1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
use core::convert::TryInto;
use crate::common::BytesPerPixel;
/// SIMD helpers for `fn unfilter`
///
/// TODO(https://github.com/rust-lang/rust/issues/86656): Stop gating this module behind the
/// "unstable" feature of the `png` crate. This should be possible once the "portable_simd"
/// feature of Rust gets stabilized.
#[cfg(feature = "unstable")]
mod simd {
use std::simd::cmp::{SimdOrd, SimdPartialEq, SimdPartialOrd};
use std::simd::num::{SimdInt, SimdUint};
use std::simd::{u8x4, u8x8, LaneCount, Simd, SimdElement, SupportedLaneCount};
/// This is an equivalent of the `PaethPredictor` function from
/// [the spec](http://www.libpng.org/pub/png/spec/1.2/PNG-Filters.html#Filter-type-4-Paeth)
/// except that it simultaneously calculates the predictor for all SIMD lanes.
/// Mapping between parameter names and pixel positions can be found in
/// [a diagram here](https://www.w3.org/TR/png/#filter-byte-positions).
///
/// Examples of how different pixel types may be represented as multiple SIMD lanes:
/// - RGBA => 4 lanes of `i16x4` contain R, G, B, A
/// - RGB => 4 lanes of `i16x4` contain R, G, B, and a ignored 4th value
///
/// The SIMD algorithm below is based on [`libpng`](https://github.com/glennrp/libpng/blob/f8e5fa92b0e37ab597616f554bee254157998227/intel/filter_sse2_intrinsics.c#L261-L280).
fn paeth_predictor<const N: usize>(
a: Simd<i16, N>,
b: Simd<i16, N>,
c: Simd<i16, N>,
) -> Simd<i16, N>
where
LaneCount<N>: SupportedLaneCount,
{
let pa = b - c; // (p-a) == (a+b-c - a) == (b-c)
let pb = a - c; // (p-b) == (a+b-c - b) == (a-c)
let pc = pa + pb; // (p-c) == (a+b-c - c) == (a+b-c-c) == (b-c)+(a-c)
let pa = pa.abs();
let pb = pb.abs();
let pc = pc.abs();
let smallest = pc.simd_min(pa.simd_min(pb));
// Paeth algorithm breaks ties favoring a over b over c, so we execute the following
// lane-wise selection:
//
// if smalest == pa
// then select a
// else select (if smallest == pb then select b else select c)
smallest
.simd_eq(pa)
.select(a, smallest.simd_eq(pb).select(b, c))
}
/// Equivalent to `simd::paeth_predictor` but does not temporarily convert
/// the SIMD elements to `i16`.
fn paeth_predictor_u8<const N: usize>(
a: Simd<u8, N>,
b: Simd<u8, N>,
c: Simd<u8, N>,
) -> Simd<u8, N>
where
LaneCount<N>: SupportedLaneCount,
{
// Calculates the absolute difference between `a` and `b`.
fn abs_diff_simd<const N: usize>(a: Simd<u8, N>, b: Simd<u8, N>) -> Simd<u8, N>
where
LaneCount<N>: SupportedLaneCount,
{
a.simd_max(b) - b.simd_min(a)
}
// Uses logic from `filter::filter_paeth` to calculate absolute values
// entirely in `Simd<u8, N>`. This method avoids unpacking and packing
// penalties resulting from conversion to and from `Simd<i16, N>`.
// ```
// let pa = b.max(c) - c.min(b);
// let pb = a.max(c) - c.min(a);
// let pc = if (a < c) == (c < b) {
// pa.max(pb) - pa.min(pb)
// } else {
// 255
// };
// ```
let pa = abs_diff_simd(b, c);
let pb = abs_diff_simd(a, c);
let pc = a
.simd_lt(c)
.simd_eq(c.simd_lt(b))
.select(abs_diff_simd(pa, pb), Simd::splat(255));
let smallest = pc.simd_min(pa.simd_min(pb));
// Paeth algorithm breaks ties favoring a over b over c, so we execute the following
// lane-wise selection:
//
// if smalest == pa
// then select a
// else select (if smallest == pb then select b else select c)
smallest
.simd_eq(pa)
.select(a, smallest.simd_eq(pb).select(b, c))
}
/// Memory of previous pixels (as needed to unfilter `FilterType::Paeth`).
/// See also https://www.w3.org/TR/png/#filter-byte-positions
#[derive(Default)]
struct PaethState<T, const N: usize>
where
T: SimdElement,
LaneCount<N>: SupportedLaneCount,
{
/// Previous pixel in the previous row.
c: Simd<T, N>,
/// Previous pixel in the current row.
a: Simd<T, N>,
}
/// Mutates `x` as needed to unfilter `FilterType::Paeth`.
///
/// `b` is the current pixel in the previous row. `x` is the current pixel in the current row.
/// See also https://www.w3.org/TR/png/#filter-byte-positions
fn paeth_step<const N: usize>(
state: &mut PaethState<i16, N>,
b: Simd<u8, N>,
x: &mut Simd<u8, N>,
) where
LaneCount<N>: SupportedLaneCount,
{
// Storing the inputs.
let b = b.cast::<i16>();
// Calculating the new value of the current pixel.
let predictor = paeth_predictor(state.a, b, state.c);
*x += predictor.cast::<u8>();
// Preparing for the next step.
state.c = b;
state.a = x.cast::<i16>();
}
/// Computes the Paeth predictor without converting `u8` to `i16`.
///
/// See `simd::paeth_step`.
fn paeth_step_u8<const N: usize>(
state: &mut PaethState<u8, N>,
b: Simd<u8, N>,
x: &mut Simd<u8, N>,
) where
LaneCount<N>: SupportedLaneCount,
{
// Calculating the new value of the current pixel.
*x += paeth_predictor_u8(state.a, b, state.c);
// Preparing for the next step.
state.c = b;
state.a = *x;
}
fn load3(src: &[u8]) -> u8x4 {
u8x4::from_array([src[0], src[1], src[2], 0])
}
fn store3(src: u8x4, dest: &mut [u8]) {
dest[0..3].copy_from_slice(&src.to_array()[0..3])
}
/// Undoes `FilterType::Paeth` for `BytesPerPixel::Three`.
pub fn unfilter_paeth3(mut prev_row: &[u8], mut curr_row: &mut [u8]) {
debug_assert_eq!(prev_row.len(), curr_row.len());
debug_assert_eq!(prev_row.len() % 3, 0);
let mut state = PaethState::<i16, 4>::default();
while prev_row.len() >= 4 {
// `u8x4` requires working with `[u8;4]`, but we can just load and ignore the first
// byte from the next triple. This optimization technique mimics the algorithm found
// in
// https://github.com/glennrp/libpng/blob/f8e5fa92b0e37ab597616f554bee254157998227/intel/filter_sse2_intrinsics.c#L130-L131
let b = u8x4::from_slice(prev_row);
let mut x = u8x4::from_slice(curr_row);
paeth_step(&mut state, b, &mut x);
// We can speculate that writing 4 bytes might be more efficient (just as with using
// `u8x4::from_slice` above), but we can't use that here, because we can't clobber the
// first byte of the next pixel in the `curr_row`.
store3(x, curr_row);
prev_row = &prev_row[3..];
curr_row = &mut curr_row[3..];
}
// Can't use `u8x4::from_slice` for the last `[u8;3]`.
let b = load3(prev_row);
let mut x = load3(curr_row);
paeth_step(&mut state, b, &mut x);
store3(x, curr_row);
}
/// Undoes `FilterType::Paeth` for `BytesPerPixel::Four` and `BytesPerPixel::Eight`.
///
/// This function calculates the Paeth predictor entirely in `Simd<u8, N>`
/// without converting to an intermediate `Simd<i16, N>`. Doing so avoids
/// paying a small performance penalty converting between types.
pub fn unfilter_paeth_u8<const N: usize>(prev_row: &[u8], curr_row: &mut [u8])
where
LaneCount<N>: SupportedLaneCount,
{
debug_assert_eq!(prev_row.len(), curr_row.len());
debug_assert_eq!(prev_row.len() % N, 0);
assert!(matches!(N, 4 | 8));
let mut state = PaethState::<u8, N>::default();
for (prev_row, curr_row) in prev_row.chunks_exact(N).zip(curr_row.chunks_exact_mut(N)) {
let b = Simd::from_slice(prev_row);
let mut x = Simd::from_slice(curr_row);
paeth_step_u8(&mut state, b, &mut x);
curr_row[..N].copy_from_slice(&x.to_array()[..N]);
}
}
fn load6(src: &[u8]) -> u8x8 {
u8x8::from_array([src[0], src[1], src[2], src[3], src[4], src[5], 0, 0])
}
fn store6(src: u8x8, dest: &mut [u8]) {
dest[0..6].copy_from_slice(&src.to_array()[0..6])
}
/// Undoes `FilterType::Paeth` for `BytesPerPixel::Six`.
pub fn unfilter_paeth6(mut prev_row: &[u8], mut curr_row: &mut [u8]) {
debug_assert_eq!(prev_row.len(), curr_row.len());
debug_assert_eq!(prev_row.len() % 6, 0);
let mut state = PaethState::<i16, 8>::default();
while prev_row.len() >= 8 {
// `u8x8` requires working with `[u8;8]`, but we can just load and ignore the first two
// bytes from the next pixel. This optimization technique mimics the algorithm found
// in
// https://github.com/glennrp/libpng/blob/f8e5fa92b0e37ab597616f554bee254157998227/intel/filter_sse2_intrinsics.c#L130-L131
let b = u8x8::from_slice(prev_row);
let mut x = u8x8::from_slice(curr_row);
paeth_step(&mut state, b, &mut x);
// We can speculate that writing 8 bytes might be more efficient (just as with using
// `u8x8::from_slice` above), but we can't use that here, because we can't clobber the
// first bytes of the next pixel in the `curr_row`.
store6(x, curr_row);
prev_row = &prev_row[6..];
curr_row = &mut curr_row[6..];
}
// Can't use `u8x8::from_slice` for the last `[u8;6]`.
let b = load6(prev_row);
let mut x = load6(curr_row);
paeth_step(&mut state, b, &mut x);
store6(x, curr_row);
}
}
/// The byte level filter applied to scanlines to prepare them for compression.
///
/// Compression in general benefits from repetitive data. The filter is a content-aware method of
/// compressing the range of occurring byte values to help the compression algorithm. Note that
/// this does not operate on pixels but on raw bytes of a scanline.
///
/// Details on how each filter works can be found in the [PNG Book](http://www.libpng.org/pub/png/book/chapter09.html).
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u8)]
pub enum FilterType {
NoFilter = 0,
Sub = 1,
Up = 2,
Avg = 3,
Paeth = 4,
}
impl Default for FilterType {
fn default() -> Self {
FilterType::Sub
}
}
impl FilterType {
/// u8 -> Self. Temporary solution until Rust provides a canonical one.
pub fn from_u8(n: u8) -> Option<FilterType> {
match n {
0 => Some(FilterType::NoFilter),
1 => Some(FilterType::Sub),
2 => Some(FilterType::Up),
3 => Some(FilterType::Avg),
4 => Some(FilterType::Paeth),
_ => None,
}
}
}
/// Adaptive filtering tries every possible filter for each row and uses a heuristic to select the best one.
/// This improves compression ratio, but makes encoding slightly slower.
///
/// It is recommended to use `Adaptive` whenever you care about compression ratio.
/// Filtering is quite cheap compared to other parts of encoding, but can contribute
/// to the compression ratio significantly.
///
/// `NonAdaptive` filtering is the default.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[repr(u8)]
pub enum AdaptiveFilterType {
Adaptive,
NonAdaptive,
}
impl Default for AdaptiveFilterType {
fn default() -> Self {
AdaptiveFilterType::NonAdaptive
}
}
fn filter_paeth_decode(a: u8, b: u8, c: u8) -> u8 {
// Decoding seems to optimize better with this algorithm
let pa = (i16::from(b) - i16::from(c)).abs();
let pb = (i16::from(a) - i16::from(c)).abs();
let pc = ((i16::from(a) - i16::from(c)) + (i16::from(b) - i16::from(c))).abs();
let mut out = a;
let mut min = pa;
if pb < min {
min = pb;
out = b;
}
if pc < min {
out = c;
}
out
}
fn filter_paeth(a: u8, b: u8, c: u8) -> u8 {
// This is an optimized version of the paeth filter from the PNG specification, proposed by
// Luca Versari for [FPNGE](https://www.lucaversari.it/FJXL_and_FPNGE.pdf). It operates
// entirely on unsigned 8-bit quantities, making it more conducive to vectorization.
//
// p = a + b - c
// pa = |p - a| = |a + b - c - a| = |b - c| = max(b, c) - min(b, c)
// pb = |p - b| = |a + b - c - b| = |a - c| = max(a, c) - min(a, c)
// pc = |p - c| = |a + b - c - c| = |(b - c) + (a - c)| = ...
//
// Further optimizing the calculation of `pc` a bit tricker. However, notice that:
//
// a > c && b > c
// ==> (a - c) > 0 && (b - c) > 0
// ==> pc > (a - c) && pc > (b - c)
// ==> pc > |a - c| && pc > |b - c|
// ==> pc > pb && pc > pa
//
// Meaning that if `c` is smaller than `a` and `b`, the value of `pc` is irrelevant. Similar
// reasoning applies if `c` is larger than the other two inputs. Assuming that `c >= b` and
// `c <= b` or vice versa:
//
// pc = ||b - c| - |a - c|| = |pa - pb| = max(pa, pb) - min(pa, pb)
//
let pa = b.max(c) - c.min(b);
let pb = a.max(c) - c.min(a);
let pc = if (a < c) == (c < b) {
pa.max(pb) - pa.min(pb)
} else {
255
};
if pa <= pb && pa <= pc {
a
} else if pb <= pc {
b
} else {
c
}
}
pub(crate) fn unfilter(
mut filter: FilterType,
tbpp: BytesPerPixel,
previous: &[u8],
current: &mut [u8],
) {
use self::FilterType::*;
// If the previous row is empty, then treat it as if it were filled with zeros.
if previous.is_empty() {
if filter == Paeth {
filter = Sub;
} else if filter == Up {
filter = NoFilter;
}
}
// [2023/01 @okaneco] - Notes on optimizing decoding filters
//
// Links:
// [PR]: https://github.com/image-rs/image-png/pull/382
// [SWAR]: http://aggregate.org/SWAR/over.html
// [AVG]: http://aggregate.org/MAGIC/#Average%20of%20Integers
//
// #382 heavily refactored and optimized the following filters making the
// implementation nonobvious. These comments function as a summary of that
// PR with an explanation of the choices made below.
//
// #382 originally started with trying to optimize using a technique called
// SWAR, SIMD Within a Register. SWAR uses regular integer types like `u32`
// and `u64` as SIMD registers to perform vertical operations in parallel,
// usually involving bit-twiddling. This allowed each `BytesPerPixel` (bpp)
// pixel to be decoded in parallel: 3bpp and 4bpp in a `u32`, 6bpp and 8pp
// in a `u64`. The `Sub` filter looked like the following code block, `Avg`
// was similar but used a bitwise average method from [AVG]:
// ```
// // See "Unpartitioned Operations With Correction Code" from [SWAR]
// fn swar_add_u32(x: u32, y: u32) -> u32 {
// // 7-bit addition so there's no carry over the most significant bit
// let n = (x & 0x7f7f7f7f) + (y & 0x7f7f7f7f); // 0x7F = 0b_0111_1111
// // 1-bit parity/XOR addition to fill in the missing MSB
// n ^ (x ^ y) & 0x80808080 // 0x80 = 0b_1000_0000
// }
//
// let mut prev =
// u32::from_ne_bytes([current[0], current[1], current[2], current[3]]);
// for chunk in current[4..].chunks_exact_mut(4) {
// let cur = u32::from_ne_bytes([chunk[0], chunk[1], chunk[2], chunk[3]]);
// let new_chunk = swar_add_u32(cur, prev);
// chunk.copy_from_slice(&new_chunk.to_ne_bytes());
// prev = new_chunk;
// }
// ```
// While this provided a measurable increase, @fintelia found that this idea
// could be taken even further by unrolling the chunks component-wise and
// avoiding unnecessary byte-shuffling by using byte arrays instead of
// `u32::from|to_ne_bytes`. The bitwise operations were no longer necessary
// so they were reverted to their obvious arithmetic equivalent. Lastly,
// `TryInto` was used instead of `copy_from_slice`. The `Sub` code now
// looked like this (with asserts to remove `0..bpp` bounds checks):
// ```
// assert!(len > 3);
// let mut prev = [current[0], current[1], current[2], current[3]];
// for chunk in current[4..].chunks_exact_mut(4) {
// let new_chunk = [
// chunk[0].wrapping_add(prev[0]),
// chunk[1].wrapping_add(prev[1]),
// chunk[2].wrapping_add(prev[2]),
// chunk[3].wrapping_add(prev[3]),
// ];
// *TryInto::<&mut [u8; 4]>::try_into(chunk).unwrap() = new_chunk;
// prev = new_chunk;
// }
// ```
// The compiler was able to optimize the code to be even faster and this
// method even sped up Paeth filtering! Assertions were experimentally
// added within loop bodies which produced better instructions but no
// difference in speed. Finally, the code was refactored to remove manual
// slicing and start the previous pixel chunks with arrays of `[0; N]`.
// ```
// let mut prev = [0; 4];
// for chunk in current.chunks_exact_mut(4) {
// let new_chunk = [
// chunk[0].wrapping_add(prev[0]),
// chunk[1].wrapping_add(prev[1]),
// chunk[2].wrapping_add(prev[2]),
// chunk[3].wrapping_add(prev[3]),
// ];
// *TryInto::<&mut [u8; 4]>::try_into(chunk).unwrap() = new_chunk;
// prev = new_chunk;
// }
// ```
// While we're not manually bit-twiddling anymore, a possible takeaway from
// this is to "think in SWAR" when dealing with small byte arrays. Unrolling
// array operations and performing them component-wise may unlock previously
// unavailable optimizations from the compiler, even when using the
// `chunks_exact` methods for their potential auto-vectorization benefits.
match filter {
NoFilter => {}
Sub => match tbpp {
BytesPerPixel::One => {
current.iter_mut().reduce(|&mut prev, curr| {
*curr = curr.wrapping_add(prev);
curr
});
}
BytesPerPixel::Two => {
let mut prev = [0; 2];
for chunk in current.chunks_exact_mut(2) {
let new_chunk = [
chunk[0].wrapping_add(prev[0]),
chunk[1].wrapping_add(prev[1]),
];
*TryInto::<&mut [u8; 2]>::try_into(chunk).unwrap() = new_chunk;
prev = new_chunk;
}
}
BytesPerPixel::Three => {
let mut prev = [0; 3];
for chunk in current.chunks_exact_mut(3) {
let new_chunk = [
chunk[0].wrapping_add(prev[0]),
chunk[1].wrapping_add(prev[1]),
chunk[2].wrapping_add(prev[2]),
];
*TryInto::<&mut [u8; 3]>::try_into(chunk).unwrap() = new_chunk;
prev = new_chunk;
}
}
BytesPerPixel::Four => {
let mut prev = [0; 4];
for chunk in current.chunks_exact_mut(4) {
let new_chunk = [
chunk[0].wrapping_add(prev[0]),
chunk[1].wrapping_add(prev[1]),
chunk[2].wrapping_add(prev[2]),
chunk[3].wrapping_add(prev[3]),
];
*TryInto::<&mut [u8; 4]>::try_into(chunk).unwrap() = new_chunk;
prev = new_chunk;
}
}
BytesPerPixel::Six => {
let mut prev = [0; 6];
for chunk in current.chunks_exact_mut(6) {
let new_chunk = [
chunk[0].wrapping_add(prev[0]),
chunk[1].wrapping_add(prev[1]),
chunk[2].wrapping_add(prev[2]),
chunk[3].wrapping_add(prev[3]),
chunk[4].wrapping_add(prev[4]),
chunk[5].wrapping_add(prev[5]),
];
*TryInto::<&mut [u8; 6]>::try_into(chunk).unwrap() = new_chunk;
prev = new_chunk;
}
}
BytesPerPixel::Eight => {
let mut prev = [0; 8];
for chunk in current.chunks_exact_mut(8) {
let new_chunk = [
chunk[0].wrapping_add(prev[0]),
chunk[1].wrapping_add(prev[1]),
chunk[2].wrapping_add(prev[2]),
chunk[3].wrapping_add(prev[3]),
chunk[4].wrapping_add(prev[4]),
chunk[5].wrapping_add(prev[5]),
chunk[6].wrapping_add(prev[6]),
chunk[7].wrapping_add(prev[7]),
];
*TryInto::<&mut [u8; 8]>::try_into(chunk).unwrap() = new_chunk;
prev = new_chunk;
}
}
},
Up => {
for (curr, &above) in current.iter_mut().zip(previous) {
*curr = curr.wrapping_add(above);
}
}
Avg if previous.is_empty() => match tbpp {
BytesPerPixel::One => {
current.iter_mut().reduce(|&mut prev, curr| {
*curr = curr.wrapping_add(prev / 2);
curr
});
}
BytesPerPixel::Two => {
let mut prev = [0; 2];
for chunk in current.chunks_exact_mut(2) {
let new_chunk = [
chunk[0].wrapping_add(prev[0] / 2),
chunk[1].wrapping_add(prev[1] / 2),
];
*TryInto::<&mut [u8; 2]>::try_into(chunk).unwrap() = new_chunk;
prev = new_chunk;
}
}
BytesPerPixel::Three => {
let mut prev = [0; 3];
for chunk in current.chunks_exact_mut(3) {
let new_chunk = [
chunk[0].wrapping_add(prev[0] / 2),
chunk[1].wrapping_add(prev[1] / 2),
chunk[2].wrapping_add(prev[2] / 2),
];
*TryInto::<&mut [u8; 3]>::try_into(chunk).unwrap() = new_chunk;
prev = new_chunk;
}
}
BytesPerPixel::Four => {
let mut prev = [0; 4];
for chunk in current.chunks_exact_mut(4) {
let new_chunk = [
chunk[0].wrapping_add(prev[0] / 2),
chunk[1].wrapping_add(prev[1] / 2),
chunk[2].wrapping_add(prev[2] / 2),
chunk[3].wrapping_add(prev[3] / 2),
];
*TryInto::<&mut [u8; 4]>::try_into(chunk).unwrap() = new_chunk;
prev = new_chunk;
}
}
BytesPerPixel::Six => {
let mut prev = [0; 6];
for chunk in current.chunks_exact_mut(6) {
let new_chunk = [
chunk[0].wrapping_add(prev[0] / 2),
chunk[1].wrapping_add(prev[1] / 2),
chunk[2].wrapping_add(prev[2] / 2),
chunk[3].wrapping_add(prev[3] / 2),
chunk[4].wrapping_add(prev[4] / 2),
chunk[5].wrapping_add(prev[5] / 2),
];
*TryInto::<&mut [u8; 6]>::try_into(chunk).unwrap() = new_chunk;
prev = new_chunk;
}
}
BytesPerPixel::Eight => {
let mut prev = [0; 8];
for chunk in current.chunks_exact_mut(8) {
let new_chunk = [
chunk[0].wrapping_add(prev[0] / 2),
chunk[1].wrapping_add(prev[1] / 2),
chunk[2].wrapping_add(prev[2] / 2),
chunk[3].wrapping_add(prev[3] / 2),
chunk[4].wrapping_add(prev[4] / 2),
chunk[5].wrapping_add(prev[5] / 2),
chunk[6].wrapping_add(prev[6] / 2),
chunk[7].wrapping_add(prev[7] / 2),
];
*TryInto::<&mut [u8; 8]>::try_into(chunk).unwrap() = new_chunk;
prev = new_chunk;
}
}
},
Avg => match tbpp {
BytesPerPixel::One => {
let mut lprev = [0; 1];
for (chunk, above) in current.chunks_exact_mut(1).zip(previous.chunks_exact(1)) {
let new_chunk =
[chunk[0].wrapping_add(((above[0] as u16 + lprev[0] as u16) / 2) as u8)];
*TryInto::<&mut [u8; 1]>::try_into(chunk).unwrap() = new_chunk;
lprev = new_chunk;
}
}
BytesPerPixel::Two => {
let mut lprev = [0; 2];
for (chunk, above) in current.chunks_exact_mut(2).zip(previous.chunks_exact(2)) {
let new_chunk = [
chunk[0].wrapping_add(((above[0] as u16 + lprev[0] as u16) / 2) as u8),
chunk[1].wrapping_add(((above[1] as u16 + lprev[1] as u16) / 2) as u8),
];
*TryInto::<&mut [u8; 2]>::try_into(chunk).unwrap() = new_chunk;
lprev = new_chunk;
}
}
BytesPerPixel::Three => {
let mut lprev = [0; 3];
for (chunk, above) in current.chunks_exact_mut(3).zip(previous.chunks_exact(3)) {
let new_chunk = [
chunk[0].wrapping_add(((above[0] as u16 + lprev[0] as u16) / 2) as u8),
chunk[1].wrapping_add(((above[1] as u16 + lprev[1] as u16) / 2) as u8),
chunk[2].wrapping_add(((above[2] as u16 + lprev[2] as u16) / 2) as u8),
];
*TryInto::<&mut [u8; 3]>::try_into(chunk).unwrap() = new_chunk;
lprev = new_chunk;
}
}
BytesPerPixel::Four => {
let mut lprev = [0; 4];
for (chunk, above) in current.chunks_exact_mut(4).zip(previous.chunks_exact(4)) {
let new_chunk = [
chunk[0].wrapping_add(((above[0] as u16 + lprev[0] as u16) / 2) as u8),
chunk[1].wrapping_add(((above[1] as u16 + lprev[1] as u16) / 2) as u8),
chunk[2].wrapping_add(((above[2] as u16 + lprev[2] as u16) / 2) as u8),
chunk[3].wrapping_add(((above[3] as u16 + lprev[3] as u16) / 2) as u8),
];
*TryInto::<&mut [u8; 4]>::try_into(chunk).unwrap() = new_chunk;
lprev = new_chunk;
}
}
BytesPerPixel::Six => {
let mut lprev = [0; 6];
for (chunk, above) in current.chunks_exact_mut(6).zip(previous.chunks_exact(6)) {
let new_chunk = [
chunk[0].wrapping_add(((above[0] as u16 + lprev[0] as u16) / 2) as u8),
chunk[1].wrapping_add(((above[1] as u16 + lprev[1] as u16) / 2) as u8),
chunk[2].wrapping_add(((above[2] as u16 + lprev[2] as u16) / 2) as u8),
chunk[3].wrapping_add(((above[3] as u16 + lprev[3] as u16) / 2) as u8),
chunk[4].wrapping_add(((above[4] as u16 + lprev[4] as u16) / 2) as u8),
chunk[5].wrapping_add(((above[5] as u16 + lprev[5] as u16) / 2) as u8),
];
*TryInto::<&mut [u8; 6]>::try_into(chunk).unwrap() = new_chunk;
lprev = new_chunk;
}
}
BytesPerPixel::Eight => {
let mut lprev = [0; 8];
for (chunk, above) in current.chunks_exact_mut(8).zip(previous.chunks_exact(8)) {
let new_chunk = [
chunk[0].wrapping_add(((above[0] as u16 + lprev[0] as u16) / 2) as u8),
chunk[1].wrapping_add(((above[1] as u16 + lprev[1] as u16) / 2) as u8),
chunk[2].wrapping_add(((above[2] as u16 + lprev[2] as u16) / 2) as u8),
chunk[3].wrapping_add(((above[3] as u16 + lprev[3] as u16) / 2) as u8),
chunk[4].wrapping_add(((above[4] as u16 + lprev[4] as u16) / 2) as u8),
chunk[5].wrapping_add(((above[5] as u16 + lprev[5] as u16) / 2) as u8),
chunk[6].wrapping_add(((above[6] as u16 + lprev[6] as u16) / 2) as u8),
chunk[7].wrapping_add(((above[7] as u16 + lprev[7] as u16) / 2) as u8),
];
*TryInto::<&mut [u8; 8]>::try_into(chunk).unwrap() = new_chunk;
lprev = new_chunk;
}
}
},
Paeth => {
// Paeth filter pixels:
// C B D
// A X
match tbpp {
BytesPerPixel::One => {
let mut a_bpp = [0; 1];
let mut c_bpp = [0; 1];
for (chunk, b_bpp) in current.chunks_exact_mut(1).zip(previous.chunks_exact(1))
{
let new_chunk = [chunk[0]
.wrapping_add(filter_paeth_decode(a_bpp[0], b_bpp[0], c_bpp[0]))];
*TryInto::<&mut [u8; 1]>::try_into(chunk).unwrap() = new_chunk;
a_bpp = new_chunk;
c_bpp = b_bpp.try_into().unwrap();
}
}
BytesPerPixel::Two => {
let mut a_bpp = [0; 2];
let mut c_bpp = [0; 2];
for (chunk, b_bpp) in current.chunks_exact_mut(2).zip(previous.chunks_exact(2))
{
let new_chunk = [
chunk[0]
.wrapping_add(filter_paeth_decode(a_bpp[0], b_bpp[0], c_bpp[0])),
chunk[1]
.wrapping_add(filter_paeth_decode(a_bpp[1], b_bpp[1], c_bpp[1])),
];
*TryInto::<&mut [u8; 2]>::try_into(chunk).unwrap() = new_chunk;
a_bpp = new_chunk;
c_bpp = b_bpp.try_into().unwrap();
}
}
BytesPerPixel::Three => {
#[cfg(feature = "unstable")]
simd::unfilter_paeth3(previous, current);
#[cfg(not(feature = "unstable"))]
{
let mut a_bpp = [0; 3];
let mut c_bpp = [0; 3];
for (chunk, b_bpp) in
current.chunks_exact_mut(3).zip(previous.chunks_exact(3))
{
let new_chunk = [
chunk[0].wrapping_add(filter_paeth_decode(
a_bpp[0], b_bpp[0], c_bpp[0],
)),
chunk[1].wrapping_add(filter_paeth_decode(
a_bpp[1], b_bpp[1], c_bpp[1],
)),
chunk[2].wrapping_add(filter_paeth_decode(
a_bpp[2], b_bpp[2], c_bpp[2],
)),
];
*TryInto::<&mut [u8; 3]>::try_into(chunk).unwrap() = new_chunk;
a_bpp = new_chunk;
c_bpp = b_bpp.try_into().unwrap();
}
}
}
BytesPerPixel::Four => {
#[cfg(feature = "unstable")]
simd::unfilter_paeth_u8::<4>(previous, current);
#[cfg(not(feature = "unstable"))]
{
let mut a_bpp = [0; 4];
let mut c_bpp = [0; 4];
for (chunk, b_bpp) in
current.chunks_exact_mut(4).zip(previous.chunks_exact(4))
{
let new_chunk = [
chunk[0].wrapping_add(filter_paeth_decode(
a_bpp[0], b_bpp[0], c_bpp[0],
)),
chunk[1].wrapping_add(filter_paeth_decode(
a_bpp[1], b_bpp[1], c_bpp[1],
)),
chunk[2].wrapping_add(filter_paeth_decode(
a_bpp[2], b_bpp[2], c_bpp[2],
)),
chunk[3].wrapping_add(filter_paeth_decode(
a_bpp[3], b_bpp[3], c_bpp[3],
)),
];
*TryInto::<&mut [u8; 4]>::try_into(chunk).unwrap() = new_chunk;
a_bpp = new_chunk;
c_bpp = b_bpp.try_into().unwrap();
}
}
}
BytesPerPixel::Six => {
#[cfg(feature = "unstable")]
simd::unfilter_paeth6(previous, current);
#[cfg(not(feature = "unstable"))]
{
let mut a_bpp = [0; 6];
let mut c_bpp = [0; 6];
for (chunk, b_bpp) in
current.chunks_exact_mut(6).zip(previous.chunks_exact(6))
{
let new_chunk = [
chunk[0].wrapping_add(filter_paeth_decode(
a_bpp[0], b_bpp[0], c_bpp[0],
)),
chunk[1].wrapping_add(filter_paeth_decode(
a_bpp[1], b_bpp[1], c_bpp[1],
)),
chunk[2].wrapping_add(filter_paeth_decode(
a_bpp[2], b_bpp[2], c_bpp[2],
)),
chunk[3].wrapping_add(filter_paeth_decode(
a_bpp[3], b_bpp[3], c_bpp[3],
)),
chunk[4].wrapping_add(filter_paeth_decode(
a_bpp[4], b_bpp[4], c_bpp[4],
)),
chunk[5].wrapping_add(filter_paeth_decode(
a_bpp[5], b_bpp[5], c_bpp[5],
)),
];
*TryInto::<&mut [u8; 6]>::try_into(chunk).unwrap() = new_chunk;
a_bpp = new_chunk;
c_bpp = b_bpp.try_into().unwrap();
}
}
}
BytesPerPixel::Eight => {
#[cfg(feature = "unstable")]
simd::unfilter_paeth_u8::<8>(previous, current);
#[cfg(not(feature = "unstable"))]
{
let mut a_bpp = [0; 8];
let mut c_bpp = [0; 8];
for (chunk, b_bpp) in
current.chunks_exact_mut(8).zip(previous.chunks_exact(8))
{
let new_chunk = [
chunk[0].wrapping_add(filter_paeth_decode(
a_bpp[0], b_bpp[0], c_bpp[0],
)),
chunk[1].wrapping_add(filter_paeth_decode(
a_bpp[1], b_bpp[1], c_bpp[1],
)),
chunk[2].wrapping_add(filter_paeth_decode(
a_bpp[2], b_bpp[2], c_bpp[2],
)),
chunk[3].wrapping_add(filter_paeth_decode(
a_bpp[3], b_bpp[3], c_bpp[3],
)),
chunk[4].wrapping_add(filter_paeth_decode(
a_bpp[4], b_bpp[4], c_bpp[4],
)),
chunk[5].wrapping_add(filter_paeth_decode(
a_bpp[5], b_bpp[5], c_bpp[5],
)),
chunk[6].wrapping_add(filter_paeth_decode(
a_bpp[6], b_bpp[6], c_bpp[6],
)),
chunk[7].wrapping_add(filter_paeth_decode(
a_bpp[7], b_bpp[7], c_bpp[7],
)),
];
*TryInto::<&mut [u8; 8]>::try_into(chunk).unwrap() = new_chunk;
a_bpp = new_chunk;
c_bpp = b_bpp.try_into().unwrap();
}
}
}
}
}
}
}
fn filter_internal(
method: FilterType,
bpp: usize,
len: usize,
previous: &[u8],
current: &[u8],
output: &mut [u8],
) -> FilterType {
use self::FilterType::*;
// This value was chosen experimentally based on what achieved the best performance. The
// Rust compiler does auto-vectorization, and 32-bytes per loop iteration seems to enable
// the fastest code when doing so.
const CHUNK_SIZE: usize = 32;
match method {
NoFilter => {
output.copy_from_slice(current);
NoFilter
}
Sub => {
let mut out_chunks = output[bpp..].chunks_exact_mut(CHUNK_SIZE);
let mut cur_chunks = current[bpp..].chunks_exact(CHUNK_SIZE);
let mut prev_chunks = current[..len - bpp].chunks_exact(CHUNK_SIZE);
for ((out, cur), prev) in (&mut out_chunks).zip(&mut cur_chunks).zip(&mut prev_chunks) {
for i in 0..CHUNK_SIZE {
out[i] = cur[i].wrapping_sub(prev[i]);
}
}
for ((out, cur), &prev) in out_chunks
.into_remainder()
.iter_mut()
.zip(cur_chunks.remainder())
.zip(prev_chunks.remainder())
{
*out = cur.wrapping_sub(prev);
}
output[..bpp].copy_from_slice(¤t[..bpp]);
Sub
}
Up => {
let mut out_chunks = output.chunks_exact_mut(CHUNK_SIZE);
let mut cur_chunks = current.chunks_exact(CHUNK_SIZE);
let mut prev_chunks = previous.chunks_exact(CHUNK_SIZE);
for ((out, cur), prev) in (&mut out_chunks).zip(&mut cur_chunks).zip(&mut prev_chunks) {
for i in 0..CHUNK_SIZE {
out[i] = cur[i].wrapping_sub(prev[i]);
}
}
for ((out, cur), &prev) in out_chunks
.into_remainder()
.iter_mut()
.zip(cur_chunks.remainder())
.zip(prev_chunks.remainder())
{
*out = cur.wrapping_sub(prev);
}
Up
}
Avg => {
let mut out_chunks = output[bpp..].chunks_exact_mut(CHUNK_SIZE);
let mut cur_chunks = current[bpp..].chunks_exact(CHUNK_SIZE);
let mut cur_minus_bpp_chunks = current[..len - bpp].chunks_exact(CHUNK_SIZE);
let mut prev_chunks = previous[bpp..].chunks_exact(CHUNK_SIZE);
for (((out, cur), cur_minus_bpp), prev) in (&mut out_chunks)
.zip(&mut cur_chunks)
.zip(&mut cur_minus_bpp_chunks)
.zip(&mut prev_chunks)
{
for i in 0..CHUNK_SIZE {
// Bitwise average of two integers without overflow and
// without converting to a wider bit-width. See:
// http://aggregate.org/MAGIC/#Average%20of%20Integers
// If this is unrolled by component, consider reverting to
// `((cur_minus_bpp[i] as u16 + prev[i] as u16) / 2) as u8`
out[i] = cur[i].wrapping_sub(
(cur_minus_bpp[i] & prev[i]) + ((cur_minus_bpp[i] ^ prev[i]) >> 1),
);
}
}
for (((out, cur), &cur_minus_bpp), &prev) in out_chunks
.into_remainder()
.iter_mut()
.zip(cur_chunks.remainder())
.zip(cur_minus_bpp_chunks.remainder())
.zip(prev_chunks.remainder())
{
*out = cur.wrapping_sub((cur_minus_bpp & prev) + ((cur_minus_bpp ^ prev) >> 1));
}
for i in 0..bpp {
output[i] = current[i].wrapping_sub(previous[i] / 2);
}
Avg
}
Paeth => {
let mut out_chunks = output[bpp..].chunks_exact_mut(CHUNK_SIZE);
let mut cur_chunks = current[bpp..].chunks_exact(CHUNK_SIZE);
let mut a_chunks = current[..len - bpp].chunks_exact(CHUNK_SIZE);
let mut b_chunks = previous[bpp..].chunks_exact(CHUNK_SIZE);
let mut c_chunks = previous[..len - bpp].chunks_exact(CHUNK_SIZE);
for ((((out, cur), a), b), c) in (&mut out_chunks)
.zip(&mut cur_chunks)
.zip(&mut a_chunks)
.zip(&mut b_chunks)
.zip(&mut c_chunks)
{
for i in 0..CHUNK_SIZE {
out[i] = cur[i].wrapping_sub(filter_paeth(a[i], b[i], c[i]));
}
}
for ((((out, cur), &a), &b), &c) in out_chunks
.into_remainder()
.iter_mut()
.zip(cur_chunks.remainder())
.zip(a_chunks.remainder())
.zip(b_chunks.remainder())
.zip(c_chunks.remainder())
{
*out = cur.wrapping_sub(filter_paeth(a, b, c));
}
for i in 0..bpp {
output[i] = current[i].wrapping_sub(filter_paeth(0, previous[i], 0));
}
Paeth
}
}
}
pub(crate) fn filter(
method: FilterType,
adaptive: AdaptiveFilterType,
bpp: BytesPerPixel,
previous: &[u8],
current: &[u8],
output: &mut [u8],
) -> FilterType {
use FilterType::*;
let bpp = bpp.into_usize();
let len = current.len();
match adaptive {
AdaptiveFilterType::NonAdaptive => {
filter_internal(method, bpp, len, previous, current, output)
}
AdaptiveFilterType::Adaptive => {
let mut min_sum: u64 = u64::MAX;
let mut filter_choice = FilterType::NoFilter;
for &filter in [Sub, Up, Avg, Paeth].iter() {
filter_internal(filter, bpp, len, previous, current, output);
let sum = sum_buffer(output);
if sum <= min_sum {
min_sum = sum;
filter_choice = filter;
}
}
if filter_choice != Paeth {
filter_internal(filter_choice, bpp, len, previous, current, output);
}
filter_choice
}
}
}
// Helper function for Adaptive filter buffer summation
fn sum_buffer(buf: &[u8]) -> u64 {
const CHUNK_SIZE: usize = 32;
let mut buf_chunks = buf.chunks_exact(CHUNK_SIZE);
let mut sum = 0_u64;
for chunk in &mut buf_chunks {
// At most, `acc` can be `32 * (i8::MIN as u8) = 32 * 128 = 4096`.
let mut acc = 0;
for &b in chunk {
acc += u64::from((b as i8).unsigned_abs());
}
sum = sum.saturating_add(acc);
}
let mut acc = 0;
for &b in buf_chunks.remainder() {
acc += u64::from((b as i8).unsigned_abs());
}
sum.saturating_add(acc)
}
#[cfg(test)]
mod test {
use super::{filter, unfilter, AdaptiveFilterType, BytesPerPixel, FilterType};
use core::iter;
#[test]
fn roundtrip() {
// A multiple of 8, 6, 4, 3, 2, 1
const LEN: u8 = 240;
let previous: Vec<_> = iter::repeat(1).take(LEN.into()).collect();
let current: Vec<_> = (0..LEN).collect();
let expected = current.clone();
let adaptive = AdaptiveFilterType::NonAdaptive;
let roundtrip = |kind, bpp: BytesPerPixel| {
let mut output = vec![0; LEN.into()];
filter(kind, adaptive, bpp, &previous, ¤t, &mut output);
unfilter(kind, bpp, &previous, &mut output);
assert_eq!(
output, expected,
"Filtering {:?} with {:?} does not roundtrip",
bpp, kind
);
};
let filters = [
FilterType::NoFilter,
FilterType::Sub,
FilterType::Up,
FilterType::Avg,
FilterType::Paeth,
];
let bpps = [
BytesPerPixel::One,
BytesPerPixel::Two,
BytesPerPixel::Three,
BytesPerPixel::Four,
BytesPerPixel::Six,
BytesPerPixel::Eight,
];
for &filter in filters.iter() {
for &bpp in bpps.iter() {
roundtrip(filter, bpp);
}
}
}
#[test]
fn roundtrip_ascending_previous_line() {
// A multiple of 8, 6, 4, 3, 2, 1
const LEN: u8 = 240;
let previous: Vec<_> = (0..LEN).collect();
let current: Vec<_> = (0..LEN).collect();
let expected = current.clone();
let adaptive = AdaptiveFilterType::NonAdaptive;
let roundtrip = |kind, bpp: BytesPerPixel| {
let mut output = vec![0; LEN.into()];
filter(kind, adaptive, bpp, &previous, ¤t, &mut output);
unfilter(kind, bpp, &previous, &mut output);
assert_eq!(
output, expected,
"Filtering {:?} with {:?} does not roundtrip",
bpp, kind
);
};
let filters = [
FilterType::NoFilter,
FilterType::Sub,
FilterType::Up,
FilterType::Avg,
FilterType::Paeth,
];
let bpps = [
BytesPerPixel::One,
BytesPerPixel::Two,
BytesPerPixel::Three,
BytesPerPixel::Four,
BytesPerPixel::Six,
BytesPerPixel::Eight,
];
for &filter in filters.iter() {
for &bpp in bpps.iter() {
roundtrip(filter, bpp);
}
}
}
#[test]
// This tests that converting u8 to i8 doesn't overflow when taking the
// absolute value for adaptive filtering: -128_i8.abs() will panic in debug
// or produce garbage in release mode. The sum of 0..=255u8 should equal the
// sum of the absolute values of -128_i8..=127, or abs(-128..=0) + 1..=127.
fn sum_buffer_test() {
let sum = (0..=128).sum::<u64>() + (1..=127).sum::<u64>();
let buf: Vec<u8> = (0_u8..=255).collect();
assert_eq!(sum, crate::filter::sum_buffer(&buf));
}
}