1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
// There's a lot of scary concurrent code in this module, but it is copied from
// `std::sync::Once` with two changes:
// * no poisoning
// * init function can fail
use std::{
cell::{Cell, UnsafeCell},
panic::{RefUnwindSafe, UnwindSafe},
sync::atomic::{AtomicBool, AtomicPtr, Ordering},
thread::{self, Thread},
};
#[derive(Debug)]
pub(crate) struct OnceCell<T> {
// This `queue` field is the core of the implementation. It encodes two
// pieces of information:
//
// * The current state of the cell (`INCOMPLETE`, `RUNNING`, `COMPLETE`)
// * Linked list of threads waiting for the current cell.
//
// State is encoded in two low bits. Only `INCOMPLETE` and `RUNNING` states
// allow waiters.
queue: AtomicPtr<Waiter>,
value: UnsafeCell<Option<T>>,
}
// Why do we need `T: Send`?
// Thread A creates a `OnceCell` and shares it with
// scoped thread B, which fills the cell, which is
// then destroyed by A. That is, destructor observes
// a sent value.
unsafe impl<T: Sync + Send> Sync for OnceCell<T> {}
unsafe impl<T: Send> Send for OnceCell<T> {}
impl<T: RefUnwindSafe + UnwindSafe> RefUnwindSafe for OnceCell<T> {}
impl<T: UnwindSafe> UnwindSafe for OnceCell<T> {}
impl<T> OnceCell<T> {
pub(crate) const fn new() -> OnceCell<T> {
OnceCell { queue: AtomicPtr::new(INCOMPLETE_PTR), value: UnsafeCell::new(None) }
}
pub(crate) const fn with_value(value: T) -> OnceCell<T> {
OnceCell { queue: AtomicPtr::new(COMPLETE_PTR), value: UnsafeCell::new(Some(value)) }
}
/// Safety: synchronizes with store to value via Release/(Acquire|SeqCst).
#[inline]
pub(crate) fn is_initialized(&self) -> bool {
// An `Acquire` load is enough because that makes all the initialization
// operations visible to us, and, this being a fast path, weaker
// ordering helps with performance. This `Acquire` synchronizes with
// `SeqCst` operations on the slow path.
self.queue.load(Ordering::Acquire) == COMPLETE_PTR
}
/// Safety: synchronizes with store to value via SeqCst read from state,
/// writes value only once because we never get to INCOMPLETE state after a
/// successful write.
#[cold]
pub(crate) fn initialize<F, E>(&self, f: F) -> Result<(), E>
where
F: FnOnce() -> Result<T, E>,
{
let mut f = Some(f);
let mut res: Result<(), E> = Ok(());
let slot: *mut Option<T> = self.value.get();
initialize_or_wait(
&self.queue,
Some(&mut || {
let f = unsafe { f.take().unwrap_unchecked() };
match f() {
Ok(value) => {
unsafe { *slot = Some(value) };
true
}
Err(err) => {
res = Err(err);
false
}
}
}),
);
res
}
#[cold]
pub(crate) fn wait(&self) {
initialize_or_wait(&self.queue, None);
}
/// Get the reference to the underlying value, without checking if the cell
/// is initialized.
///
/// # Safety
///
/// Caller must ensure that the cell is in initialized state, and that
/// the contents are acquired by (synchronized to) this thread.
pub(crate) unsafe fn get_unchecked(&self) -> &T {
debug_assert!(self.is_initialized());
let slot = &*self.value.get();
slot.as_ref().unwrap_unchecked()
}
/// Gets the mutable reference to the underlying value.
/// Returns `None` if the cell is empty.
pub(crate) fn get_mut(&mut self) -> Option<&mut T> {
// Safe b/c we have a unique access.
unsafe { &mut *self.value.get() }.as_mut()
}
/// Consumes this `OnceCell`, returning the wrapped value.
/// Returns `None` if the cell was empty.
#[inline]
pub(crate) fn into_inner(self) -> Option<T> {
// Because `into_inner` takes `self` by value, the compiler statically
// verifies that it is not currently borrowed.
// So, it is safe to move out `Option<T>`.
self.value.into_inner()
}
}
// Three states that a OnceCell can be in, encoded into the lower bits of `queue` in
// the OnceCell structure.
const INCOMPLETE: usize = 0x0;
const RUNNING: usize = 0x1;
const COMPLETE: usize = 0x2;
const INCOMPLETE_PTR: *mut Waiter = INCOMPLETE as *mut Waiter;
const COMPLETE_PTR: *mut Waiter = COMPLETE as *mut Waiter;
// Mask to learn about the state. All other bits are the queue of waiters if
// this is in the RUNNING state.
const STATE_MASK: usize = 0x3;
/// Representation of a node in the linked list of waiters in the RUNNING state.
/// A waiters is stored on the stack of the waiting threads.
#[repr(align(4))] // Ensure the two lower bits are free to use as state bits.
struct Waiter {
thread: Cell<Option<Thread>>,
signaled: AtomicBool,
next: *mut Waiter,
}
/// Drains and notifies the queue of waiters on drop.
struct Guard<'a> {
queue: &'a AtomicPtr<Waiter>,
new_queue: *mut Waiter,
}
impl Drop for Guard<'_> {
fn drop(&mut self) {
let queue = self.queue.swap(self.new_queue, Ordering::AcqRel);
let state = strict::addr(queue) & STATE_MASK;
assert_eq!(state, RUNNING);
unsafe {
let mut waiter = strict::map_addr(queue, |q| q & !STATE_MASK);
while !waiter.is_null() {
let next = (*waiter).next;
let thread = (*waiter).thread.take().unwrap();
(*waiter).signaled.store(true, Ordering::Release);
waiter = next;
thread.unpark();
}
}
}
}
// Corresponds to `std::sync::Once::call_inner`.
//
// Originally copied from std, but since modified to remove poisoning and to
// support wait.
//
// Note: this is intentionally monomorphic
#[inline(never)]
fn initialize_or_wait(queue: &AtomicPtr<Waiter>, mut init: Option<&mut dyn FnMut() -> bool>) {
let mut curr_queue = queue.load(Ordering::Acquire);
loop {
let curr_state = strict::addr(curr_queue) & STATE_MASK;
match (curr_state, &mut init) {
(COMPLETE, _) => return,
(INCOMPLETE, Some(init)) => {
let exchange = queue.compare_exchange(
curr_queue,
strict::map_addr(curr_queue, |q| (q & !STATE_MASK) | RUNNING),
Ordering::Acquire,
Ordering::Acquire,
);
if let Err(new_queue) = exchange {
curr_queue = new_queue;
continue;
}
let mut guard = Guard { queue, new_queue: INCOMPLETE_PTR };
if init() {
guard.new_queue = COMPLETE_PTR;
}
return;
}
(INCOMPLETE, None) | (RUNNING, _) => {
wait(queue, curr_queue);
curr_queue = queue.load(Ordering::Acquire);
}
_ => debug_assert!(false),
}
}
}
fn wait(queue: &AtomicPtr<Waiter>, mut curr_queue: *mut Waiter) {
let curr_state = strict::addr(curr_queue) & STATE_MASK;
loop {
let node = Waiter {
thread: Cell::new(Some(thread::current())),
signaled: AtomicBool::new(false),
next: strict::map_addr(curr_queue, |q| q & !STATE_MASK),
};
let me = &node as *const Waiter as *mut Waiter;
let exchange = queue.compare_exchange(
curr_queue,
strict::map_addr(me, |q| q | curr_state),
Ordering::Release,
Ordering::Relaxed,
);
if let Err(new_queue) = exchange {
if strict::addr(new_queue) & STATE_MASK != curr_state {
return;
}
curr_queue = new_queue;
continue;
}
while !node.signaled.load(Ordering::Acquire) {
thread::park();
}
break;
}
}
// Polyfill of strict provenance from https://crates.io/crates/sptr.
//
// Use free-standing function rather than a trait to keep things simple and
// avoid any potential conflicts with future stabile std API.
mod strict {
#[must_use]
#[inline]
pub(crate) fn addr<T>(ptr: *mut T) -> usize
where
T: Sized,
{
// FIXME(strict_provenance_magic): I am magic and should be a compiler intrinsic.
// SAFETY: Pointer-to-integer transmutes are valid (if you are okay with losing the
// provenance).
unsafe { core::mem::transmute(ptr) }
}
#[must_use]
#[inline]
pub(crate) fn with_addr<T>(ptr: *mut T, addr: usize) -> *mut T
where
T: Sized,
{
// FIXME(strict_provenance_magic): I am magic and should be a compiler intrinsic.
//
// In the mean-time, this operation is defined to be "as if" it was
// a wrapping_offset, so we can emulate it as such. This should properly
// restore pointer provenance even under today's compiler.
let self_addr = self::addr(ptr) as isize;
let dest_addr = addr as isize;
let offset = dest_addr.wrapping_sub(self_addr);
// This is the canonical desugarring of this operation,
// but `pointer::cast` was only stabilized in 1.38.
// self.cast::<u8>().wrapping_offset(offset).cast::<T>()
(ptr as *mut u8).wrapping_offset(offset) as *mut T
}
#[must_use]
#[inline]
pub(crate) fn map_addr<T>(ptr: *mut T, f: impl FnOnce(usize) -> usize) -> *mut T
where
T: Sized,
{
self::with_addr(ptr, f(addr(ptr)))
}
}
// These test are snatched from std as well.
#[cfg(test)]
mod tests {
use std::panic;
use std::{sync::mpsc::channel, thread};
use super::OnceCell;
impl<T> OnceCell<T> {
fn init(&self, f: impl FnOnce() -> T) {
enum Void {}
let _ = self.initialize(|| Ok::<T, Void>(f()));
}
}
#[test]
fn smoke_once() {
static O: OnceCell<()> = OnceCell::new();
let mut a = 0;
O.init(|| a += 1);
assert_eq!(a, 1);
O.init(|| a += 1);
assert_eq!(a, 1);
}
#[test]
fn stampede_once() {
static O: OnceCell<()> = OnceCell::new();
static mut RUN: bool = false;
let (tx, rx) = channel();
for _ in 0..10 {
let tx = tx.clone();
thread::spawn(move || {
for _ in 0..4 {
thread::yield_now()
}
unsafe {
O.init(|| {
assert!(!RUN);
RUN = true;
});
assert!(RUN);
}
tx.send(()).unwrap();
});
}
unsafe {
O.init(|| {
assert!(!RUN);
RUN = true;
});
assert!(RUN);
}
for _ in 0..10 {
rx.recv().unwrap();
}
}
#[test]
fn poison_bad() {
static O: OnceCell<()> = OnceCell::new();
// poison the once
let t = panic::catch_unwind(|| {
O.init(|| panic!());
});
assert!(t.is_err());
// we can subvert poisoning, however
let mut called = false;
O.init(|| {
called = true;
});
assert!(called);
// once any success happens, we stop propagating the poison
O.init(|| {});
}
#[test]
fn wait_for_force_to_finish() {
static O: OnceCell<()> = OnceCell::new();
// poison the once
let t = panic::catch_unwind(|| {
O.init(|| panic!());
});
assert!(t.is_err());
// make sure someone's waiting inside the once via a force
let (tx1, rx1) = channel();
let (tx2, rx2) = channel();
let t1 = thread::spawn(move || {
O.init(|| {
tx1.send(()).unwrap();
rx2.recv().unwrap();
});
});
rx1.recv().unwrap();
// put another waiter on the once
let t2 = thread::spawn(|| {
let mut called = false;
O.init(|| {
called = true;
});
assert!(!called);
});
tx2.send(()).unwrap();
assert!(t1.join().is_ok());
assert!(t2.join().is_ok());
}
#[test]
#[cfg(target_pointer_width = "64")]
fn test_size() {
use std::mem::size_of;
assert_eq!(size_of::<OnceCell<u32>>(), 4 * size_of::<u32>());
}
}