1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
/*!
This module provides a regular expression printer for `Hir`.
*/
use core::fmt;
use crate::{
hir::{
self,
visitor::{self, Visitor},
Hir, HirKind,
},
is_meta_character,
};
/// A builder for constructing a printer.
///
/// Note that since a printer doesn't have any configuration knobs, this type
/// remains unexported.
#[derive(Clone, Debug)]
struct PrinterBuilder {
_priv: (),
}
impl Default for PrinterBuilder {
fn default() -> PrinterBuilder {
PrinterBuilder::new()
}
}
impl PrinterBuilder {
fn new() -> PrinterBuilder {
PrinterBuilder { _priv: () }
}
fn build(&self) -> Printer {
Printer { _priv: () }
}
}
/// A printer for a regular expression's high-level intermediate
/// representation.
///
/// A printer converts a high-level intermediate representation (HIR) to a
/// regular expression pattern string. This particular printer uses constant
/// stack space and heap space proportional to the size of the HIR.
///
/// Since this printer is only using the HIR, the pattern it prints will likely
/// not resemble the original pattern at all. For example, a pattern like
/// `\pL` will have its entire class written out.
///
/// The purpose of this printer is to provide a means to mutate an HIR and then
/// build a regular expression from the result of that mutation. (A regex
/// library could provide a constructor from this HIR explicitly, but that
/// creates an unnecessary public coupling between the regex library and this
/// specific HIR representation.)
#[derive(Debug)]
pub struct Printer {
_priv: (),
}
impl Printer {
/// Create a new printer.
pub fn new() -> Printer {
PrinterBuilder::new().build()
}
/// Print the given `Ast` to the given writer. The writer must implement
/// `fmt::Write`. Typical implementations of `fmt::Write` that can be used
/// here are a `fmt::Formatter` (which is available in `fmt::Display`
/// implementations) or a `&mut String`.
pub fn print<W: fmt::Write>(&mut self, hir: &Hir, wtr: W) -> fmt::Result {
visitor::visit(hir, Writer { wtr })
}
}
#[derive(Debug)]
struct Writer<W> {
wtr: W,
}
impl<W: fmt::Write> Visitor for Writer<W> {
type Output = ();
type Err = fmt::Error;
fn finish(self) -> fmt::Result {
Ok(())
}
fn visit_pre(&mut self, hir: &Hir) -> fmt::Result {
match *hir.kind() {
HirKind::Empty => {
// Technically an empty sub-expression could be "printed" by
// just ignoring it, but in practice, you could have a
// repetition operator attached to an empty expression, and you
// really need something in the concrete syntax to make that
// work as you'd expect.
self.wtr.write_str(r"(?:)")?;
}
// Repetition operators are strictly suffix oriented.
HirKind::Repetition(_) => {}
HirKind::Literal(hir::Literal(ref bytes)) => {
// See the comment on the 'Concat' and 'Alternation' case below
// for why we put parens here. Literals are, conceptually,
// a special case of concatenation where each element is a
// character. The HIR flattens this into a Box<[u8]>, but we
// still need to treat it like a concatenation for correct
// printing. As a special case, we don't write parens if there
// is only one character. One character means there is no
// concat so we don't need parens. Adding parens would still be
// correct, but we drop them here because it tends to create
// rather noisy regexes even in simple cases.
let result = core::str::from_utf8(bytes);
let len = result.map_or(bytes.len(), |s| s.chars().count());
if len > 1 {
self.wtr.write_str(r"(?:")?;
}
match result {
Ok(string) => {
for c in string.chars() {
self.write_literal_char(c)?;
}
}
Err(_) => {
for &b in bytes.iter() {
self.write_literal_byte(b)?;
}
}
}
if len > 1 {
self.wtr.write_str(r")")?;
}
}
HirKind::Class(hir::Class::Unicode(ref cls)) => {
if cls.ranges().is_empty() {
return self.wtr.write_str("[a&&b]");
}
self.wtr.write_str("[")?;
for range in cls.iter() {
if range.start() == range.end() {
self.write_literal_char(range.start())?;
} else if u32::from(range.start()) + 1
== u32::from(range.end())
{
self.write_literal_char(range.start())?;
self.write_literal_char(range.end())?;
} else {
self.write_literal_char(range.start())?;
self.wtr.write_str("-")?;
self.write_literal_char(range.end())?;
}
}
self.wtr.write_str("]")?;
}
HirKind::Class(hir::Class::Bytes(ref cls)) => {
if cls.ranges().is_empty() {
return self.wtr.write_str("[a&&b]");
}
self.wtr.write_str("(?-u:[")?;
for range in cls.iter() {
if range.start() == range.end() {
self.write_literal_class_byte(range.start())?;
} else if range.start() + 1 == range.end() {
self.write_literal_class_byte(range.start())?;
self.write_literal_class_byte(range.end())?;
} else {
self.write_literal_class_byte(range.start())?;
self.wtr.write_str("-")?;
self.write_literal_class_byte(range.end())?;
}
}
self.wtr.write_str("])")?;
}
HirKind::Look(ref look) => match *look {
hir::Look::Start => {
self.wtr.write_str(r"\A")?;
}
hir::Look::End => {
self.wtr.write_str(r"\z")?;
}
hir::Look::StartLF => {
self.wtr.write_str("(?m:^)")?;
}
hir::Look::EndLF => {
self.wtr.write_str("(?m:$)")?;
}
hir::Look::StartCRLF => {
self.wtr.write_str("(?mR:^)")?;
}
hir::Look::EndCRLF => {
self.wtr.write_str("(?mR:$)")?;
}
hir::Look::WordAscii => {
self.wtr.write_str(r"(?-u:\b)")?;
}
hir::Look::WordAsciiNegate => {
self.wtr.write_str(r"(?-u:\B)")?;
}
hir::Look::WordUnicode => {
self.wtr.write_str(r"\b")?;
}
hir::Look::WordUnicodeNegate => {
self.wtr.write_str(r"\B")?;
}
hir::Look::WordStartAscii => {
self.wtr.write_str(r"(?-u:\b{start})")?;
}
hir::Look::WordEndAscii => {
self.wtr.write_str(r"(?-u:\b{end})")?;
}
hir::Look::WordStartUnicode => {
self.wtr.write_str(r"\b{start}")?;
}
hir::Look::WordEndUnicode => {
self.wtr.write_str(r"\b{end}")?;
}
hir::Look::WordStartHalfAscii => {
self.wtr.write_str(r"(?-u:\b{start-half})")?;
}
hir::Look::WordEndHalfAscii => {
self.wtr.write_str(r"(?-u:\b{end-half})")?;
}
hir::Look::WordStartHalfUnicode => {
self.wtr.write_str(r"\b{start-half}")?;
}
hir::Look::WordEndHalfUnicode => {
self.wtr.write_str(r"\b{end-half}")?;
}
},
HirKind::Capture(hir::Capture { ref name, .. }) => {
self.wtr.write_str("(")?;
if let Some(ref name) = *name {
write!(self.wtr, "?P<{}>", name)?;
}
}
// Why do this? Wrapping concats and alts in non-capturing groups
// is not *always* necessary, but is sometimes necessary. For
// example, 'concat(a, alt(b, c))' should be written as 'a(?:b|c)'
// and not 'ab|c'. The former is clearly the intended meaning, but
// the latter is actually 'alt(concat(a, b), c)'.
//
// It would be possible to only group these things in cases where
// it's strictly necessary, but it requires knowing the parent
// expression. And since this technique is simpler and always
// correct, we take this route. More to the point, it is a non-goal
// of an HIR printer to show a nice easy-to-read regex. Indeed,
// its construction forbids it from doing so. Therefore, inserting
// extra groups where they aren't necessary is perfectly okay.
HirKind::Concat(_) | HirKind::Alternation(_) => {
self.wtr.write_str(r"(?:")?;
}
}
Ok(())
}
fn visit_post(&mut self, hir: &Hir) -> fmt::Result {
match *hir.kind() {
// Handled during visit_pre
HirKind::Empty
| HirKind::Literal(_)
| HirKind::Class(_)
| HirKind::Look(_) => {}
HirKind::Repetition(ref x) => {
match (x.min, x.max) {
(0, Some(1)) => {
self.wtr.write_str("?")?;
}
(0, None) => {
self.wtr.write_str("*")?;
}
(1, None) => {
self.wtr.write_str("+")?;
}
(1, Some(1)) => {
// 'a{1}' and 'a{1}?' are exactly equivalent to 'a'.
return Ok(());
}
(m, None) => {
write!(self.wtr, "{{{},}}", m)?;
}
(m, Some(n)) if m == n => {
write!(self.wtr, "{{{}}}", m)?;
// a{m} and a{m}? are always exactly equivalent.
return Ok(());
}
(m, Some(n)) => {
write!(self.wtr, "{{{},{}}}", m, n)?;
}
}
if !x.greedy {
self.wtr.write_str("?")?;
}
}
HirKind::Capture(_)
| HirKind::Concat(_)
| HirKind::Alternation(_) => {
self.wtr.write_str(r")")?;
}
}
Ok(())
}
fn visit_alternation_in(&mut self) -> fmt::Result {
self.wtr.write_str("|")
}
}
impl<W: fmt::Write> Writer<W> {
fn write_literal_char(&mut self, c: char) -> fmt::Result {
if is_meta_character(c) {
self.wtr.write_str("\\")?;
}
self.wtr.write_char(c)
}
fn write_literal_byte(&mut self, b: u8) -> fmt::Result {
if b <= 0x7F && !b.is_ascii_control() && !b.is_ascii_whitespace() {
self.write_literal_char(char::try_from(b).unwrap())
} else {
write!(self.wtr, "(?-u:\\x{:02X})", b)
}
}
fn write_literal_class_byte(&mut self, b: u8) -> fmt::Result {
if b <= 0x7F && !b.is_ascii_control() && !b.is_ascii_whitespace() {
self.write_literal_char(char::try_from(b).unwrap())
} else {
write!(self.wtr, "\\x{:02X}", b)
}
}
}
#[cfg(test)]
mod tests {
use alloc::{
boxed::Box,
string::{String, ToString},
};
use crate::ParserBuilder;
use super::*;
fn roundtrip(given: &str, expected: &str) {
roundtrip_with(|b| b, given, expected);
}
fn roundtrip_bytes(given: &str, expected: &str) {
roundtrip_with(|b| b.utf8(false), given, expected);
}
fn roundtrip_with<F>(mut f: F, given: &str, expected: &str)
where
F: FnMut(&mut ParserBuilder) -> &mut ParserBuilder,
{
let mut builder = ParserBuilder::new();
f(&mut builder);
let hir = builder.build().parse(given).unwrap();
let mut printer = Printer::new();
let mut dst = String::new();
printer.print(&hir, &mut dst).unwrap();
// Check that the result is actually valid.
builder.build().parse(&dst).unwrap();
assert_eq!(expected, dst);
}
#[test]
fn print_literal() {
roundtrip("a", "a");
roundtrip(r"\xff", "\u{FF}");
roundtrip_bytes(r"\xff", "\u{FF}");
roundtrip_bytes(r"(?-u)\xff", r"(?-u:\xFF)");
roundtrip("☃", "☃");
}
#[test]
fn print_class() {
roundtrip(r"[a]", r"a");
roundtrip(r"[ab]", r"[ab]");
roundtrip(r"[a-z]", r"[a-z]");
roundtrip(r"[a-z--b-c--x-y]", r"[ad-wz]");
roundtrip(r"[^\x01-\u{10FFFF}]", "\u{0}");
roundtrip(r"[-]", r"\-");
roundtrip(r"[☃-⛄]", r"[☃-⛄]");
roundtrip(r"(?-u)[a]", r"a");
roundtrip(r"(?-u)[ab]", r"(?-u:[ab])");
roundtrip(r"(?-u)[a-z]", r"(?-u:[a-z])");
roundtrip_bytes(r"(?-u)[a-\xFF]", r"(?-u:[a-\xFF])");
// The following test that the printer escapes meta characters
// in character classes.
roundtrip(r"[\[]", r"\[");
roundtrip(r"[Z-_]", r"[Z-_]");
roundtrip(r"[Z-_--Z]", r"[\[-_]");
// The following test that the printer escapes meta characters
// in byte oriented character classes.
roundtrip_bytes(r"(?-u)[\[]", r"\[");
roundtrip_bytes(r"(?-u)[Z-_]", r"(?-u:[Z-_])");
roundtrip_bytes(r"(?-u)[Z-_--Z]", r"(?-u:[\[-_])");
// This tests that an empty character class is correctly roundtripped.
#[cfg(feature = "unicode-gencat")]
roundtrip(r"\P{any}", r"[a&&b]");
roundtrip_bytes(r"(?-u)[^\x00-\xFF]", r"[a&&b]");
}
#[test]
fn print_anchor() {
roundtrip(r"^", r"\A");
roundtrip(r"$", r"\z");
roundtrip(r"(?m)^", r"(?m:^)");
roundtrip(r"(?m)$", r"(?m:$)");
}
#[test]
fn print_word_boundary() {
roundtrip(r"\b", r"\b");
roundtrip(r"\B", r"\B");
roundtrip(r"(?-u)\b", r"(?-u:\b)");
roundtrip_bytes(r"(?-u)\B", r"(?-u:\B)");
}
#[test]
fn print_repetition() {
roundtrip("a?", "a?");
roundtrip("a??", "a??");
roundtrip("(?U)a?", "a??");
roundtrip("a*", "a*");
roundtrip("a*?", "a*?");
roundtrip("(?U)a*", "a*?");
roundtrip("a+", "a+");
roundtrip("a+?", "a+?");
roundtrip("(?U)a+", "a+?");
roundtrip("a{1}", "a");
roundtrip("a{2}", "a{2}");
roundtrip("a{1,}", "a+");
roundtrip("a{1,5}", "a{1,5}");
roundtrip("a{1}?", "a");
roundtrip("a{2}?", "a{2}");
roundtrip("a{1,}?", "a+?");
roundtrip("a{1,5}?", "a{1,5}?");
roundtrip("(?U)a{1}", "a");
roundtrip("(?U)a{2}", "a{2}");
roundtrip("(?U)a{1,}", "a+?");
roundtrip("(?U)a{1,5}", "a{1,5}?");
// Test that various zero-length repetitions always translate to an
// empty regex. This is more a property of HIR's smart constructors
// than the printer though.
roundtrip("a{0}", "(?:)");
roundtrip("(?:ab){0}", "(?:)");
#[cfg(feature = "unicode-gencat")]
{
roundtrip(r"\p{any}{0}", "(?:)");
roundtrip(r"\P{any}{0}", "(?:)");
}
}
#[test]
fn print_group() {
roundtrip("()", "((?:))");
roundtrip("(?P<foo>)", "(?P<foo>(?:))");
roundtrip("(?:)", "(?:)");
roundtrip("(a)", "(a)");
roundtrip("(?P<foo>a)", "(?P<foo>a)");
roundtrip("(?:a)", "a");
roundtrip("((((a))))", "((((a))))");
}
#[test]
fn print_alternation() {
roundtrip("|", "(?:(?:)|(?:))");
roundtrip("||", "(?:(?:)|(?:)|(?:))");
roundtrip("a|b", "[ab]");
roundtrip("ab|cd", "(?:(?:ab)|(?:cd))");
roundtrip("a|b|c", "[a-c]");
roundtrip("ab|cd|ef", "(?:(?:ab)|(?:cd)|(?:ef))");
roundtrip("foo|bar|quux", "(?:(?:foo)|(?:bar)|(?:quux))");
}
// This is a regression test that stresses a peculiarity of how the HIR
// is both constructed and printed. Namely, it is legal for a repetition
// to directly contain a concatenation. This particular construct isn't
// really possible to build from the concrete syntax directly, since you'd
// be forced to put the concatenation into (at least) a non-capturing
// group. Concurrently, the printer doesn't consider this case and just
// kind of naively prints the child expression and tacks on the repetition
// operator.
//
// As a result, if you attached '+' to a 'concat(a, b)', the printer gives
// you 'ab+', but clearly it really should be '(?:ab)+'.
//
// This bug isn't easy to surface because most ways of building an HIR
// come directly from the concrete syntax, and as mentioned above, it just
// isn't possible to build this kind of HIR from the concrete syntax.
// Nevertheless, this is definitely a bug.
//
// See: https://github.com/rust-lang/regex/issues/731
#[test]
fn regression_repetition_concat() {
let expr = Hir::concat(alloc::vec![
Hir::literal("x".as_bytes()),
Hir::repetition(hir::Repetition {
min: 1,
max: None,
greedy: true,
sub: Box::new(Hir::literal("ab".as_bytes())),
}),
Hir::literal("y".as_bytes()),
]);
assert_eq!(r"(?:x(?:ab)+y)", expr.to_string());
let expr = Hir::concat(alloc::vec![
Hir::look(hir::Look::Start),
Hir::repetition(hir::Repetition {
min: 1,
max: None,
greedy: true,
sub: Box::new(Hir::concat(alloc::vec![
Hir::look(hir::Look::Start),
Hir::look(hir::Look::End),
])),
}),
Hir::look(hir::Look::End),
]);
assert_eq!(r"(?:\A\A\z\z)", expr.to_string());
}
// Just like regression_repetition_concat, but with the repetition using
// an alternation as a child expression instead.
//
// See: https://github.com/rust-lang/regex/issues/731
#[test]
fn regression_repetition_alternation() {
let expr = Hir::concat(alloc::vec![
Hir::literal("ab".as_bytes()),
Hir::repetition(hir::Repetition {
min: 1,
max: None,
greedy: true,
sub: Box::new(Hir::alternation(alloc::vec![
Hir::literal("cd".as_bytes()),
Hir::literal("ef".as_bytes()),
])),
}),
Hir::literal("gh".as_bytes()),
]);
assert_eq!(r"(?:(?:ab)(?:(?:cd)|(?:ef))+(?:gh))", expr.to_string());
let expr = Hir::concat(alloc::vec![
Hir::look(hir::Look::Start),
Hir::repetition(hir::Repetition {
min: 1,
max: None,
greedy: true,
sub: Box::new(Hir::alternation(alloc::vec![
Hir::look(hir::Look::Start),
Hir::look(hir::Look::End),
])),
}),
Hir::look(hir::Look::End),
]);
assert_eq!(r"(?:\A(?:\A|\z)\z)", expr.to_string());
}
// This regression test is very similar in flavor to
// regression_repetition_concat in that the root of the issue lies in a
// peculiarity of how the HIR is represented and how the printer writes it
// out. Like the other regression, this one is also rooted in the fact that
// you can't produce the peculiar HIR from the concrete syntax. Namely, you
// just can't have a 'concat(a, alt(b, c))' because the 'alt' will normally
// be in (at least) a non-capturing group. Why? Because the '|' has very
// low precedence (lower that concatenation), and so something like 'ab|c'
// is actually 'alt(ab, c)'.
//
// See: https://github.com/rust-lang/regex/issues/516
#[test]
fn regression_alternation_concat() {
let expr = Hir::concat(alloc::vec![
Hir::literal("ab".as_bytes()),
Hir::alternation(alloc::vec![
Hir::literal("mn".as_bytes()),
Hir::literal("xy".as_bytes()),
]),
]);
assert_eq!(r"(?:(?:ab)(?:(?:mn)|(?:xy)))", expr.to_string());
let expr = Hir::concat(alloc::vec![
Hir::look(hir::Look::Start),
Hir::alternation(alloc::vec![
Hir::look(hir::Look::Start),
Hir::look(hir::Look::End),
]),
]);
assert_eq!(r"(?:\A(?:\A|\z))", expr.to_string());
}
}