proc_macro2/lib.rs
1//! [![github]](https://github.com/dtolnay/proc-macro2) [![crates-io]](https://crates.io/crates/proc-macro2) [![docs-rs]](crate)
2//!
3//! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github
4//! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust
5//! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logo=docs.rs
6//!
7//! <br>
8//!
9//! A wrapper around the procedural macro API of the compiler's [`proc_macro`]
10//! crate. This library serves two purposes:
11//!
12//! [`proc_macro`]: https://doc.rust-lang.org/proc_macro/
13//!
14//! - **Bring proc-macro-like functionality to other contexts like build.rs and
15//! main.rs.** Types from `proc_macro` are entirely specific to procedural
16//! macros and cannot ever exist in code outside of a procedural macro.
17//! Meanwhile `proc_macro2` types may exist anywhere including non-macro code.
18//! By developing foundational libraries like [syn] and [quote] against
19//! `proc_macro2` rather than `proc_macro`, the procedural macro ecosystem
20//! becomes easily applicable to many other use cases and we avoid
21//! reimplementing non-macro equivalents of those libraries.
22//!
23//! - **Make procedural macros unit testable.** As a consequence of being
24//! specific to procedural macros, nothing that uses `proc_macro` can be
25//! executed from a unit test. In order for helper libraries or components of
26//! a macro to be testable in isolation, they must be implemented using
27//! `proc_macro2`.
28//!
29//! [syn]: https://github.com/dtolnay/syn
30//! [quote]: https://github.com/dtolnay/quote
31//!
32//! # Usage
33//!
34//! The skeleton of a typical procedural macro typically looks like this:
35//!
36//! ```
37//! extern crate proc_macro;
38//!
39//! # const IGNORE: &str = stringify! {
40//! #[proc_macro_derive(MyDerive)]
41//! # };
42//! # #[cfg(wrap_proc_macro)]
43//! pub fn my_derive(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
44//! let input = proc_macro2::TokenStream::from(input);
45//!
46//! let output: proc_macro2::TokenStream = {
47//! /* transform input */
48//! # input
49//! };
50//!
51//! proc_macro::TokenStream::from(output)
52//! }
53//! ```
54//!
55//! If parsing with [Syn], you'll use [`parse_macro_input!`] instead to
56//! propagate parse errors correctly back to the compiler when parsing fails.
57//!
58//! [`parse_macro_input!`]: https://docs.rs/syn/2.0/syn/macro.parse_macro_input.html
59//!
60//! # Unstable features
61//!
62//! The default feature set of proc-macro2 tracks the most recent stable
63//! compiler API. Functionality in `proc_macro` that is not yet stable is not
64//! exposed by proc-macro2 by default.
65//!
66//! To opt into the additional APIs available in the most recent nightly
67//! compiler, the `procmacro2_semver_exempt` config flag must be passed to
68//! rustc. We will polyfill those nightly-only APIs back to Rust 1.56.0. As
69//! these are unstable APIs that track the nightly compiler, minor versions of
70//! proc-macro2 may make breaking changes to them at any time.
71//!
72//! ```sh
73//! RUSTFLAGS='--cfg procmacro2_semver_exempt' cargo build
74//! ```
75//!
76//! Note that this must not only be done for your crate, but for any crate that
77//! depends on your crate. This infectious nature is intentional, as it serves
78//! as a reminder that you are outside of the normal semver guarantees.
79//!
80//! Semver exempt methods are marked as such in the proc-macro2 documentation.
81//!
82//! # Thread-Safety
83//!
84//! Most types in this crate are `!Sync` because the underlying compiler
85//! types make use of thread-local memory, meaning they cannot be accessed from
86//! a different thread.
87
88// Proc-macro2 types in rustdoc of other crates get linked to here.
89#![doc(html_root_url = "https://docs.rs/proc-macro2/1.0.89")]
90#![cfg_attr(any(proc_macro_span, super_unstable), feature(proc_macro_span))]
91#![cfg_attr(super_unstable, feature(proc_macro_def_site))]
92#![cfg_attr(docsrs, feature(doc_cfg))]
93#![deny(unsafe_op_in_unsafe_fn)]
94#![allow(
95 clippy::cast_lossless,
96 clippy::cast_possible_truncation,
97 clippy::checked_conversions,
98 clippy::doc_markdown,
99 clippy::incompatible_msrv,
100 clippy::items_after_statements,
101 clippy::iter_without_into_iter,
102 clippy::let_underscore_untyped,
103 clippy::manual_assert,
104 clippy::manual_range_contains,
105 clippy::missing_panics_doc,
106 clippy::missing_safety_doc,
107 clippy::must_use_candidate,
108 clippy::needless_doctest_main,
109 clippy::needless_lifetimes,
110 clippy::new_without_default,
111 clippy::return_self_not_must_use,
112 clippy::shadow_unrelated,
113 clippy::trivially_copy_pass_by_ref,
114 clippy::unnecessary_wraps,
115 clippy::unused_self,
116 clippy::used_underscore_binding,
117 clippy::vec_init_then_push
118)]
119
120#[cfg(all(procmacro2_semver_exempt, wrap_proc_macro, not(super_unstable)))]
121compile_error! {"\
122 Something is not right. If you've tried to turn on \
123 procmacro2_semver_exempt, you need to ensure that it \
124 is turned on for the compilation of the proc-macro2 \
125 build script as well.
126"}
127
128#[cfg(all(
129 procmacro2_nightly_testing,
130 feature = "proc-macro",
131 not(proc_macro_span)
132))]
133compile_error! {"\
134 Build script probe failed to compile.
135"}
136
137extern crate alloc;
138
139#[cfg(feature = "proc-macro")]
140extern crate proc_macro;
141
142mod marker;
143mod parse;
144mod rcvec;
145
146#[cfg(wrap_proc_macro)]
147mod detection;
148
149// Public for proc_macro2::fallback::force() and unforce(), but those are quite
150// a niche use case so we omit it from rustdoc.
151#[doc(hidden)]
152pub mod fallback;
153
154pub mod extra;
155
156#[cfg(not(wrap_proc_macro))]
157use crate::fallback as imp;
158#[path = "wrapper.rs"]
159#[cfg(wrap_proc_macro)]
160mod imp;
161
162#[cfg(span_locations)]
163mod location;
164
165use crate::extra::DelimSpan;
166use crate::marker::{ProcMacroAutoTraits, MARKER};
167use core::cmp::Ordering;
168use core::fmt::{self, Debug, Display};
169use core::hash::{Hash, Hasher};
170#[cfg(span_locations)]
171use core::ops::Range;
172use core::ops::RangeBounds;
173use core::str::FromStr;
174use std::error::Error;
175use std::ffi::CStr;
176#[cfg(procmacro2_semver_exempt)]
177use std::path::PathBuf;
178
179#[cfg(span_locations)]
180#[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
181pub use crate::location::LineColumn;
182
183/// An abstract stream of tokens, or more concretely a sequence of token trees.
184///
185/// This type provides interfaces for iterating over token trees and for
186/// collecting token trees into one stream.
187///
188/// Token stream is both the input and output of `#[proc_macro]`,
189/// `#[proc_macro_attribute]` and `#[proc_macro_derive]` definitions.
190#[derive(Clone)]
191pub struct TokenStream {
192 inner: imp::TokenStream,
193 _marker: ProcMacroAutoTraits,
194}
195
196/// Error returned from `TokenStream::from_str`.
197pub struct LexError {
198 inner: imp::LexError,
199 _marker: ProcMacroAutoTraits,
200}
201
202impl TokenStream {
203 fn _new(inner: imp::TokenStream) -> Self {
204 TokenStream {
205 inner,
206 _marker: MARKER,
207 }
208 }
209
210 fn _new_fallback(inner: fallback::TokenStream) -> Self {
211 TokenStream {
212 inner: inner.into(),
213 _marker: MARKER,
214 }
215 }
216
217 /// Returns an empty `TokenStream` containing no token trees.
218 pub fn new() -> Self {
219 TokenStream::_new(imp::TokenStream::new())
220 }
221
222 /// Checks if this `TokenStream` is empty.
223 pub fn is_empty(&self) -> bool {
224 self.inner.is_empty()
225 }
226}
227
228/// `TokenStream::default()` returns an empty stream,
229/// i.e. this is equivalent with `TokenStream::new()`.
230impl Default for TokenStream {
231 fn default() -> Self {
232 TokenStream::new()
233 }
234}
235
236/// Attempts to break the string into tokens and parse those tokens into a token
237/// stream.
238///
239/// May fail for a number of reasons, for example, if the string contains
240/// unbalanced delimiters or characters not existing in the language.
241///
242/// NOTE: Some errors may cause panics instead of returning `LexError`. We
243/// reserve the right to change these errors into `LexError`s later.
244impl FromStr for TokenStream {
245 type Err = LexError;
246
247 fn from_str(src: &str) -> Result<TokenStream, LexError> {
248 let e = src.parse().map_err(|e| LexError {
249 inner: e,
250 _marker: MARKER,
251 })?;
252 Ok(TokenStream::_new(e))
253 }
254}
255
256#[cfg(feature = "proc-macro")]
257#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
258impl From<proc_macro::TokenStream> for TokenStream {
259 fn from(inner: proc_macro::TokenStream) -> Self {
260 TokenStream::_new(inner.into())
261 }
262}
263
264#[cfg(feature = "proc-macro")]
265#[cfg_attr(docsrs, doc(cfg(feature = "proc-macro")))]
266impl From<TokenStream> for proc_macro::TokenStream {
267 fn from(inner: TokenStream) -> Self {
268 inner.inner.into()
269 }
270}
271
272impl From<TokenTree> for TokenStream {
273 fn from(token: TokenTree) -> Self {
274 TokenStream::_new(imp::TokenStream::from(token))
275 }
276}
277
278impl Extend<TokenTree> for TokenStream {
279 fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, streams: I) {
280 self.inner.extend(streams);
281 }
282}
283
284impl Extend<TokenStream> for TokenStream {
285 fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) {
286 self.inner
287 .extend(streams.into_iter().map(|stream| stream.inner));
288 }
289}
290
291/// Collects a number of token trees into a single stream.
292impl FromIterator<TokenTree> for TokenStream {
293 fn from_iter<I: IntoIterator<Item = TokenTree>>(streams: I) -> Self {
294 TokenStream::_new(streams.into_iter().collect())
295 }
296}
297impl FromIterator<TokenStream> for TokenStream {
298 fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self {
299 TokenStream::_new(streams.into_iter().map(|i| i.inner).collect())
300 }
301}
302
303/// Prints the token stream as a string that is supposed to be losslessly
304/// convertible back into the same token stream (modulo spans), except for
305/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
306/// numeric literals.
307impl Display for TokenStream {
308 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
309 Display::fmt(&self.inner, f)
310 }
311}
312
313/// Prints token in a form convenient for debugging.
314impl Debug for TokenStream {
315 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
316 Debug::fmt(&self.inner, f)
317 }
318}
319
320impl LexError {
321 pub fn span(&self) -> Span {
322 Span::_new(self.inner.span())
323 }
324}
325
326impl Debug for LexError {
327 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
328 Debug::fmt(&self.inner, f)
329 }
330}
331
332impl Display for LexError {
333 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
334 Display::fmt(&self.inner, f)
335 }
336}
337
338impl Error for LexError {}
339
340/// The source file of a given `Span`.
341///
342/// This type is semver exempt and not exposed by default.
343#[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
344#[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
345#[derive(Clone, PartialEq, Eq)]
346pub struct SourceFile {
347 inner: imp::SourceFile,
348 _marker: ProcMacroAutoTraits,
349}
350
351#[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
352impl SourceFile {
353 fn _new(inner: imp::SourceFile) -> Self {
354 SourceFile {
355 inner,
356 _marker: MARKER,
357 }
358 }
359
360 /// Get the path to this source file.
361 ///
362 /// ### Note
363 ///
364 /// If the code span associated with this `SourceFile` was generated by an
365 /// external macro, this may not be an actual path on the filesystem. Use
366 /// [`is_real`] to check.
367 ///
368 /// Also note that even if `is_real` returns `true`, if
369 /// `--remap-path-prefix` was passed on the command line, the path as given
370 /// may not actually be valid.
371 ///
372 /// [`is_real`]: #method.is_real
373 pub fn path(&self) -> PathBuf {
374 self.inner.path()
375 }
376
377 /// Returns `true` if this source file is a real source file, and not
378 /// generated by an external macro's expansion.
379 pub fn is_real(&self) -> bool {
380 self.inner.is_real()
381 }
382}
383
384#[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
385impl Debug for SourceFile {
386 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
387 Debug::fmt(&self.inner, f)
388 }
389}
390
391/// A region of source code, along with macro expansion information.
392#[derive(Copy, Clone)]
393pub struct Span {
394 inner: imp::Span,
395 _marker: ProcMacroAutoTraits,
396}
397
398impl Span {
399 fn _new(inner: imp::Span) -> Self {
400 Span {
401 inner,
402 _marker: MARKER,
403 }
404 }
405
406 fn _new_fallback(inner: fallback::Span) -> Self {
407 Span {
408 inner: inner.into(),
409 _marker: MARKER,
410 }
411 }
412
413 /// The span of the invocation of the current procedural macro.
414 ///
415 /// Identifiers created with this span will be resolved as if they were
416 /// written directly at the macro call location (call-site hygiene) and
417 /// other code at the macro call site will be able to refer to them as well.
418 pub fn call_site() -> Self {
419 Span::_new(imp::Span::call_site())
420 }
421
422 /// The span located at the invocation of the procedural macro, but with
423 /// local variables, labels, and `$crate` resolved at the definition site
424 /// of the macro. This is the same hygiene behavior as `macro_rules`.
425 pub fn mixed_site() -> Self {
426 Span::_new(imp::Span::mixed_site())
427 }
428
429 /// A span that resolves at the macro definition site.
430 ///
431 /// This method is semver exempt and not exposed by default.
432 #[cfg(procmacro2_semver_exempt)]
433 #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
434 pub fn def_site() -> Self {
435 Span::_new(imp::Span::def_site())
436 }
437
438 /// Creates a new span with the same line/column information as `self` but
439 /// that resolves symbols as though it were at `other`.
440 pub fn resolved_at(&self, other: Span) -> Span {
441 Span::_new(self.inner.resolved_at(other.inner))
442 }
443
444 /// Creates a new span with the same name resolution behavior as `self` but
445 /// with the line/column information of `other`.
446 pub fn located_at(&self, other: Span) -> Span {
447 Span::_new(self.inner.located_at(other.inner))
448 }
449
450 /// Convert `proc_macro2::Span` to `proc_macro::Span`.
451 ///
452 /// This method is available when building with a nightly compiler, or when
453 /// building with rustc 1.29+ *without* semver exempt features.
454 ///
455 /// # Panics
456 ///
457 /// Panics if called from outside of a procedural macro. Unlike
458 /// `proc_macro2::Span`, the `proc_macro::Span` type can only exist within
459 /// the context of a procedural macro invocation.
460 #[cfg(wrap_proc_macro)]
461 pub fn unwrap(self) -> proc_macro::Span {
462 self.inner.unwrap()
463 }
464
465 // Soft deprecated. Please use Span::unwrap.
466 #[cfg(wrap_proc_macro)]
467 #[doc(hidden)]
468 pub fn unstable(self) -> proc_macro::Span {
469 self.unwrap()
470 }
471
472 /// The original source file into which this span points.
473 ///
474 /// This method is semver exempt and not exposed by default.
475 #[cfg(all(procmacro2_semver_exempt, any(not(wrap_proc_macro), super_unstable)))]
476 #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
477 pub fn source_file(&self) -> SourceFile {
478 SourceFile::_new(self.inner.source_file())
479 }
480
481 /// Returns the span's byte position range in the source file.
482 ///
483 /// This method requires the `"span-locations"` feature to be enabled.
484 ///
485 /// When executing in a procedural macro context, the returned range is only
486 /// accurate if compiled with a nightly toolchain. The stable toolchain does
487 /// not have this information available. When executing outside of a
488 /// procedural macro, such as main.rs or build.rs, the byte range is always
489 /// accurate regardless of toolchain.
490 #[cfg(span_locations)]
491 #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
492 pub fn byte_range(&self) -> Range<usize> {
493 self.inner.byte_range()
494 }
495
496 /// Get the starting line/column in the source file for this span.
497 ///
498 /// This method requires the `"span-locations"` feature to be enabled.
499 ///
500 /// When executing in a procedural macro context, the returned line/column
501 /// are only meaningful if compiled with a nightly toolchain. The stable
502 /// toolchain does not have this information available. When executing
503 /// outside of a procedural macro, such as main.rs or build.rs, the
504 /// line/column are always meaningful regardless of toolchain.
505 #[cfg(span_locations)]
506 #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
507 pub fn start(&self) -> LineColumn {
508 self.inner.start()
509 }
510
511 /// Get the ending line/column in the source file for this span.
512 ///
513 /// This method requires the `"span-locations"` feature to be enabled.
514 ///
515 /// When executing in a procedural macro context, the returned line/column
516 /// are only meaningful if compiled with a nightly toolchain. The stable
517 /// toolchain does not have this information available. When executing
518 /// outside of a procedural macro, such as main.rs or build.rs, the
519 /// line/column are always meaningful regardless of toolchain.
520 #[cfg(span_locations)]
521 #[cfg_attr(docsrs, doc(cfg(feature = "span-locations")))]
522 pub fn end(&self) -> LineColumn {
523 self.inner.end()
524 }
525
526 /// Create a new span encompassing `self` and `other`.
527 ///
528 /// Returns `None` if `self` and `other` are from different files.
529 ///
530 /// Warning: the underlying [`proc_macro::Span::join`] method is
531 /// nightly-only. When called from within a procedural macro not using a
532 /// nightly compiler, this method will always return `None`.
533 ///
534 /// [`proc_macro::Span::join`]: https://doc.rust-lang.org/proc_macro/struct.Span.html#method.join
535 pub fn join(&self, other: Span) -> Option<Span> {
536 self.inner.join(other.inner).map(Span::_new)
537 }
538
539 /// Compares two spans to see if they're equal.
540 ///
541 /// This method is semver exempt and not exposed by default.
542 #[cfg(procmacro2_semver_exempt)]
543 #[cfg_attr(docsrs, doc(cfg(procmacro2_semver_exempt)))]
544 pub fn eq(&self, other: &Span) -> bool {
545 self.inner.eq(&other.inner)
546 }
547
548 /// Returns the source text behind a span. This preserves the original
549 /// source code, including spaces and comments. It only returns a result if
550 /// the span corresponds to real source code.
551 ///
552 /// Note: The observable result of a macro should only rely on the tokens
553 /// and not on this source text. The result of this function is a best
554 /// effort to be used for diagnostics only.
555 pub fn source_text(&self) -> Option<String> {
556 self.inner.source_text()
557 }
558}
559
560/// Prints a span in a form convenient for debugging.
561impl Debug for Span {
562 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
563 Debug::fmt(&self.inner, f)
564 }
565}
566
567/// A single token or a delimited sequence of token trees (e.g. `[1, (), ..]`).
568#[derive(Clone)]
569pub enum TokenTree {
570 /// A token stream surrounded by bracket delimiters.
571 Group(Group),
572 /// An identifier.
573 Ident(Ident),
574 /// A single punctuation character (`+`, `,`, `$`, etc.).
575 Punct(Punct),
576 /// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc.
577 Literal(Literal),
578}
579
580impl TokenTree {
581 /// Returns the span of this tree, delegating to the `span` method of
582 /// the contained token or a delimited stream.
583 pub fn span(&self) -> Span {
584 match self {
585 TokenTree::Group(t) => t.span(),
586 TokenTree::Ident(t) => t.span(),
587 TokenTree::Punct(t) => t.span(),
588 TokenTree::Literal(t) => t.span(),
589 }
590 }
591
592 /// Configures the span for *only this token*.
593 ///
594 /// Note that if this token is a `Group` then this method will not configure
595 /// the span of each of the internal tokens, this will simply delegate to
596 /// the `set_span` method of each variant.
597 pub fn set_span(&mut self, span: Span) {
598 match self {
599 TokenTree::Group(t) => t.set_span(span),
600 TokenTree::Ident(t) => t.set_span(span),
601 TokenTree::Punct(t) => t.set_span(span),
602 TokenTree::Literal(t) => t.set_span(span),
603 }
604 }
605}
606
607impl From<Group> for TokenTree {
608 fn from(g: Group) -> Self {
609 TokenTree::Group(g)
610 }
611}
612
613impl From<Ident> for TokenTree {
614 fn from(g: Ident) -> Self {
615 TokenTree::Ident(g)
616 }
617}
618
619impl From<Punct> for TokenTree {
620 fn from(g: Punct) -> Self {
621 TokenTree::Punct(g)
622 }
623}
624
625impl From<Literal> for TokenTree {
626 fn from(g: Literal) -> Self {
627 TokenTree::Literal(g)
628 }
629}
630
631/// Prints the token tree as a string that is supposed to be losslessly
632/// convertible back into the same token tree (modulo spans), except for
633/// possibly `TokenTree::Group`s with `Delimiter::None` delimiters and negative
634/// numeric literals.
635impl Display for TokenTree {
636 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
637 match self {
638 TokenTree::Group(t) => Display::fmt(t, f),
639 TokenTree::Ident(t) => Display::fmt(t, f),
640 TokenTree::Punct(t) => Display::fmt(t, f),
641 TokenTree::Literal(t) => Display::fmt(t, f),
642 }
643 }
644}
645
646/// Prints token tree in a form convenient for debugging.
647impl Debug for TokenTree {
648 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
649 // Each of these has the name in the struct type in the derived debug,
650 // so don't bother with an extra layer of indirection
651 match self {
652 TokenTree::Group(t) => Debug::fmt(t, f),
653 TokenTree::Ident(t) => {
654 let mut debug = f.debug_struct("Ident");
655 debug.field("sym", &format_args!("{}", t));
656 imp::debug_span_field_if_nontrivial(&mut debug, t.span().inner);
657 debug.finish()
658 }
659 TokenTree::Punct(t) => Debug::fmt(t, f),
660 TokenTree::Literal(t) => Debug::fmt(t, f),
661 }
662 }
663}
664
665/// A delimited token stream.
666///
667/// A `Group` internally contains a `TokenStream` which is surrounded by
668/// `Delimiter`s.
669#[derive(Clone)]
670pub struct Group {
671 inner: imp::Group,
672}
673
674/// Describes how a sequence of token trees is delimited.
675#[derive(Copy, Clone, Debug, Eq, PartialEq)]
676pub enum Delimiter {
677 /// `( ... )`
678 Parenthesis,
679 /// `{ ... }`
680 Brace,
681 /// `[ ... ]`
682 Bracket,
683 /// `∅ ... ∅`
684 ///
685 /// An invisible delimiter, that may, for example, appear around tokens
686 /// coming from a "macro variable" `$var`. It is important to preserve
687 /// operator priorities in cases like `$var * 3` where `$var` is `1 + 2`.
688 /// Invisible delimiters may not survive roundtrip of a token stream through
689 /// a string.
690 ///
691 /// <div class="warning">
692 ///
693 /// Note: rustc currently can ignore the grouping of tokens delimited by `None` in the output
694 /// of a proc_macro. Only `None`-delimited groups created by a macro_rules macro in the input
695 /// of a proc_macro macro are preserved, and only in very specific circumstances.
696 /// Any `None`-delimited groups (re)created by a proc_macro will therefore not preserve
697 /// operator priorities as indicated above. The other `Delimiter` variants should be used
698 /// instead in this context. This is a rustc bug. For details, see
699 /// [rust-lang/rust#67062](https://github.com/rust-lang/rust/issues/67062).
700 ///
701 /// </div>
702 None,
703}
704
705impl Group {
706 fn _new(inner: imp::Group) -> Self {
707 Group { inner }
708 }
709
710 fn _new_fallback(inner: fallback::Group) -> Self {
711 Group {
712 inner: inner.into(),
713 }
714 }
715
716 /// Creates a new `Group` with the given delimiter and token stream.
717 ///
718 /// This constructor will set the span for this group to
719 /// `Span::call_site()`. To change the span you can use the `set_span`
720 /// method below.
721 pub fn new(delimiter: Delimiter, stream: TokenStream) -> Self {
722 Group {
723 inner: imp::Group::new(delimiter, stream.inner),
724 }
725 }
726
727 /// Returns the punctuation used as the delimiter for this group: a set of
728 /// parentheses, square brackets, or curly braces.
729 pub fn delimiter(&self) -> Delimiter {
730 self.inner.delimiter()
731 }
732
733 /// Returns the `TokenStream` of tokens that are delimited in this `Group`.
734 ///
735 /// Note that the returned token stream does not include the delimiter
736 /// returned above.
737 pub fn stream(&self) -> TokenStream {
738 TokenStream::_new(self.inner.stream())
739 }
740
741 /// Returns the span for the delimiters of this token stream, spanning the
742 /// entire `Group`.
743 ///
744 /// ```text
745 /// pub fn span(&self) -> Span {
746 /// ^^^^^^^
747 /// ```
748 pub fn span(&self) -> Span {
749 Span::_new(self.inner.span())
750 }
751
752 /// Returns the span pointing to the opening delimiter of this group.
753 ///
754 /// ```text
755 /// pub fn span_open(&self) -> Span {
756 /// ^
757 /// ```
758 pub fn span_open(&self) -> Span {
759 Span::_new(self.inner.span_open())
760 }
761
762 /// Returns the span pointing to the closing delimiter of this group.
763 ///
764 /// ```text
765 /// pub fn span_close(&self) -> Span {
766 /// ^
767 /// ```
768 pub fn span_close(&self) -> Span {
769 Span::_new(self.inner.span_close())
770 }
771
772 /// Returns an object that holds this group's `span_open()` and
773 /// `span_close()` together (in a more compact representation than holding
774 /// those 2 spans individually).
775 pub fn delim_span(&self) -> DelimSpan {
776 DelimSpan::new(&self.inner)
777 }
778
779 /// Configures the span for this `Group`'s delimiters, but not its internal
780 /// tokens.
781 ///
782 /// This method will **not** set the span of all the internal tokens spanned
783 /// by this group, but rather it will only set the span of the delimiter
784 /// tokens at the level of the `Group`.
785 pub fn set_span(&mut self, span: Span) {
786 self.inner.set_span(span.inner);
787 }
788}
789
790/// Prints the group as a string that should be losslessly convertible back
791/// into the same group (modulo spans), except for possibly `TokenTree::Group`s
792/// with `Delimiter::None` delimiters.
793impl Display for Group {
794 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
795 Display::fmt(&self.inner, formatter)
796 }
797}
798
799impl Debug for Group {
800 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
801 Debug::fmt(&self.inner, formatter)
802 }
803}
804
805/// A `Punct` is a single punctuation character like `+`, `-` or `#`.
806///
807/// Multicharacter operators like `+=` are represented as two instances of
808/// `Punct` with different forms of `Spacing` returned.
809#[derive(Clone)]
810pub struct Punct {
811 ch: char,
812 spacing: Spacing,
813 span: Span,
814}
815
816/// Whether a `Punct` is followed immediately by another `Punct` or followed by
817/// another token or whitespace.
818#[derive(Copy, Clone, Debug, Eq, PartialEq)]
819pub enum Spacing {
820 /// E.g. `+` is `Alone` in `+ =`, `+ident` or `+()`.
821 Alone,
822 /// E.g. `+` is `Joint` in `+=` or `'` is `Joint` in `'#`.
823 ///
824 /// Additionally, single quote `'` can join with identifiers to form
825 /// lifetimes `'ident`.
826 Joint,
827}
828
829impl Punct {
830 /// Creates a new `Punct` from the given character and spacing.
831 ///
832 /// The `ch` argument must be a valid punctuation character permitted by the
833 /// language, otherwise the function will panic.
834 ///
835 /// The returned `Punct` will have the default span of `Span::call_site()`
836 /// which can be further configured with the `set_span` method below.
837 pub fn new(ch: char, spacing: Spacing) -> Self {
838 if let '!' | '#' | '$' | '%' | '&' | '\'' | '*' | '+' | ',' | '-' | '.' | '/' | ':' | ';'
839 | '<' | '=' | '>' | '?' | '@' | '^' | '|' | '~' = ch
840 {
841 Punct {
842 ch,
843 spacing,
844 span: Span::call_site(),
845 }
846 } else {
847 panic!("unsupported proc macro punctuation character {:?}", ch);
848 }
849 }
850
851 /// Returns the value of this punctuation character as `char`.
852 pub fn as_char(&self) -> char {
853 self.ch
854 }
855
856 /// Returns the spacing of this punctuation character, indicating whether
857 /// it's immediately followed by another `Punct` in the token stream, so
858 /// they can potentially be combined into a multicharacter operator
859 /// (`Joint`), or it's followed by some other token or whitespace (`Alone`)
860 /// so the operator has certainly ended.
861 pub fn spacing(&self) -> Spacing {
862 self.spacing
863 }
864
865 /// Returns the span for this punctuation character.
866 pub fn span(&self) -> Span {
867 self.span
868 }
869
870 /// Configure the span for this punctuation character.
871 pub fn set_span(&mut self, span: Span) {
872 self.span = span;
873 }
874}
875
876/// Prints the punctuation character as a string that should be losslessly
877/// convertible back into the same character.
878impl Display for Punct {
879 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
880 Display::fmt(&self.ch, f)
881 }
882}
883
884impl Debug for Punct {
885 fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
886 let mut debug = fmt.debug_struct("Punct");
887 debug.field("char", &self.ch);
888 debug.field("spacing", &self.spacing);
889 imp::debug_span_field_if_nontrivial(&mut debug, self.span.inner);
890 debug.finish()
891 }
892}
893
894/// A word of Rust code, which may be a keyword or legal variable name.
895///
896/// An identifier consists of at least one Unicode code point, the first of
897/// which has the XID_Start property and the rest of which have the XID_Continue
898/// property.
899///
900/// - The empty string is not an identifier. Use `Option<Ident>`.
901/// - A lifetime is not an identifier. Use `syn::Lifetime` instead.
902///
903/// An identifier constructed with `Ident::new` is permitted to be a Rust
904/// keyword, though parsing one through its [`Parse`] implementation rejects
905/// Rust keywords. Use `input.call(Ident::parse_any)` when parsing to match the
906/// behaviour of `Ident::new`.
907///
908/// [`Parse`]: https://docs.rs/syn/2.0/syn/parse/trait.Parse.html
909///
910/// # Examples
911///
912/// A new ident can be created from a string using the `Ident::new` function.
913/// A span must be provided explicitly which governs the name resolution
914/// behavior of the resulting identifier.
915///
916/// ```
917/// use proc_macro2::{Ident, Span};
918///
919/// fn main() {
920/// let call_ident = Ident::new("calligraphy", Span::call_site());
921///
922/// println!("{}", call_ident);
923/// }
924/// ```
925///
926/// An ident can be interpolated into a token stream using the `quote!` macro.
927///
928/// ```
929/// use proc_macro2::{Ident, Span};
930/// use quote::quote;
931///
932/// fn main() {
933/// let ident = Ident::new("demo", Span::call_site());
934///
935/// // Create a variable binding whose name is this ident.
936/// let expanded = quote! { let #ident = 10; };
937///
938/// // Create a variable binding with a slightly different name.
939/// let temp_ident = Ident::new(&format!("new_{}", ident), Span::call_site());
940/// let expanded = quote! { let #temp_ident = 10; };
941/// }
942/// ```
943///
944/// A string representation of the ident is available through the `to_string()`
945/// method.
946///
947/// ```
948/// # use proc_macro2::{Ident, Span};
949/// #
950/// # let ident = Ident::new("another_identifier", Span::call_site());
951/// #
952/// // Examine the ident as a string.
953/// let ident_string = ident.to_string();
954/// if ident_string.len() > 60 {
955/// println!("Very long identifier: {}", ident_string)
956/// }
957/// ```
958#[derive(Clone)]
959pub struct Ident {
960 inner: imp::Ident,
961 _marker: ProcMacroAutoTraits,
962}
963
964impl Ident {
965 fn _new(inner: imp::Ident) -> Self {
966 Ident {
967 inner,
968 _marker: MARKER,
969 }
970 }
971
972 /// Creates a new `Ident` with the given `string` as well as the specified
973 /// `span`.
974 ///
975 /// The `string` argument must be a valid identifier permitted by the
976 /// language, otherwise the function will panic.
977 ///
978 /// Note that `span`, currently in rustc, configures the hygiene information
979 /// for this identifier.
980 ///
981 /// As of this time `Span::call_site()` explicitly opts-in to "call-site"
982 /// hygiene meaning that identifiers created with this span will be resolved
983 /// as if they were written directly at the location of the macro call, and
984 /// other code at the macro call site will be able to refer to them as well.
985 ///
986 /// Later spans like `Span::def_site()` will allow to opt-in to
987 /// "definition-site" hygiene meaning that identifiers created with this
988 /// span will be resolved at the location of the macro definition and other
989 /// code at the macro call site will not be able to refer to them.
990 ///
991 /// Due to the current importance of hygiene this constructor, unlike other
992 /// tokens, requires a `Span` to be specified at construction.
993 ///
994 /// # Panics
995 ///
996 /// Panics if the input string is neither a keyword nor a legal variable
997 /// name. If you are not sure whether the string contains an identifier and
998 /// need to handle an error case, use
999 /// <a href="https://docs.rs/syn/2.0/syn/fn.parse_str.html"><code
1000 /// style="padding-right:0;">syn::parse_str</code></a><code
1001 /// style="padding-left:0;">::<Ident></code>
1002 /// rather than `Ident::new`.
1003 #[track_caller]
1004 pub fn new(string: &str, span: Span) -> Self {
1005 Ident::_new(imp::Ident::new_checked(string, span.inner))
1006 }
1007
1008 /// Same as `Ident::new`, but creates a raw identifier (`r#ident`). The
1009 /// `string` argument must be a valid identifier permitted by the language
1010 /// (including keywords, e.g. `fn`). Keywords which are usable in path
1011 /// segments (e.g. `self`, `super`) are not supported, and will cause a
1012 /// panic.
1013 #[track_caller]
1014 pub fn new_raw(string: &str, span: Span) -> Self {
1015 Ident::_new(imp::Ident::new_raw_checked(string, span.inner))
1016 }
1017
1018 /// Returns the span of this `Ident`.
1019 pub fn span(&self) -> Span {
1020 Span::_new(self.inner.span())
1021 }
1022
1023 /// Configures the span of this `Ident`, possibly changing its hygiene
1024 /// context.
1025 pub fn set_span(&mut self, span: Span) {
1026 self.inner.set_span(span.inner);
1027 }
1028}
1029
1030impl PartialEq for Ident {
1031 fn eq(&self, other: &Ident) -> bool {
1032 self.inner == other.inner
1033 }
1034}
1035
1036impl<T> PartialEq<T> for Ident
1037where
1038 T: ?Sized + AsRef<str>,
1039{
1040 fn eq(&self, other: &T) -> bool {
1041 self.inner == other
1042 }
1043}
1044
1045impl Eq for Ident {}
1046
1047impl PartialOrd for Ident {
1048 fn partial_cmp(&self, other: &Ident) -> Option<Ordering> {
1049 Some(self.cmp(other))
1050 }
1051}
1052
1053impl Ord for Ident {
1054 fn cmp(&self, other: &Ident) -> Ordering {
1055 self.to_string().cmp(&other.to_string())
1056 }
1057}
1058
1059impl Hash for Ident {
1060 fn hash<H: Hasher>(&self, hasher: &mut H) {
1061 self.to_string().hash(hasher);
1062 }
1063}
1064
1065/// Prints the identifier as a string that should be losslessly convertible back
1066/// into the same identifier.
1067impl Display for Ident {
1068 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1069 Display::fmt(&self.inner, f)
1070 }
1071}
1072
1073impl Debug for Ident {
1074 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1075 Debug::fmt(&self.inner, f)
1076 }
1077}
1078
1079/// A literal string (`"hello"`), byte string (`b"hello"`), character (`'a'`),
1080/// byte character (`b'a'`), an integer or floating point number with or without
1081/// a suffix (`1`, `1u8`, `2.3`, `2.3f32`).
1082///
1083/// Boolean literals like `true` and `false` do not belong here, they are
1084/// `Ident`s.
1085#[derive(Clone)]
1086pub struct Literal {
1087 inner: imp::Literal,
1088 _marker: ProcMacroAutoTraits,
1089}
1090
1091macro_rules! suffixed_int_literals {
1092 ($($name:ident => $kind:ident,)*) => ($(
1093 /// Creates a new suffixed integer literal with the specified value.
1094 ///
1095 /// This function will create an integer like `1u32` where the integer
1096 /// value specified is the first part of the token and the integral is
1097 /// also suffixed at the end. Literals created from negative numbers may
1098 /// not survive roundtrips through `TokenStream` or strings and may be
1099 /// broken into two tokens (`-` and positive literal).
1100 ///
1101 /// Literals created through this method have the `Span::call_site()`
1102 /// span by default, which can be configured with the `set_span` method
1103 /// below.
1104 pub fn $name(n: $kind) -> Literal {
1105 Literal::_new(imp::Literal::$name(n))
1106 }
1107 )*)
1108}
1109
1110macro_rules! unsuffixed_int_literals {
1111 ($($name:ident => $kind:ident,)*) => ($(
1112 /// Creates a new unsuffixed integer literal with the specified value.
1113 ///
1114 /// This function will create an integer like `1` where the integer
1115 /// value specified is the first part of the token. No suffix is
1116 /// specified on this token, meaning that invocations like
1117 /// `Literal::i8_unsuffixed(1)` are equivalent to
1118 /// `Literal::u32_unsuffixed(1)`. Literals created from negative numbers
1119 /// may not survive roundtrips through `TokenStream` or strings and may
1120 /// be broken into two tokens (`-` and positive literal).
1121 ///
1122 /// Literals created through this method have the `Span::call_site()`
1123 /// span by default, which can be configured with the `set_span` method
1124 /// below.
1125 pub fn $name(n: $kind) -> Literal {
1126 Literal::_new(imp::Literal::$name(n))
1127 }
1128 )*)
1129}
1130
1131impl Literal {
1132 fn _new(inner: imp::Literal) -> Self {
1133 Literal {
1134 inner,
1135 _marker: MARKER,
1136 }
1137 }
1138
1139 fn _new_fallback(inner: fallback::Literal) -> Self {
1140 Literal {
1141 inner: inner.into(),
1142 _marker: MARKER,
1143 }
1144 }
1145
1146 suffixed_int_literals! {
1147 u8_suffixed => u8,
1148 u16_suffixed => u16,
1149 u32_suffixed => u32,
1150 u64_suffixed => u64,
1151 u128_suffixed => u128,
1152 usize_suffixed => usize,
1153 i8_suffixed => i8,
1154 i16_suffixed => i16,
1155 i32_suffixed => i32,
1156 i64_suffixed => i64,
1157 i128_suffixed => i128,
1158 isize_suffixed => isize,
1159 }
1160
1161 unsuffixed_int_literals! {
1162 u8_unsuffixed => u8,
1163 u16_unsuffixed => u16,
1164 u32_unsuffixed => u32,
1165 u64_unsuffixed => u64,
1166 u128_unsuffixed => u128,
1167 usize_unsuffixed => usize,
1168 i8_unsuffixed => i8,
1169 i16_unsuffixed => i16,
1170 i32_unsuffixed => i32,
1171 i64_unsuffixed => i64,
1172 i128_unsuffixed => i128,
1173 isize_unsuffixed => isize,
1174 }
1175
1176 /// Creates a new unsuffixed floating-point literal.
1177 ///
1178 /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1179 /// the float's value is emitted directly into the token but no suffix is
1180 /// used, so it may be inferred to be a `f64` later in the compiler.
1181 /// Literals created from negative numbers may not survive round-trips
1182 /// through `TokenStream` or strings and may be broken into two tokens (`-`
1183 /// and positive literal).
1184 ///
1185 /// # Panics
1186 ///
1187 /// This function requires that the specified float is finite, for example
1188 /// if it is infinity or NaN this function will panic.
1189 pub fn f64_unsuffixed(f: f64) -> Literal {
1190 assert!(f.is_finite());
1191 Literal::_new(imp::Literal::f64_unsuffixed(f))
1192 }
1193
1194 /// Creates a new suffixed floating-point literal.
1195 ///
1196 /// This constructor will create a literal like `1.0f64` where the value
1197 /// specified is the preceding part of the token and `f64` is the suffix of
1198 /// the token. This token will always be inferred to be an `f64` in the
1199 /// compiler. Literals created from negative numbers may not survive
1200 /// round-trips through `TokenStream` or strings and may be broken into two
1201 /// tokens (`-` and positive literal).
1202 ///
1203 /// # Panics
1204 ///
1205 /// This function requires that the specified float is finite, for example
1206 /// if it is infinity or NaN this function will panic.
1207 pub fn f64_suffixed(f: f64) -> Literal {
1208 assert!(f.is_finite());
1209 Literal::_new(imp::Literal::f64_suffixed(f))
1210 }
1211
1212 /// Creates a new unsuffixed floating-point literal.
1213 ///
1214 /// This constructor is similar to those like `Literal::i8_unsuffixed` where
1215 /// the float's value is emitted directly into the token but no suffix is
1216 /// used, so it may be inferred to be a `f64` later in the compiler.
1217 /// Literals created from negative numbers may not survive round-trips
1218 /// through `TokenStream` or strings and may be broken into two tokens (`-`
1219 /// and positive literal).
1220 ///
1221 /// # Panics
1222 ///
1223 /// This function requires that the specified float is finite, for example
1224 /// if it is infinity or NaN this function will panic.
1225 pub fn f32_unsuffixed(f: f32) -> Literal {
1226 assert!(f.is_finite());
1227 Literal::_new(imp::Literal::f32_unsuffixed(f))
1228 }
1229
1230 /// Creates a new suffixed floating-point literal.
1231 ///
1232 /// This constructor will create a literal like `1.0f32` where the value
1233 /// specified is the preceding part of the token and `f32` is the suffix of
1234 /// the token. This token will always be inferred to be an `f32` in the
1235 /// compiler. Literals created from negative numbers may not survive
1236 /// round-trips through `TokenStream` or strings and may be broken into two
1237 /// tokens (`-` and positive literal).
1238 ///
1239 /// # Panics
1240 ///
1241 /// This function requires that the specified float is finite, for example
1242 /// if it is infinity or NaN this function will panic.
1243 pub fn f32_suffixed(f: f32) -> Literal {
1244 assert!(f.is_finite());
1245 Literal::_new(imp::Literal::f32_suffixed(f))
1246 }
1247
1248 /// String literal.
1249 pub fn string(string: &str) -> Literal {
1250 Literal::_new(imp::Literal::string(string))
1251 }
1252
1253 /// Character literal.
1254 pub fn character(ch: char) -> Literal {
1255 Literal::_new(imp::Literal::character(ch))
1256 }
1257
1258 /// Byte character literal.
1259 pub fn byte_character(byte: u8) -> Literal {
1260 Literal::_new(imp::Literal::byte_character(byte))
1261 }
1262
1263 /// Byte string literal.
1264 pub fn byte_string(bytes: &[u8]) -> Literal {
1265 Literal::_new(imp::Literal::byte_string(bytes))
1266 }
1267
1268 /// C string literal.
1269 pub fn c_string(string: &CStr) -> Literal {
1270 Literal::_new(imp::Literal::c_string(string))
1271 }
1272
1273 /// Returns the span encompassing this literal.
1274 pub fn span(&self) -> Span {
1275 Span::_new(self.inner.span())
1276 }
1277
1278 /// Configures the span associated for this literal.
1279 pub fn set_span(&mut self, span: Span) {
1280 self.inner.set_span(span.inner);
1281 }
1282
1283 /// Returns a `Span` that is a subset of `self.span()` containing only
1284 /// the source bytes in range `range`. Returns `None` if the would-be
1285 /// trimmed span is outside the bounds of `self`.
1286 ///
1287 /// Warning: the underlying [`proc_macro::Literal::subspan`] method is
1288 /// nightly-only. When called from within a procedural macro not using a
1289 /// nightly compiler, this method will always return `None`.
1290 ///
1291 /// [`proc_macro::Literal::subspan`]: https://doc.rust-lang.org/proc_macro/struct.Literal.html#method.subspan
1292 pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> {
1293 self.inner.subspan(range).map(Span::_new)
1294 }
1295
1296 // Intended for the `quote!` macro to use when constructing a proc-macro2
1297 // token out of a macro_rules $:literal token, which is already known to be
1298 // a valid literal. This avoids reparsing/validating the literal's string
1299 // representation. This is not public API other than for quote.
1300 #[doc(hidden)]
1301 pub unsafe fn from_str_unchecked(repr: &str) -> Self {
1302 Literal::_new(unsafe { imp::Literal::from_str_unchecked(repr) })
1303 }
1304}
1305
1306impl FromStr for Literal {
1307 type Err = LexError;
1308
1309 fn from_str(repr: &str) -> Result<Self, LexError> {
1310 repr.parse().map(Literal::_new).map_err(|inner| LexError {
1311 inner,
1312 _marker: MARKER,
1313 })
1314 }
1315}
1316
1317impl Debug for Literal {
1318 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1319 Debug::fmt(&self.inner, f)
1320 }
1321}
1322
1323impl Display for Literal {
1324 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1325 Display::fmt(&self.inner, f)
1326 }
1327}
1328
1329/// Public implementation details for the `TokenStream` type, such as iterators.
1330pub mod token_stream {
1331 use crate::marker::{ProcMacroAutoTraits, MARKER};
1332 use crate::{imp, TokenTree};
1333 use core::fmt::{self, Debug};
1334
1335 pub use crate::TokenStream;
1336
1337 /// An iterator over `TokenStream`'s `TokenTree`s.
1338 ///
1339 /// The iteration is "shallow", e.g. the iterator doesn't recurse into
1340 /// delimited groups, and returns whole groups as token trees.
1341 #[derive(Clone)]
1342 pub struct IntoIter {
1343 inner: imp::TokenTreeIter,
1344 _marker: ProcMacroAutoTraits,
1345 }
1346
1347 impl Iterator for IntoIter {
1348 type Item = TokenTree;
1349
1350 fn next(&mut self) -> Option<TokenTree> {
1351 self.inner.next()
1352 }
1353
1354 fn size_hint(&self) -> (usize, Option<usize>) {
1355 self.inner.size_hint()
1356 }
1357 }
1358
1359 impl Debug for IntoIter {
1360 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1361 f.write_str("TokenStream ")?;
1362 f.debug_list().entries(self.clone()).finish()
1363 }
1364 }
1365
1366 impl IntoIterator for TokenStream {
1367 type Item = TokenTree;
1368 type IntoIter = IntoIter;
1369
1370 fn into_iter(self) -> IntoIter {
1371 IntoIter {
1372 inner: self.inner.into_iter(),
1373 _marker: MARKER,
1374 }
1375 }
1376 }
1377}