1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
// Copyright 2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
//! Elliptic curve operations on P-256 & P-384.
use self::ops::*;
use crate::{arithmetic::montgomery::*, cpu, ec, error, io::der, limb::LimbMask, pkcs8};
// NIST SP 800-56A Step 3: "If q is an odd prime p, verify that
// yQ**2 = xQ**3 + axQ + b in GF(p), where the arithmetic is performed modulo
// p."
//
// That is, verify that (x, y) is on the curve, which is true iif:
//
// y**2 == x**3 + a*x + b (mod q)
//
// Or, equivalently, but more efficiently:
//
// y**2 == (x**2 + a)*x + b (mod q)
//
fn verify_affine_point_is_on_the_curve(
ops: &CommonOps,
(x, y): (&Elem<R>, &Elem<R>),
) -> Result<(), error::Unspecified> {
verify_affine_point_is_on_the_curve_scaled(ops, (x, y), &ops.a, &ops.b)
}
// Use `verify_affine_point_is_on_the_curve` instead of this function whenever
// the affine coordinates are available or will become available. This function
// should only be used then the affine coordinates are never calculated. See
// the notes for `verify_affine_point_is_on_the_curve_scaled`.
//
// The value `z**2` is returned on success because it is useful for ECDSA
// verification.
//
// This function also verifies that the point is not at infinity.
fn verify_jacobian_point_is_on_the_curve(
ops: &CommonOps,
p: &Point,
) -> Result<Elem<R>, error::Unspecified> {
let z = ops.point_z(p);
// Verify that the point is not at infinity.
ops.elem_verify_is_not_zero(&z)?;
let x = ops.point_x(p);
let y = ops.point_y(p);
// We are given Jacobian coordinates (x, y, z). So, we have:
//
// (x/z**2, y/z**3) == (x', y'),
//
// where (x', y') are the affine coordinates. The curve equation is:
//
// y'**2 == x'**3 + a*x' + b == (x'**2 + a)*x' + b
//
// Substituting our Jacobian coordinates, we get:
//
// / y \**2 / / x \**2 \ / x \
// | ---- | == | | ---- | + a | * | ---- | + b
// \ z**3 / \ \ z**2 / / \ z**2 /
//
// Simplify:
//
// y**2 / x**2 \ x
// ---- == | ---- + a | * ---- + b
// z**6 \ z**4 / z**2
//
// Multiply both sides by z**6:
//
// z**6 / x**2 \ z**6
// ---- * y**2 == | ---- + a | * ---- * x + (z**6) * b
// z**6 \ z**4 / z**2
//
// Simplify:
//
// / x**2 \
// y**2 == | ---- + a | * z**4 * x + (z**6) * b
// \ z**4 /
//
// Distribute z**4:
//
// / z**4 \
// y**2 == | ---- * x**2 + z**4 * a | * x + (z**6) * b
// \ z**4 /
//
// Simplify:
//
// y**2 == (x**2 + z**4 * a) * x + (z**6) * b
//
let z2 = ops.elem_squared(&z);
let z4 = ops.elem_squared(&z2);
let z4_a = ops.elem_product(&z4, &ops.a);
let z6 = ops.elem_product(&z4, &z2);
let z6_b = ops.elem_product(&z6, &ops.b);
verify_affine_point_is_on_the_curve_scaled(ops, (&x, &y), &z4_a, &z6_b)?;
Ok(z2)
}
// Handles the common logic of point-is-on-the-curve checks for both affine and
// Jacobian cases.
//
// When doing the check that the point is on the curve after a computation,
// to avoid fault attacks or mitigate potential bugs, it is better for security
// to use `verify_affine_point_is_on_the_curve` on the affine coordinates,
// because it provides some protection against faults that occur in the
// computation of the inverse of `z`. See the paper and presentation "Fault
// Attacks on Projective-to-Affine Coordinates Conversion" by Diana Maimuţ,
// Cédric Murdica, David Naccache, Mehdi Tibouchi. That presentation concluded
// simply "Check the validity of the result after conversion to affine
// coordinates." (It seems like a good idea to verify that
// z_inv * z == 1 mod q too).
//
// In the case of affine coordinates (x, y), `a_scaled` and `b_scaled` are
// `a` and `b`, respectively. In the case of Jacobian coordinates (x, y, z),
// the computation and comparison is the same, except `a_scaled` and `b_scaled`
// are (z**4 * a) and (z**6 * b), respectively. Thus, performance is another
// reason to prefer doing the check on the affine coordinates, as Jacobian
// computation requires 3 extra multiplications and 2 extra squarings.
//
// An example of a fault attack that isn't mitigated by a point-on-the-curve
// check after multiplication is given in "Sign Change Fault Attacks On
// Elliptic Curve Cryptosystems" by Johannes Blömer, Martin Otto, and
// Jean-Pierre Seifert.
fn verify_affine_point_is_on_the_curve_scaled(
ops: &CommonOps,
(x, y): (&Elem<R>, &Elem<R>),
a_scaled: &Elem<R>,
b_scaled: &Elem<R>,
) -> Result<(), error::Unspecified> {
let lhs = ops.elem_squared(y);
let mut rhs = ops.elem_squared(x);
ops.elem_add(&mut rhs, a_scaled);
ops.elem_mul(&mut rhs, x);
ops.elem_add(&mut rhs, b_scaled);
if ops.elems_are_equal(&lhs, &rhs) != LimbMask::True {
return Err(error::Unspecified);
}
Ok(())
}
pub(crate) fn key_pair_from_pkcs8(
curve: &'static ec::Curve,
template: &pkcs8::Template,
input: untrusted::Input,
cpu_features: cpu::Features,
) -> Result<ec::KeyPair, error::KeyRejected> {
let (ec_private_key, _) = pkcs8::unwrap_key(template, pkcs8::Version::V1Only, input)?;
let (private_key, public_key) =
ec_private_key.read_all(error::KeyRejected::invalid_encoding(), |input| {
// https://tools.ietf.org/html/rfc5915#section-3
der::nested(
input,
der::Tag::Sequence,
error::KeyRejected::invalid_encoding(),
|input| key_pair_from_pkcs8_(template, input),
)
})?;
key_pair_from_bytes(curve, private_key, public_key, cpu_features)
}
fn key_pair_from_pkcs8_<'a>(
template: &pkcs8::Template,
input: &mut untrusted::Reader<'a>,
) -> Result<(untrusted::Input<'a>, untrusted::Input<'a>), error::KeyRejected> {
let version = der::small_nonnegative_integer(input)
.map_err(|error::Unspecified| error::KeyRejected::invalid_encoding())?;
if version != 1 {
return Err(error::KeyRejected::version_not_supported());
}
let private_key = der::expect_tag_and_get_value(input, der::Tag::OctetString)
.map_err(|error::Unspecified| error::KeyRejected::invalid_encoding())?;
// [0] parameters (optional).
if input.peek(u8::from(der::Tag::ContextSpecificConstructed0)) {
let actual_alg_id =
der::expect_tag_and_get_value(input, der::Tag::ContextSpecificConstructed0)
.map_err(|error::Unspecified| error::KeyRejected::invalid_encoding())?;
if actual_alg_id != template.curve_oid() {
return Err(error::KeyRejected::wrong_algorithm());
}
}
// [1] publicKey. The RFC says it is optional, but we require it
// to be present.
let public_key = der::nested(
input,
der::Tag::ContextSpecificConstructed1,
error::Unspecified,
der::bit_string_with_no_unused_bits,
)
.map_err(|error::Unspecified| error::KeyRejected::invalid_encoding())?;
Ok((private_key, public_key))
}
pub(crate) fn key_pair_from_bytes(
curve: &'static ec::Curve,
private_key_bytes: untrusted::Input,
public_key_bytes: untrusted::Input,
cpu_features: cpu::Features,
) -> Result<ec::KeyPair, error::KeyRejected> {
let seed = ec::Seed::from_bytes(curve, private_key_bytes, cpu_features)
.map_err(|error::Unspecified| error::KeyRejected::invalid_component())?;
let r = ec::KeyPair::derive(seed)
.map_err(|error::Unspecified| error::KeyRejected::unexpected_error())?;
if public_key_bytes != *r.public_key().as_ref() {
return Err(error::KeyRejected::inconsistent_components());
}
Ok(r)
}
pub mod curve;
pub mod ecdh;
pub mod ecdsa;
mod ops;
mod private_key;
mod public_key;