
self.config.get_starts_for_each_pattern(),
);
let mut cache_capacity = self.config.get_cache_capacity();
if cache_capacity < min_cache {
// When the caller has asked us to skip the cache capacity check,
// then we simply force the cache capacity to its minimum amount
// and mush on.
if self.config.get_skip_cache_capacity_check() {
debug!(
"given capacity ({}) is too small, \
since skip_cache_capacity_check is enabled, \
setting cache capacity to minimum ({})",
cache_capacity, min_cache,
);
cache_capacity = min_cache;
} else {
return Err(BuildError::insufficient_cache_capacity(
min_cache,
cache_capacity,
));
}
}
// We also need to check that we can fit at least some small number
// of states in our state ID space. This is unlikely to trigger in
// >=32-bit systems, but 16-bit systems have a pretty small state ID
// space since a number of bits are used up as sentinels.
if let Err(err) = minimum_lazy_state_id(&classes) {
return Err(BuildError::insufficient_state_id_capacity(err));
}
let stride2 = classes.stride2();
let start_map = StartByteMap::new(nfa.look_matcher());
Ok(DFA {
config: self.config.clone(),
nfa,
stride2,
start_map,
classes,
quitset,
cache_capacity,
})
}
/// Apply the given lazy DFA configuration options to this builder.
pub fn configure(&mut self, config: Config) -> &mut Builder {
self.config = self.config.overwrite(config);
self
}
/// Set the syntax configuration for this builder using
/// [`syntax::Config`](crate::util::syntax::Config).
///
/// This permits setting things like case insensitivity, Unicode and multi
/// line mode.
///
/// These settings only apply when constructing a lazy DFA directly from a
/// pattern.
#[cfg(feature = "syntax")]
pub fn syntax(
&mut self,
config: crate::util::syntax::Config,
) -> &mut Builder {
self.thompson.syntax(config);
self
}
/// Set the Thompson NFA configuration for this builder using
/// [`nfa::thompson::Config`](crate::nfa::thompson::Config).
///
/// This permits setting things like whether the DFA should match the regex
/// in reverse or if additional time should be spent shrinking the size of
/// the NFA.
///
/// These settings only apply when constructing a DFA directly from a
/// pattern.
#[cfg(feature = "syntax")]
pub fn thompson(&mut self, config: thompson::Config) -> &mut Builder {
self.thompson.configure(config);
self
}
}
/// Represents the current state of an overlapping search.
///
/// This is used for overlapping searches since they need to know something
/// about the previous search. For example, when multiple patterns match at the
/// same position, this state tracks the last reported pattern so that the next
/// search knows whether to report another matching pattern or continue with
/// the search at the next position. Additionally, it also tracks which state
/// the last search call terminated in.
///
/// This type provides little introspection capabilities. The only thing a
/// caller can do is construct it and pass it around to permit search routines
/// to use it to track state, and also ask whether a match has been found.
///
/// Callers should always provide a fresh state constructed via
/// [`OverlappingState::start`] when starting a new search. Reusing state from
/// a previous search may result in incorrect results.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct OverlappingState {
/// The match reported by the most recent overlapping search to use this
/// state.
///
/// If a search does not find any matches, then it is expected to clear
/// this value.
pub(crate) mat: Option<HalfMatch>,
/// The state ID of the state at which the search was in when the call
/// terminated. When this is a match state, `last_match` must be set to a
/// non-None value.
///
/// A `None` value indicates the start state of the corresponding
/// automaton. We cannot use the actual ID, since any one automaton may
/// have many start states, and which one is in use depends on several
/// search-time factors.
pub(crate) id: Option<LazyStateID>,
/// The position of the search.
///
/// When `id` is None (i.e., we are starting a search), this is set to
/// the beginning of the search as given by the caller regardless of its
/// current value. Subsequent calls to an overlapping search pick up at
/// this offset.
pub(crate) at: usize,
/// The index into the matching patterns of the next match to report if the
/// current state is a match state. Note that this may be 1 greater than
/// the total number of matches to report for the current match state. (In
/// which case, no more matches should be reported at the current position
/// and the search should advance to the next position.)
pub(crate) next_match_index: Option<usize>,
/// This is set to true when a reverse overlapping search has entered its
/// EOI transitions.
///
/// This isn't used in a forward search because it knows to stop once the
/// position exceeds the end of the search range. In a reverse search,
/// since we use unsigned offsets, we don't "know" once we've gone past
/// `0`. So the only way to detect it is with this extra flag. The reverse
/// overlapping search knows to terminate specifically after it has
/// reported all matches after following the EOI transition.
pub(crate) rev_eoi: bool,
}
impl OverlappingState {
/// Create a new overlapping state that begins at the start state of any
/// automaton.
pub fn start() -> OverlappingState {
OverlappingState {
mat: None,
id: None,
at: 0,
next_match_index: None,
rev_eoi: false,
}
}
/// Return the match result of the most recent search to execute with this
/// state.
///
/// A searches will clear this result automatically, such that if no
/// match is found, this will correctly report `None`.
pub fn get_match(&self) -> Option<HalfMatch> {
self.mat
}
}
/// Runs the given overlapping `search` function (forwards or backwards) until
/// a match is found whose offset does not split a codepoint.
///
/// This is *not* always correct to call. It should only be called when the
/// underlying NFA has UTF-8 mode enabled *and* it can produce zero-width
/// matches. Calling this when both of those things aren't true might result
/// in legitimate matches getting skipped.
#[cold]
#[inline(never)]
fn skip_empty_utf8_splits_overlapping<F>(
input: &Input<'_>,
state: &mut OverlappingState,
mut search: F,
) -> Result<(), MatchError>
where
F: FnMut(&Input<'_>, &mut OverlappingState) -> Result<(), MatchError>,
{
// Note that this routine works for forwards and reverse searches
// even though there's no code here to handle those cases. That's
// because overlapping searches drive themselves to completion via
// `OverlappingState`. So all we have to do is push it until no matches are
// found.
let mut hm = match state.get_match() {
None => return Ok(()),
Some(hm) => hm,
};
if input.get_anchored().is_anchored() {
if !input.is_char_boundary(hm.offset()) {
state.mat = None;
}
return Ok(());
}
while !input.is_char_boundary(hm.offset()) {
search(input, state)?;
hm = match state.get_match() {
None => return Ok(()),
Some(hm) => hm,
};
}
Ok(())
}
/// Based on the minimum number of states required for a useful lazy DFA cache,
/// this returns the minimum lazy state ID that must be representable.
///
/// It's not likely for this to have any impact 32-bit systems (or higher), but
/// on 16-bit systems, the lazy state ID space is quite constrained and thus
/// may be insufficient if our MIN_STATES value is (for some reason) too high.
fn minimum_lazy_state_id(
classes: &ByteClasses,
) -> Result<LazyStateID, LazyStateIDError> {
let stride = 1 << classes.stride2();
let min_state_index = MIN_STATES.checked_sub(1).unwrap();
LazyStateID::new(min_state_index * stride)
}
/// Based on the minimum number of states required for a useful lazy DFA cache,
/// this returns a heuristic minimum number of bytes of heap space required.
///
/// This is a "heuristic" because the minimum it returns is likely bigger than
/// the true minimum. Namely, it assumes that each powerset NFA/DFA state uses
/// the maximum number of NFA states (all of them). This is likely bigger
/// than what is required in practice. Computing the true minimum effectively
/// requires determinization, which is probably too much work to do for a
/// simple check like this.
///
/// One of the issues with this approach IMO is that it requires that this
/// be in sync with the calculation above for computing how much heap memory
/// the DFA cache uses. If we get it wrong, it's possible for example for the
/// minimum to be smaller than the computed heap memory, and thus, it may be
/// the case that we can't add the required minimum number of states. That in
/// turn will make lazy DFA panic because we assume that we can add at least a
/// minimum number of states.
///
/// Another approach would be to always allow the minimum number of states to
/// be added to the lazy DFA cache, even if it exceeds the configured cache
/// limit. This does mean that the limit isn't really a limit in all cases,
/// which is unfortunate. But it does at least guarantee that the lazy DFA can
/// always make progress, even if it is slow. (This approach is very similar to
/// enabling the 'skip_cache_capacity_check' config knob, except it wouldn't
/// rely on cache size calculation. Instead, it would just always permit a
/// minimum number of states to be added.)
fn minimum_cache_capacity(
nfa: &thompson::NFA,
classes: &ByteClasses,
starts_for_each_pattern: bool,
) -> usize {
const ID_SIZE: usize = size_of::<LazyStateID>();
const STATE_SIZE: usize = size_of::<State>();
let stride = 1 << classes.stride2();
let states_len = nfa.states().len();
let sparses = 2 * states_len * NFAStateID::SIZE;
let trans = MIN_STATES * stride * ID_SIZE;
let mut starts = Start::len() * ID_SIZE;
if starts_for_each_pattern {
starts += (Start::len() * nfa.pattern_len()) * ID_SIZE;
}
// The min number of states HAS to be at least 4: we have 3 sentinel states
// and then we need space for one more when we save a state after clearing
// the cache. We also need space for one more, otherwise we get stuck in a
// loop where we try to add a 5th state, which gets rejected, which clears
// the cache, which adds back a saved state (4th total state) which then
// tries to add the 5th state again.
assert!(MIN_STATES >= 5, "minimum number of states has to be at least 5");
// The minimum number of non-sentinel states. We consider this separately
// because sentinel states are much smaller in that they contain no NFA
// states. Given our aggressive calculation here, it's worth being more
// precise with the number of states we need.
let non_sentinel = MIN_STATES.checked_sub(SENTINEL_STATES).unwrap();
// Every `State` has 5 bytes for flags, 4 bytes (max) for the number of
// patterns, followed by 32-bit encodings of patterns and then delta
// varint encodings of NFA state IDs. We use the worst case (which isn't
// technically possible) of 5 bytes for each NFA state ID.
//
// HOWEVER, three of the states needed by a lazy DFA are just the sentinel
// unknown, dead and quit states. Those states have a known size and it is
// small.
let dead_state_size = State::dead().memory_usage();
let max_state_size = 5 + 4 + (nfa.pattern_len() * 4) + (states_len * 5);
let states = (SENTINEL_STATES * (STATE_SIZE + dead_state_size))
+ (non_sentinel * (STATE_SIZE + max_state_size));
// NOTE: We don't double count heap memory used by State for this map since
// we use reference counting to avoid doubling memory usage. (This tends to
// be where most memory is allocated in the cache.)
let states_to_sid = (MIN_STATES * STATE_SIZE) + (MIN_STATES * ID_SIZE);
let stack = states_len * NFAStateID::SIZE;
let scratch_state_builder = max_state_size;
trans
+ starts
+ states
+ states_to_sid
+ sparses
+ stack
+ scratch_state_builder
}
#[cfg(all(test, feature = "syntax"))]
mod tests {
use super::*;
// Tests that we handle heuristic Unicode word boundary support in reverse
// DFAs in the specific case of contextual searches.
//
// I wrote this test when I discovered a bug in how heuristic word
// boundaries were handled. Namely, that the starting state selection
// didn't consider the DFA's quit byte set when looking at the byte
// immediately before the start of the search (or immediately after the
// end of the search in the case of a reverse search). As a result, it was
// possible for '\bfoo\b' to match 'β123' because the trailing \xB2 byte
// in the 'β' codepoint would be treated as a non-word character. But of
// course, this search should trigger the DFA to quit, since there is a
// non-ASCII byte in consideration.
//
// Thus, I fixed 'start_state_{forward,reverse}' to check the quit byte set
// if it wasn't empty. The forward case is tested in the doc test for the
// Config::unicode_word_boundary API. We test the reverse case here, which
// is sufficiently niche that it doesn't really belong in a doc test.
#[test]
fn heuristic_unicode_reverse() {
let dfa = DFA::builder()
.configure(DFA::config().unicode_word_boundary(true))
.thompson(thompson::Config::new().reverse(true))
.build(r"\b[0-9]+\b")
.unwrap();
let mut cache = dfa.create_cache();
let input = Input::new("β123").range(2..);
let expected = MatchError::quit(0xB2, 1);
let got = dfa.try_search_rev(&mut cache, &input);
assert_eq!(Err(expected), got);
let input = Input::new("123β").range(..3);
let expected = MatchError::quit(0xCE, 3);
let got = dfa.try_search_rev(&mut cache, &input);
assert_eq!(Err(expected), got);
}
}