1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
use core::{
    borrow::Borrow,
    panic::{RefUnwindSafe, UnwindSafe},
};

use alloc::{boxed::Box, sync::Arc, vec, vec::Vec};

use regex_syntax::{
    ast,
    hir::{self, Hir},
};

use crate::{
    meta::{
        error::BuildError,
        strategy::{self, Strategy},
        wrappers,
    },
    nfa::thompson::WhichCaptures,
    util::{
        captures::{Captures, GroupInfo},
        iter,
        pool::{Pool, PoolGuard},
        prefilter::Prefilter,
        primitives::{NonMaxUsize, PatternID},
        search::{HalfMatch, Input, Match, MatchKind, PatternSet, Span},
    },
};

/// A type alias for our pool of meta::Cache that fixes the type parameters to
/// what we use for the meta regex below.
type CachePool = Pool<Cache, CachePoolFn>;

/// Same as above, but for the guard returned by a pool.
type CachePoolGuard<'a> = PoolGuard<'a, Cache, CachePoolFn>;

/// The type of the closure we use to create new caches. We need to spell out
/// all of the marker traits or else we risk leaking !MARKER impls.
type CachePoolFn =
    Box<dyn Fn() -> Cache + Send + Sync + UnwindSafe + RefUnwindSafe>;

/// A regex matcher that works by composing several other regex matchers
/// automatically.
///
/// In effect, a meta regex papers over a lot of the quirks or performance
/// problems in each of the regex engines in this crate. Its goal is to provide
/// an infallible and simple API that "just does the right thing" in the common
/// case.
///
/// A meta regex is the implementation of a `Regex` in the `regex` crate.
/// Indeed, the `regex` crate API is essentially just a light wrapper over
/// this type. This includes the `regex` crate's `RegexSet` API!
///
/// # Composition
///
/// This is called a "meta" matcher precisely because it uses other regex
/// matchers to provide a convenient high level regex API. Here are some
/// examples of how other regex matchers are composed:
///
/// * When calling [`Regex::captures`], instead of immediately
/// running a slower but more capable regex engine like the
/// [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM), the meta regex engine
/// will usually first look for the bounds of a match with a higher throughput
/// regex engine like a [lazy DFA](crate::hybrid). Only when a match is found
/// is a slower engine like `PikeVM` used to find the matching span for each
/// capture group.
/// * While higher throughout engines like the lazy DFA cannot handle
/// Unicode word boundaries in general, they can still be used on pure ASCII
/// haystacks by pretending that Unicode word boundaries are just plain ASCII
/// word boundaries. However, if a haystack is not ASCII, the meta regex engine
/// will automatically switch to a (possibly slower) regex engine that supports
/// Unicode word boundaries in general.
/// * In some cases where a regex pattern is just a simple literal or a small
/// set of literals, an actual regex engine won't be used at all. Instead,
/// substring or multi-substring search algorithms will be employed.
///
/// There are many other forms of composition happening too, but the above
/// should give a general idea. In particular, it may perhaps be surprising
/// that *multiple* regex engines might get executed for a single search. That
/// is, the decision of what regex engine to use is not _just_ based on the
/// pattern, but also based on the dynamic execution of the search itself.
///
/// The primary reason for this composition is performance. The fundamental
/// tension is that the faster engines tend to be less capable, and the more
/// capable engines tend to be slower.
///
/// Note that the forms of composition that are allowed are determined by
/// compile time crate features and configuration. For example, if the `hybrid`
/// feature isn't enabled, or if [`Config::hybrid`] has been disabled, then the
/// meta regex engine will never use a lazy DFA.
///
/// # Synchronization and cloning
///
/// Most of the regex engines in this crate require some kind of mutable
/// "scratch" space to read and write from while performing a search. Since
/// a meta regex composes these regex engines, a meta regex also requires
/// mutable scratch space. This scratch space is called a [`Cache`].
///
/// Most regex engines _also_ usually have a read-only component, typically
/// a [Thompson `NFA`](crate::nfa::thompson::NFA).
///
/// In order to make the `Regex` API convenient, most of the routines hide
/// the fact that a `Cache` is needed at all. To achieve this, a [memory
/// pool](crate::util::pool::Pool) is used internally to retrieve `Cache`
/// values in a thread safe way that also permits reuse. This in turn implies
/// that every such search call requires some form of synchronization. Usually
/// this synchronization is fast enough to not notice, but in some cases, it
/// can be a bottleneck. This typically occurs when all of the following are
/// true:
///
/// * The same `Regex` is shared across multiple threads simultaneously,
/// usually via a [`util::lazy::Lazy`](crate::util::lazy::Lazy) or something
/// similar from the `once_cell` or `lazy_static` crates.
/// * The primary unit of work in each thread is a regex search.
/// * Searches are run on very short haystacks.
///
/// This particular case can lead to high contention on the pool used by a
/// `Regex` internally, which can in turn increase latency to a noticeable
/// effect. This cost can be mitigated in one of the following ways:
///
/// * Use a distinct copy of a `Regex` in each thread, usually by cloning it.
/// Cloning a `Regex` _does not_ do a deep copy of its read-only component.
/// But it does lead to each `Regex` having its own memory pool, which in
/// turn eliminates the problem of contention. In general, this technique should
/// not result in any additional memory usage when compared to sharing the same
/// `Regex` across multiple threads simultaneously.
/// * Use lower level APIs, like [`Regex::search_with`], which permit passing
/// a `Cache` explicitly. In this case, it is up to you to determine how best
/// to provide a `Cache`. For example, you might put a `Cache` in thread-local
/// storage if your use case allows for it.
///
/// Overall, this is an issue that happens rarely in practice, but it can
/// happen.
///
/// # Warning: spin-locks may be used in alloc-only mode
///
/// When this crate is built without the `std` feature and the high level APIs
/// on a `Regex` are used, then a spin-lock will be used to synchronize access
/// to an internal pool of `Cache` values. This may be undesirable because
/// a spin-lock is [effectively impossible to implement correctly in user
/// space][spinlocks-are-bad]. That is, more concretely, the spin-lock could
/// result in a deadlock.
///
/// [spinlocks-are-bad]: https://matklad.github.io/2020/01/02/spinlocks-considered-harmful.html
///
/// If one wants to avoid the use of spin-locks when the `std` feature is
/// disabled, then you must use APIs that accept a `Cache` value explicitly.
/// For example, [`Regex::search_with`].
///
/// # Example
///
/// ```
/// use regex_automata::meta::Regex;
///
/// let re = Regex::new(r"^[0-9]{4}-[0-9]{2}-[0-9]{2}$")?;
/// assert!(re.is_match("2010-03-14"));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: anchored search
///
/// This example shows how to use [`Input::anchored`] to run an anchored
/// search, even when the regex pattern itself isn't anchored. An anchored
/// search guarantees that if a match is found, then the start offset of the
/// match corresponds to the offset at which the search was started.
///
/// ```
/// use regex_automata::{meta::Regex, Anchored, Input, Match};
///
/// let re = Regex::new(r"\bfoo\b")?;
/// let input = Input::new("xx foo xx").range(3..).anchored(Anchored::Yes);
/// // The offsets are in terms of the original haystack.
/// assert_eq!(Some(Match::must(0, 3..6)), re.find(input));
///
/// // Notice that no match occurs here, because \b still takes the
/// // surrounding context into account, even if it means looking back
/// // before the start of your search.
/// let hay = "xxfoo xx";
/// let input = Input::new(hay).range(2..).anchored(Anchored::Yes);
/// assert_eq!(None, re.find(input));
/// // Indeed, you cannot achieve the above by simply slicing the
/// // haystack itself, since the regex engine can't see the
/// // surrounding context. This is why 'Input' permits setting
/// // the bounds of a search!
/// let input = Input::new(&hay[2..]).anchored(Anchored::Yes);
/// // WRONG!
/// assert_eq!(Some(Match::must(0, 0..3)), re.find(input));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: earliest search
///
/// This example shows how to use [`Input::earliest`] to run a search that
/// might stop before finding the typical leftmost match.
///
/// ```
/// use regex_automata::{meta::Regex, Anchored, Input, Match};
///
/// let re = Regex::new(r"[a-z]{3}|b")?;
/// let input = Input::new("abc").earliest(true);
/// assert_eq!(Some(Match::must(0, 1..2)), re.find(input));
///
/// // Note that "earliest" isn't really a match semantic unto itself.
/// // Instead, it is merely an instruction to whatever regex engine
/// // gets used internally to quit as soon as it can. For example,
/// // this regex uses a different search technique, and winds up
/// // producing a different (but valid) match!
/// let re = Regex::new(r"abc|b")?;
/// let input = Input::new("abc").earliest(true);
/// assert_eq!(Some(Match::must(0, 0..3)), re.find(input));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: change the line terminator
///
/// This example shows how to enable multi-line mode by default and change
/// the line terminator to the NUL byte:
///
/// ```
/// use regex_automata::{meta::Regex, util::syntax, Match};
///
/// let re = Regex::builder()
///     .syntax(syntax::Config::new().multi_line(true))
///     .configure(Regex::config().line_terminator(b'\x00'))
///     .build(r"^foo$")?;
/// let hay = "\x00foo\x00";
/// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Debug)]
pub struct Regex {
    /// The actual regex implementation.
    imp: Arc<RegexI>,
    /// A thread safe pool of caches.
    ///
    /// For the higher level search APIs, a `Cache` is automatically plucked
    /// from this pool before running a search. The lower level `with` methods
    /// permit the caller to provide their own cache, thereby bypassing
    /// accesses to this pool.
    ///
    /// Note that we put this outside the `Arc` so that cloning a `Regex`
    /// results in creating a fresh `CachePool`. This in turn permits callers
    /// to clone regexes into separate threads where each such regex gets
    /// the pool's "thread owner" optimization. Otherwise, if one shares the
    /// `Regex` directly, then the pool will go through a slower mutex path for
    /// all threads except for the "owner."
    pool: CachePool,
}

/// The internal implementation of `Regex`, split out so that it can be wrapped
/// in an `Arc`.
#[derive(Debug)]
struct RegexI {
    /// The core matching engine.
    ///
    /// Why is this reference counted when RegexI is already wrapped in an Arc?
    /// Well, we need to capture this in a closure to our `Pool` below in order
    /// to create new `Cache` values when needed. So since it needs to be in
    /// two places, we make it reference counted.
    ///
    /// We make `RegexI` itself reference counted too so that `Regex` itself
    /// stays extremely small and very cheap to clone.
    strat: Arc<dyn Strategy>,
    /// Metadata about the regexes driving the strategy. The metadata is also
    /// usually stored inside the strategy too, but we put it here as well
    /// so that we can get quick access to it (without virtual calls) before
    /// executing the regex engine. For example, we use this metadata to
    /// detect a subset of cases where we know a match is impossible, and can
    /// thus avoid calling into the strategy at all.
    ///
    /// Since `RegexInfo` is stored in multiple places, it is also reference
    /// counted.
    info: RegexInfo,
}

/// Convenience constructors for a `Regex` using the default configuration.
impl Regex {
    /// Builds a `Regex` from a single pattern string using the default
    /// configuration.
    ///
    /// If there was a problem parsing the pattern or a problem turning it into
    /// a regex matcher, then an error is returned.
    ///
    /// If you want to change the configuration of a `Regex`, use a [`Builder`]
    /// with a [`Config`].
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{meta::Regex, Match};
    ///
    /// let re = Regex::new(r"(?Rm)^foo$")?;
    /// let hay = "\r\nfoo\r\n";
    /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn new(pattern: &str) -> Result<Regex, BuildError> {
        Regex::builder().build(pattern)
    }

    /// Builds a `Regex` from many pattern strings using the default
    /// configuration.
    ///
    /// If there was a problem parsing any of the patterns or a problem turning
    /// them into a regex matcher, then an error is returned.
    ///
    /// If you want to change the configuration of a `Regex`, use a [`Builder`]
    /// with a [`Config`].
    ///
    /// # Example: simple lexer
    ///
    /// This simplistic example leverages the multi-pattern support to build a
    /// simple little lexer. The pattern ID in the match tells you which regex
    /// matched, which in turn might be used to map back to the "type" of the
    /// token returned by the lexer.
    ///
    /// ```
    /// use regex_automata::{meta::Regex, Match};
    ///
    /// let re = Regex::new_many(&[
    ///     r"[[:space:]]",
    ///     r"[A-Za-z0-9][A-Za-z0-9_]+",
    ///     r"->",
    ///     r".",
    /// ])?;
    /// let haystack = "fn is_boss(bruce: i32, springsteen: String) -> bool;";
    /// let matches: Vec<Match> = re.find_iter(haystack).collect();
    /// assert_eq!(matches, vec![
    ///     Match::must(1, 0..2),   // 'fn'
    ///     Match::must(0, 2..3),   // ' '
    ///     Match::must(1, 3..10),  // 'is_boss'
    ///     Match::must(3, 10..11), // '('
    ///     Match::must(1, 11..16), // 'bruce'
    ///     Match::must(3, 16..17), // ':'
    ///     Match::must(0, 17..18), // ' '
    ///     Match::must(1, 18..21), // 'i32'
    ///     Match::must(3, 21..22), // ','
    ///     Match::must(0, 22..23), // ' '
    ///     Match::must(1, 23..34), // 'springsteen'
    ///     Match::must(3, 34..35), // ':'
    ///     Match::must(0, 35..36), // ' '
    ///     Match::must(1, 36..42), // 'String'
    ///     Match::must(3, 42..43), // ')'
    ///     Match::must(0, 43..44), // ' '
    ///     Match::must(2, 44..46), // '->'
    ///     Match::must(0, 46..47), // ' '
    ///     Match::must(1, 47..51), // 'bool'
    ///     Match::must(3, 51..52), // ';'
    /// ]);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// One can write a lexer like the above using a regex like
    /// `(?P<space>[[:space:]])|(?P<ident>[A-Za-z0-9][A-Za-z0-9_]+)|...`,
    /// but then you need to ask whether capture group matched to determine
    /// which branch in the regex matched, and thus, which token the match
    /// corresponds to. In contrast, the above example includes the pattern ID
    /// in the match. There's no need to use capture groups at all.
    ///
    /// # Example: finding the pattern that caused an error
    ///
    /// When a syntax error occurs, it is possible to ask which pattern
    /// caused the syntax error.
    ///
    /// ```
    /// use regex_automata::{meta::Regex, PatternID};
    ///
    /// let err = Regex::new_many(&["a", "b", r"\p{Foo}", "c"]).unwrap_err();
    /// assert_eq!(Some(PatternID::must(2)), err.pattern());
    /// ```
    ///
    /// # Example: zero patterns is valid
    ///
    /// Building a regex with zero patterns results in a regex that never
    /// matches anything. Because this routine is generic, passing an empty
    /// slice usually requires a turbo-fish (or something else to help type
    /// inference).
    ///
    /// ```
    /// use regex_automata::{meta::Regex, util::syntax, Match};
    ///
    /// let re = Regex::new_many::<&str>(&[])?;
    /// assert_eq!(None, re.find(""));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn new_many<P: AsRef<str>>(
        patterns: &[P],
    ) -> Result<Regex, BuildError> {
        Regex::builder().build_many(patterns)
    }

    /// Return a default configuration for a `Regex`.
    ///
    /// This is a convenience routine to avoid needing to import the [`Config`]
    /// type when customizing the construction of a `Regex`.
    ///
    /// # Example: lower the NFA size limit
    ///
    /// In some cases, the default size limit might be too big. The size limit
    /// can be lowered, which will prevent large regex patterns from compiling.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::meta::Regex;
    ///
    /// let result = Regex::builder()
    ///     .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10))))
    ///     // Not even 20KB is enough to build a single large Unicode class!
    ///     .build(r"\pL");
    /// assert!(result.is_err());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn config() -> Config {
        Config::new()
    }

    /// Return a builder for configuring the construction of a `Regex`.
    ///
    /// This is a convenience routine to avoid needing to import the
    /// [`Builder`] type in common cases.
    ///
    /// # Example: change the line terminator
    ///
    /// This example shows how to enable multi-line mode by default and change
    /// the line terminator to the NUL byte:
    ///
    /// ```
    /// use regex_automata::{meta::Regex, util::syntax, Match};
    ///
    /// let re = Regex::builder()
    ///     .syntax(syntax::Config::new().multi_line(true))
    ///     .configure(Regex::config().line_terminator(b'\x00'))
    ///     .build(r"^foo$")?;
    /// let hay = "\x00foo\x00";
    /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn builder() -> Builder {
        Builder::new()
    }
}

/// High level convenience routines for using a regex to search a haystack.
impl Regex {
    /// Returns true if and only if this regex matches the given haystack.
    ///
    /// This routine may short circuit if it knows that scanning future input
    /// will never lead to a different result. (Consider how this might make
    /// a difference given the regex `a+` on the haystack `aaaaaaaaaaaaaaa`.
    /// This routine _may_ stop after it sees the first `a`, but routines like
    /// `find` need to continue searching because `+` is greedy by default.)
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::meta::Regex;
    ///
    /// let re = Regex::new("foo[0-9]+bar")?;
    ///
    /// assert!(re.is_match("foo12345bar"));
    /// assert!(!re.is_match("foobar"));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// # Example: consistency with search APIs
    ///
    /// `is_match` is guaranteed to return `true` whenever `find` returns a
    /// match. This includes searches that are executed entirely within a
    /// codepoint:
    ///
    /// ```
    /// use regex_automata::{meta::Regex, Input};
    ///
    /// let re = Regex::new("a*")?;
    ///
    /// // This doesn't match because the default configuration bans empty
    /// // matches from splitting a codepoint.
    /// assert!(!re.is_match(Input::new("☃").span(1..2)));
    /// assert_eq!(None, re.find(Input::new("☃").span(1..2)));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// Notice that when UTF-8 mode is disabled, then the above reports a
    /// match because the restriction against zero-width matches that split a
    /// codepoint has been lifted:
    ///
    /// ```
    /// use regex_automata::{meta::Regex, Input, Match};
    ///
    /// let re = Regex::builder()
    ///     .configure(Regex::config().utf8_empty(false))
    ///     .build("a*")?;
    ///
    /// assert!(re.is_match(Input::new("☃").span(1..2)));
    /// assert_eq!(
    ///     Some(Match::must(0, 1..1)),
    ///     re.find(Input::new("☃").span(1..2)),
    /// );
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// A similar idea applies when using line anchors with CRLF mode enabled,
    /// which prevents them from matching between a `\r` and a `\n`.
    ///
    /// ```
    /// use regex_automata::{meta::Regex, Input, Match};
    ///
    /// let re = Regex::new(r"(?Rm:$)")?;
    /// assert!(!re.is_match(Input::new("\r\n").span(1..1)));
    /// // A regular line anchor, which only considers \n as a
    /// // line terminator, will match.
    /// let re = Regex::new(r"(?m:$)")?;
    /// assert!(re.is_match(Input::new("\r\n").span(1..1)));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn is_match<'h, I: Into<Input<'h>>>(&self, input: I) -> bool {
        let input = input.into().earliest(true);
        if self.imp.info.is_impossible(&input) {
            return false;
        }
        let mut guard = self.pool.get();
        let result = self.imp.strat.is_match(&mut guard, &input);
        // See 'Regex::search' for why we put the guard back explicitly.
        PoolGuard::put(guard);
        result
    }

    /// Executes a leftmost search and returns the first match that is found,
    /// if one exists.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{meta::Regex, Match};
    ///
    /// let re = Regex::new("foo[0-9]+")?;
    /// assert_eq!(Some(Match::must(0, 0..8)), re.find("foo12345"));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn find<'h, I: Into<Input<'h>>>(&self, input: I) -> Option<Match> {
        self.search(&input.into())
    }

    /// Executes a leftmost forward search and writes the spans of capturing
    /// groups that participated in a match into the provided [`Captures`]
    /// value. If no match was found, then [`Captures::is_match`] is guaranteed
    /// to return `false`.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{meta::Regex, Span};
    ///
    /// let re = Regex::new(r"^([0-9]{4})-([0-9]{2})-([0-9]{2})$")?;
    /// let mut caps = re.create_captures();
    ///
    /// re.captures("2010-03-14", &mut caps);
    /// assert!(caps.is_match());
    /// assert_eq!(Some(Span::from(0..4)), caps.get_group(1));
    /// assert_eq!(Some(Span::from(5..7)), caps.get_group(2));
    /// assert_eq!(Some(Span::from(8..10)), caps.get_group(3));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn captures<'h, I: Into<Input<'h>>>(
        &self,
        input: I,
        caps: &mut Captures,
    ) {
        self.search_captures(&input.into(), caps)
    }

    /// Returns an iterator over all non-overlapping leftmost matches in
    /// the given haystack. If no match exists, then the iterator yields no
    /// elements.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{meta::Regex, Match};
    ///
    /// let re = Regex::new("foo[0-9]+")?;
    /// let haystack = "foo1 foo12 foo123";
    /// let matches: Vec<Match> = re.find_iter(haystack).collect();
    /// assert_eq!(matches, vec![
    ///     Match::must(0, 0..4),
    ///     Match::must(0, 5..10),
    ///     Match::must(0, 11..17),
    /// ]);
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn find_iter<'r, 'h, I: Into<Input<'h>>>(
        &'r self,
        input: I,
    ) -> FindMatches<'r, 'h> {
        let cache = self.pool.get();
        let it = iter::Searcher::new(input.into());
        FindMatches { re: self, cache, it }
    }

    /// Returns an iterator over all non-overlapping `Captures` values. If no
    /// match exists, then the iterator yields no elements.
    ///
    /// This yields the same matches as [`Regex::find_iter`], but it includes
    /// the spans of all capturing groups that participate in each match.
    ///
    /// **Tip:** See [`util::iter::Searcher`](crate::util::iter::Searcher) for
    /// how to correctly iterate over all matches in a haystack while avoiding
    /// the creation of a new `Captures` value for every match. (Which you are
    /// forced to do with an `Iterator`.)
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{meta::Regex, Span};
    ///
    /// let re = Regex::new("foo(?P<numbers>[0-9]+)")?;
    ///
    /// let haystack = "foo1 foo12 foo123";
    /// let matches: Vec<Span> = re
    ///     .captures_iter(haystack)
    ///     // The unwrap is OK since 'numbers' matches if the pattern matches.
    ///     .map(|caps| caps.get_group_by_name("numbers").unwrap())
    ///     .collect();
    /// assert_eq!(matches, vec![
    ///     Span::from(3..4),
    ///     Span::from(8..10),
    ///     Span::from(14..17),
    /// ]);
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn captures_iter<'r, 'h, I: Into<Input<'h>>>(
        &'r self,
        input: I,
    ) -> CapturesMatches<'r, 'h> {
        let cache = self.pool.get();
        let caps = self.create_captures();
        let it = iter::Searcher::new(input.into());
        CapturesMatches { re: self, cache, caps, it }
    }

    /// Returns an iterator of spans of the haystack given, delimited by a
    /// match of the regex. Namely, each element of the iterator corresponds to
    /// a part of the haystack that *isn't* matched by the regular expression.
    ///
    /// # Example
    ///
    /// To split a string delimited by arbitrary amounts of spaces or tabs:
    ///
    /// ```
    /// use regex_automata::meta::Regex;
    ///
    /// let re = Regex::new(r"[ \t]+")?;
    /// let hay = "a b \t  c\td    e";
    /// let fields: Vec<&str> = re.split(hay).map(|span| &hay[span]).collect();
    /// assert_eq!(fields, vec!["a", "b", "c", "d", "e"]);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// # Example: more cases
    ///
    /// Basic usage:
    ///
    /// ```
    /// use regex_automata::meta::Regex;
    ///
    /// let re = Regex::new(r" ")?;
    /// let hay = "Mary had a little lamb";
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
    /// assert_eq!(got, vec!["Mary", "had", "a", "little", "lamb"]);
    ///
    /// let re = Regex::new(r"X")?;
    /// let hay = "";
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
    /// assert_eq!(got, vec![""]);
    ///
    /// let re = Regex::new(r"X")?;
    /// let hay = "lionXXtigerXleopard";
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
    /// assert_eq!(got, vec!["lion", "", "tiger", "leopard"]);
    ///
    /// let re = Regex::new(r"::")?;
    /// let hay = "lion::tiger::leopard";
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
    /// assert_eq!(got, vec!["lion", "tiger", "leopard"]);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// If a haystack contains multiple contiguous matches, you will end up
    /// with empty spans yielded by the iterator:
    ///
    /// ```
    /// use regex_automata::meta::Regex;
    ///
    /// let re = Regex::new(r"X")?;
    /// let hay = "XXXXaXXbXc";
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
    /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]);
    ///
    /// let re = Regex::new(r"/")?;
    /// let hay = "(///)";
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
    /// assert_eq!(got, vec!["(", "", "", ")"]);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// Separators at the start or end of a haystack are neighbored by empty
    /// spans.
    ///
    /// ```
    /// use regex_automata::meta::Regex;
    ///
    /// let re = Regex::new(r"0")?;
    /// let hay = "010";
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
    /// assert_eq!(got, vec!["", "1", ""]);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// When the empty string is used as a regex, it splits at every valid
    /// UTF-8 boundary by default (which includes the beginning and end of the
    /// haystack):
    ///
    /// ```
    /// use regex_automata::meta::Regex;
    ///
    /// let re = Regex::new(r"")?;
    /// let hay = "rust";
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
    /// assert_eq!(got, vec!["", "r", "u", "s", "t", ""]);
    ///
    /// // Splitting by an empty string is UTF-8 aware by default!
    /// let re = Regex::new(r"")?;
    /// let hay = "☃";
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
    /// assert_eq!(got, vec!["", "☃", ""]);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// But note that UTF-8 mode for empty strings can be disabled, which will
    /// then result in a match at every byte offset in the haystack,
    /// including between every UTF-8 code unit.
    ///
    /// ```
    /// use regex_automata::meta::Regex;
    ///
    /// let re = Regex::builder()
    ///     .configure(Regex::config().utf8_empty(false))
    ///     .build(r"")?;
    /// let hay = "☃".as_bytes();
    /// let got: Vec<&[u8]> = re.split(hay).map(|sp| &hay[sp]).collect();
    /// assert_eq!(got, vec![
    ///     // Writing byte string slices is just brutal. The problem is that
    ///     // b"foo" has type &[u8; 3] instead of &[u8].
    ///     &[][..], &[b'\xE2'][..], &[b'\x98'][..], &[b'\x83'][..], &[][..],
    /// ]);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// Contiguous separators (commonly shows up with whitespace), can lead to
    /// possibly surprising behavior. For example, this code is correct:
    ///
    /// ```
    /// use regex_automata::meta::Regex;
    ///
    /// let re = Regex::new(r" ")?;
    /// let hay = "    a  b c";
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
    /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// It does *not* give you `["a", "b", "c"]`. For that behavior, you'd want
    /// to match contiguous space characters:
    ///
    /// ```
    /// use regex_automata::meta::Regex;
    ///
    /// let re = Regex::new(r" +")?;
    /// let hay = "    a  b c";
    /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
    /// // N.B. This does still include a leading empty span because ' +'
    /// // matches at the beginning of the haystack.
    /// assert_eq!(got, vec!["", "a", "b", "c"]);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn split<'r, 'h, I: Into<Input<'h>>>(
        &'r self,
        input: I,
    ) -> Split<'r, 'h> {
        Split { finder: self.find_iter(input), last: 0 }
    }

    /// Returns an iterator of at most `limit` spans of the haystack given,
    /// delimited by a match of the regex. (A `limit` of `0` will return no
    /// spans.) Namely, each element of the iterator corresponds to a part
    /// of the haystack that *isn't* matched by the regular expression. The
    /// remainder of the haystack that is not split will be the last element in
    /// the iterator.
    ///
    /// # Example
    ///
    /// Get the first two words in some haystack:
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::meta::Regex;
    ///
    /// let re = Regex::new(r"\W+").unwrap();
    /// let hay = "Hey! How are you?";
    /// let fields: Vec<&str> =
    ///     re.splitn(hay, 3).map(|span| &hay[span]).collect();
    /// assert_eq!(fields, vec!["Hey", "How", "are you?"]);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// # Examples: more cases
    ///
    /// ```
    /// use regex_automata::meta::Regex;
    ///
    /// let re = Regex::new(r" ")?;
    /// let hay = "Mary had a little lamb";
    /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect();
    /// assert_eq!(got, vec!["Mary", "had", "a little lamb"]);
    ///
    /// let re = Regex::new(r"X")?;
    /// let hay = "";
    /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect();
    /// assert_eq!(got, vec![""]);
    ///
    /// let re = Regex::new(r"X")?;
    /// let hay = "lionXXtigerXleopard";
    /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect();
    /// assert_eq!(got, vec!["lion", "", "tigerXleopard"]);
    ///
    /// let re = Regex::new(r"::")?;
    /// let hay = "lion::tiger::leopard";
    /// let got: Vec<&str> = re.splitn(hay, 2).map(|sp| &hay[sp]).collect();
    /// assert_eq!(got, vec!["lion", "tiger::leopard"]);
    ///
    /// let re = Regex::new(r"X")?;
    /// let hay = "abcXdef";
    /// let got: Vec<&str> = re.splitn(hay, 1).map(|sp| &hay[sp]).collect();
    /// assert_eq!(got, vec!["abcXdef"]);
    ///
    /// let re = Regex::new(r"X")?;
    /// let hay = "abcdef";
    /// let got: Vec<&str> = re.splitn(hay, 2).map(|sp| &hay[sp]).collect();
    /// assert_eq!(got, vec!["abcdef"]);
    ///
    /// let re = Regex::new(r"X")?;
    /// let hay = "abcXdef";
    /// let got: Vec<&str> = re.splitn(hay, 0).map(|sp| &hay[sp]).collect();
    /// assert!(got.is_empty());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn splitn<'r, 'h, I: Into<Input<'h>>>(
        &'r self,
        input: I,
        limit: usize,
    ) -> SplitN<'r, 'h> {
        SplitN { splits: self.split(input), limit }
    }
}

/// Lower level search routines that give more control.
impl Regex {
    /// Returns the start and end offset of the leftmost match. If no match
    /// exists, then `None` is returned.
    ///
    /// This is like [`Regex::find`] but, but it accepts a concrete `&Input`
    /// instead of an `Into<Input>`.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{meta::Regex, Input, Match};
    ///
    /// let re = Regex::new(r"Samwise|Sam")?;
    /// let input = Input::new(
    ///     "one of the chief characters, Samwise the Brave",
    /// );
    /// assert_eq!(Some(Match::must(0, 29..36)), re.search(&input));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn search(&self, input: &Input<'_>) -> Option<Match> {
        if self.imp.info.is_impossible(input) {
            return None;
        }
        let mut guard = self.pool.get();
        let result = self.imp.strat.search(&mut guard, input);
        // We do this dance with the guard and explicitly put it back in the
        // pool because it seems to result in better codegen. If we let the
        // guard's Drop impl put it back in the pool, then functions like
        // ptr::drop_in_place get called and they *don't* get inlined. This
        // isn't usually a big deal, but in latency sensitive benchmarks the
        // extra function call can matter.
        //
        // I used `rebar measure -f '^grep/every-line$' -e meta` to measure
        // the effects here.
        //
        // Note that this doesn't eliminate the latency effects of using the
        // pool. There is still some (minor) cost for the "thread owner" of the
        // pool. (i.e., The thread that first calls a regex search routine.)
        // However, for other threads using the regex, the pool access can be
        // quite expensive as it goes through a mutex. Callers can avoid this
        // by either cloning the Regex (which creates a distinct copy of the
        // pool), or callers can use the lower level APIs that accept a 'Cache'
        // directly and do their own handling.
        PoolGuard::put(guard);
        result
    }

    /// Returns the end offset of the leftmost match. If no match exists, then
    /// `None` is returned.
    ///
    /// This is distinct from [`Regex::search`] in that it only returns the end
    /// of a match and not the start of the match. Depending on a variety of
    /// implementation details, this _may_ permit the regex engine to do less
    /// overall work. For example, if a DFA is being used to execute a search,
    /// then the start of a match usually requires running a separate DFA in
    /// reverse to the find the start of a match. If one only needs the end of
    /// a match, then the separate reverse scan to find the start of a match
    /// can be skipped. (Note that the reverse scan is avoided even when using
    /// `Regex::search` when possible, for example, in the case of an anchored
    /// search.)
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{meta::Regex, Input, HalfMatch};
    ///
    /// let re = Regex::new(r"Samwise|Sam")?;
    /// let input = Input::new(
    ///     "one of the chief characters, Samwise the Brave",
    /// );
    /// assert_eq!(Some(HalfMatch::must(0, 36)), re.search_half(&input));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn search_half(&self, input: &Input<'_>) -> Option<HalfMatch> {
        if self.imp.info.is_impossible(input) {
            return None;
        }
        let mut guard = self.pool.get();
        let result = self.imp.strat.search_half(&mut guard, input);
        // See 'Regex::search' for why we put the guard back explicitly.
        PoolGuard::put(guard);
        result
    }

    /// Executes a leftmost forward search and writes the spans of capturing
    /// groups that participated in a match into the provided [`Captures`]
    /// value. If no match was found, then [`Captures::is_match`] is guaranteed
    /// to return `false`.
    ///
    /// This is like [`Regex::captures`], but it accepts a concrete `&Input`
    /// instead of an `Into<Input>`.
    ///
    /// # Example: specific pattern search
    ///
    /// This example shows how to build a multi-pattern `Regex` that permits
    /// searching for specific patterns.
    ///
    /// ```
    /// use regex_automata::{
    ///     meta::Regex,
    ///     Anchored, Match, PatternID, Input,
    /// };
    ///
    /// let re = Regex::new_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?;
    /// let mut caps = re.create_captures();
    /// let haystack = "foo123";
    ///
    /// // Since we are using the default leftmost-first match and both
    /// // patterns match at the same starting position, only the first pattern
    /// // will be returned in this case when doing a search for any of the
    /// // patterns.
    /// let expected = Some(Match::must(0, 0..6));
    /// re.search_captures(&Input::new(haystack), &mut caps);
    /// assert_eq!(expected, caps.get_match());
    ///
    /// // But if we want to check whether some other pattern matches, then we
    /// // can provide its pattern ID.
    /// let expected = Some(Match::must(1, 0..6));
    /// let input = Input::new(haystack)
    ///     .anchored(Anchored::Pattern(PatternID::must(1)));
    /// re.search_captures(&input, &mut caps);
    /// assert_eq!(expected, caps.get_match());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// # Example: specifying the bounds of a search
    ///
    /// This example shows how providing the bounds of a search can produce
    /// different results than simply sub-slicing the haystack.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{meta::Regex, Match, Input};
    ///
    /// let re = Regex::new(r"\b[0-9]{3}\b")?;
    /// let mut caps = re.create_captures();
    /// let haystack = "foo123bar";
    ///
    /// // Since we sub-slice the haystack, the search doesn't know about
    /// // the larger context and assumes that `123` is surrounded by word
    /// // boundaries. And of course, the match position is reported relative
    /// // to the sub-slice as well, which means we get `0..3` instead of
    /// // `3..6`.
    /// let expected = Some(Match::must(0, 0..3));
    /// let input = Input::new(&haystack[3..6]);
    /// re.search_captures(&input, &mut caps);
    /// assert_eq!(expected, caps.get_match());
    ///
    /// // But if we provide the bounds of the search within the context of the
    /// // entire haystack, then the search can take the surrounding context
    /// // into account. (And if we did find a match, it would be reported
    /// // as a valid offset into `haystack` instead of its sub-slice.)
    /// let expected = None;
    /// let input = Input::new(haystack).range(3..6);
    /// re.search_captures(&input, &mut caps);
    /// assert_eq!(expected, caps.get_match());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn search_captures(&self, input: &Input<'_>, caps: &mut Captures) {
        caps.set_pattern(None);
        let pid = self.search_slots(input, caps.slots_mut());
        caps.set_pattern(pid);
    }

    /// Executes a leftmost forward search and writes the spans of capturing
    /// groups that participated in a match into the provided `slots`, and
    /// returns the matching pattern ID. The contents of the slots for patterns
    /// other than the matching pattern are unspecified. If no match was found,
    /// then `None` is returned and the contents of `slots` is unspecified.
    ///
    /// This is like [`Regex::search`], but it accepts a raw slots slice
    /// instead of a `Captures` value. This is useful in contexts where you
    /// don't want or need to allocate a `Captures`.
    ///
    /// It is legal to pass _any_ number of slots to this routine. If the regex
    /// engine would otherwise write a slot offset that doesn't fit in the
    /// provided slice, then it is simply skipped. In general though, there are
    /// usually three slice lengths you might want to use:
    ///
    /// * An empty slice, if you only care about which pattern matched.
    /// * A slice with [`pattern_len() * 2`](Regex::pattern_len) slots, if you
    /// only care about the overall match spans for each matching pattern.
    /// * A slice with
    /// [`slot_len()`](crate::util::captures::GroupInfo::slot_len) slots, which
    /// permits recording match offsets for every capturing group in every
    /// pattern.
    ///
    /// # Example
    ///
    /// This example shows how to find the overall match offsets in a
    /// multi-pattern search without allocating a `Captures` value. Indeed, we
    /// can put our slots right on the stack.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{meta::Regex, PatternID, Input};
    ///
    /// let re = Regex::new_many(&[
    ///     r"\pL+",
    ///     r"\d+",
    /// ])?;
    /// let input = Input::new("!@#123");
    ///
    /// // We only care about the overall match offsets here, so we just
    /// // allocate two slots for each pattern. Each slot records the start
    /// // and end of the match.
    /// let mut slots = [None; 4];
    /// let pid = re.search_slots(&input, &mut slots);
    /// assert_eq!(Some(PatternID::must(1)), pid);
    ///
    /// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'.
    /// // See 'GroupInfo' for more details on the mapping between groups and
    /// // slot indices.
    /// let slot_start = pid.unwrap().as_usize() * 2;
    /// let slot_end = slot_start + 1;
    /// assert_eq!(Some(3), slots[slot_start].map(|s| s.get()));
    /// assert_eq!(Some(6), slots[slot_end].map(|s| s.get()));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn search_slots(
        &self,
        input: &Input<'_>,
        slots: &mut [Option<NonMaxUsize>],
    ) -> Option<PatternID> {
        if self.imp.info.is_impossible(input) {
            return None;
        }
        let mut guard = self.pool.get();
        let result = self.imp.strat.search_slots(&mut guard, input, slots);
        // See 'Regex::search' for why we put the guard back explicitly.
        PoolGuard::put(guard);
        result
    }

    /// Writes the set of patterns that match anywhere in the given search
    /// configuration to `patset`. If multiple patterns match at the same
    /// position and this `Regex` was configured with [`MatchKind::All`]
    /// semantics, then all matching patterns are written to the given set.
    ///
    /// Unless all of the patterns in this `Regex` are anchored, then generally
    /// speaking, this will scan the entire haystack.
    ///
    /// This search routine *does not* clear the pattern set. This gives some
    /// flexibility to the caller (e.g., running multiple searches with the
    /// same pattern set), but does make the API bug-prone if you're reusing
    /// the same pattern set for multiple searches but intended them to be
    /// independent.
    ///
    /// If a pattern ID matched but the given `PatternSet` does not have
    /// sufficient capacity to store it, then it is not inserted and silently
    /// dropped.
    ///
    /// # Example
    ///
    /// This example shows how to find all matching patterns in a haystack,
    /// even when some patterns match at the same position as other patterns.
    /// It is important that we configure the `Regex` with [`MatchKind::All`]
    /// semantics here, or else overlapping matches will not be reported.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{meta::Regex, Input, MatchKind, PatternSet};
    ///
    /// let patterns = &[
    ///     r"\w+", r"\d+", r"\pL+", r"foo", r"bar", r"barfoo", r"foobar",
    /// ];
    /// let re = Regex::builder()
    ///     .configure(Regex::config().match_kind(MatchKind::All))
    ///     .build_many(patterns)?;
    ///
    /// let input = Input::new("foobar");
    /// let mut patset = PatternSet::new(re.pattern_len());
    /// re.which_overlapping_matches(&input, &mut patset);
    /// let expected = vec![0, 2, 3, 4, 6];
    /// let got: Vec<usize> = patset.iter().map(|p| p.as_usize()).collect();
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn which_overlapping_matches(
        &self,
        input: &Input<'_>,
        patset: &mut PatternSet,
    ) {
        if self.imp.info.is_impossible(input) {
            return;
        }
        let mut guard = self.pool.get();
        let result = self
            .imp
            .strat
            .which_overlapping_matches(&mut guard, input, patset);
        // See 'Regex::search' for why we put the guard back explicitly.
        PoolGuard::put(guard);
        result
    }
}

/// Lower level search routines that give more control, and require the caller
/// to provide an explicit [`Cache`] parameter.
impl Regex {
    /// This is like [`Regex::search`], but requires the caller to
    /// explicitly pass a [`Cache`].
    ///
    /// # Why pass a `Cache` explicitly?
    ///
    /// Passing a `Cache` explicitly will bypass the use of an internal memory
    /// pool used by `Regex` to get a `Cache` for a search. The use of this
    /// pool can be slower in some cases when a `Regex` is used from multiple
    /// threads simultaneously. Typically, performance only becomes an issue
    /// when there is heavy contention, which in turn usually only occurs
    /// when each thread's primary unit of work is a regex search on a small
    /// haystack.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{meta::Regex, Input, Match};
    ///
    /// let re = Regex::new(r"Samwise|Sam")?;
    /// let mut cache = re.create_cache();
    /// let input = Input::new(
    ///     "one of the chief characters, Samwise the Brave",
    /// );
    /// assert_eq!(
    ///     Some(Match::must(0, 29..36)),
    ///     re.search_with(&mut cache, &input),
    /// );
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn search_with(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
    ) -> Option<Match> {
        if self.imp.info.is_impossible(input) {
            return None;
        }
        self.imp.strat.search(cache, input)
    }

    /// This is like [`Regex::search_half`], but requires the caller to
    /// explicitly pass a [`Cache`].
    ///
    /// # Why pass a `Cache` explicitly?
    ///
    /// Passing a `Cache` explicitly will bypass the use of an internal memory
    /// pool used by `Regex` to get a `Cache` for a search. The use of this
    /// pool can be slower in some cases when a `Regex` is used from multiple
    /// threads simultaneously. Typically, performance only becomes an issue
    /// when there is heavy contention, which in turn usually only occurs
    /// when each thread's primary unit of work is a regex search on a small
    /// haystack.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{meta::Regex, Input, HalfMatch};
    ///
    /// let re = Regex::new(r"Samwise|Sam")?;
    /// let mut cache = re.create_cache();
    /// let input = Input::new(
    ///     "one of the chief characters, Samwise the Brave",
    /// );
    /// assert_eq!(
    ///     Some(HalfMatch::must(0, 36)),
    ///     re.search_half_with(&mut cache, &input),
    /// );
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn search_half_with(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
    ) -> Option<HalfMatch> {
        if self.imp.info.is_impossible(input) {
            return None;
        }
        self.imp.strat.search_half(cache, input)
    }

    /// This is like [`Regex::search_captures`], but requires the caller to
    /// explicitly pass a [`Cache`].
    ///
    /// # Why pass a `Cache` explicitly?
    ///
    /// Passing a `Cache` explicitly will bypass the use of an internal memory
    /// pool used by `Regex` to get a `Cache` for a search. The use of this
    /// pool can be slower in some cases when a `Regex` is used from multiple
    /// threads simultaneously. Typically, performance only becomes an issue
    /// when there is heavy contention, which in turn usually only occurs
    /// when each thread's primary unit of work is a regex search on a small
    /// haystack.
    ///
    /// # Example: specific pattern search
    ///
    /// This example shows how to build a multi-pattern `Regex` that permits
    /// searching for specific patterns.
    ///
    /// ```
    /// use regex_automata::{
    ///     meta::Regex,
    ///     Anchored, Match, PatternID, Input,
    /// };
    ///
    /// let re = Regex::new_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?;
    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
    /// let haystack = "foo123";
    ///
    /// // Since we are using the default leftmost-first match and both
    /// // patterns match at the same starting position, only the first pattern
    /// // will be returned in this case when doing a search for any of the
    /// // patterns.
    /// let expected = Some(Match::must(0, 0..6));
    /// re.search_captures_with(&mut cache, &Input::new(haystack), &mut caps);
    /// assert_eq!(expected, caps.get_match());
    ///
    /// // But if we want to check whether some other pattern matches, then we
    /// // can provide its pattern ID.
    /// let expected = Some(Match::must(1, 0..6));
    /// let input = Input::new(haystack)
    ///     .anchored(Anchored::Pattern(PatternID::must(1)));
    /// re.search_captures_with(&mut cache, &input, &mut caps);
    /// assert_eq!(expected, caps.get_match());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// # Example: specifying the bounds of a search
    ///
    /// This example shows how providing the bounds of a search can produce
    /// different results than simply sub-slicing the haystack.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{meta::Regex, Match, Input};
    ///
    /// let re = Regex::new(r"\b[0-9]{3}\b")?;
    /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
    /// let haystack = "foo123bar";
    ///
    /// // Since we sub-slice the haystack, the search doesn't know about
    /// // the larger context and assumes that `123` is surrounded by word
    /// // boundaries. And of course, the match position is reported relative
    /// // to the sub-slice as well, which means we get `0..3` instead of
    /// // `3..6`.
    /// let expected = Some(Match::must(0, 0..3));
    /// let input = Input::new(&haystack[3..6]);
    /// re.search_captures_with(&mut cache, &input, &mut caps);
    /// assert_eq!(expected, caps.get_match());
    ///
    /// // But if we provide the bounds of the search within the context of the
    /// // entire haystack, then the search can take the surrounding context
    /// // into account. (And if we did find a match, it would be reported
    /// // as a valid offset into `haystack` instead of its sub-slice.)
    /// let expected = None;
    /// let input = Input::new(haystack).range(3..6);
    /// re.search_captures_with(&mut cache, &input, &mut caps);
    /// assert_eq!(expected, caps.get_match());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn search_captures_with(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
        caps: &mut Captures,
    ) {
        caps.set_pattern(None);
        let pid = self.search_slots_with(cache, input, caps.slots_mut());
        caps.set_pattern(pid);
    }

    /// This is like [`Regex::search_slots`], but requires the caller to
    /// explicitly pass a [`Cache`].
    ///
    /// # Why pass a `Cache` explicitly?
    ///
    /// Passing a `Cache` explicitly will bypass the use of an internal memory
    /// pool used by `Regex` to get a `Cache` for a search. The use of this
    /// pool can be slower in some cases when a `Regex` is used from multiple
    /// threads simultaneously. Typically, performance only becomes an issue
    /// when there is heavy contention, which in turn usually only occurs
    /// when each thread's primary unit of work is a regex search on a small
    /// haystack.
    ///
    /// # Example
    ///
    /// This example shows how to find the overall match offsets in a
    /// multi-pattern search without allocating a `Captures` value. Indeed, we
    /// can put our slots right on the stack.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{meta::Regex, PatternID, Input};
    ///
    /// let re = Regex::new_many(&[
    ///     r"\pL+",
    ///     r"\d+",
    /// ])?;
    /// let mut cache = re.create_cache();
    /// let input = Input::new("!@#123");
    ///
    /// // We only care about the overall match offsets here, so we just
    /// // allocate two slots for each pattern. Each slot records the start
    /// // and end of the match.
    /// let mut slots = [None; 4];
    /// let pid = re.search_slots_with(&mut cache, &input, &mut slots);
    /// assert_eq!(Some(PatternID::must(1)), pid);
    ///
    /// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'.
    /// // See 'GroupInfo' for more details on the mapping between groups and
    /// // slot indices.
    /// let slot_start = pid.unwrap().as_usize() * 2;
    /// let slot_end = slot_start + 1;
    /// assert_eq!(Some(3), slots[slot_start].map(|s| s.get()));
    /// assert_eq!(Some(6), slots[slot_end].map(|s| s.get()));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn search_slots_with(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
        slots: &mut [Option<NonMaxUsize>],
    ) -> Option<PatternID> {
        if self.imp.info.is_impossible(input) {
            return None;
        }
        self.imp.strat.search_slots(cache, input, slots)
    }

    /// This is like [`Regex::which_overlapping_matches`], but requires the
    /// caller to explicitly pass a [`Cache`].
    ///
    /// Passing a `Cache` explicitly will bypass the use of an internal memory
    /// pool used by `Regex` to get a `Cache` for a search. The use of this
    /// pool can be slower in some cases when a `Regex` is used from multiple
    /// threads simultaneously. Typically, performance only becomes an issue
    /// when there is heavy contention, which in turn usually only occurs
    /// when each thread's primary unit of work is a regex search on a small
    /// haystack.
    ///
    /// # Why pass a `Cache` explicitly?
    ///
    /// # Example
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{meta::Regex, Input, MatchKind, PatternSet};
    ///
    /// let patterns = &[
    ///     r"\w+", r"\d+", r"\pL+", r"foo", r"bar", r"barfoo", r"foobar",
    /// ];
    /// let re = Regex::builder()
    ///     .configure(Regex::config().match_kind(MatchKind::All))
    ///     .build_many(patterns)?;
    /// let mut cache = re.create_cache();
    ///
    /// let input = Input::new("foobar");
    /// let mut patset = PatternSet::new(re.pattern_len());
    /// re.which_overlapping_matches_with(&mut cache, &input, &mut patset);
    /// let expected = vec![0, 2, 3, 4, 6];
    /// let got: Vec<usize> = patset.iter().map(|p| p.as_usize()).collect();
    /// assert_eq!(expected, got);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn which_overlapping_matches_with(
        &self,
        cache: &mut Cache,
        input: &Input<'_>,
        patset: &mut PatternSet,
    ) {
        if self.imp.info.is_impossible(input) {
            return;
        }
        self.imp.strat.which_overlapping_matches(cache, input, patset)
    }
}

/// Various non-search routines for querying properties of a `Regex` and
/// convenience routines for creating [`Captures`] and [`Cache`] values.
impl Regex {
    /// Creates a new object for recording capture group offsets. This is used
    /// in search APIs like [`Regex::captures`] and [`Regex::search_captures`].
    ///
    /// This is a convenience routine for
    /// `Captures::all(re.group_info().clone())`. Callers may build other types
    /// of `Captures` values that record less information (and thus require
    /// less work from the regex engine) using [`Captures::matches`] and
    /// [`Captures::empty`].
    ///
    /// # Example
    ///
    /// This shows some alternatives to [`Regex::create_captures`]:
    ///
    /// ```
    /// use regex_automata::{
    ///     meta::Regex,
    ///     util::captures::Captures,
    ///     Match, PatternID, Span,
    /// };
    ///
    /// let re = Regex::new(r"(?<first>[A-Z][a-z]+) (?<last>[A-Z][a-z]+)")?;
    ///
    /// // This is equivalent to Regex::create_captures. It stores matching
    /// // offsets for all groups in the regex.
    /// let mut all = Captures::all(re.group_info().clone());
    /// re.captures("Bruce Springsteen", &mut all);
    /// assert_eq!(Some(Match::must(0, 0..17)), all.get_match());
    /// assert_eq!(Some(Span::from(0..5)), all.get_group_by_name("first"));
    /// assert_eq!(Some(Span::from(6..17)), all.get_group_by_name("last"));
    ///
    /// // In this version, we only care about the implicit groups, which
    /// // means offsets for the explicit groups will be unavailable. It can
    /// // sometimes be faster to ask for fewer groups, since the underlying
    /// // regex engine needs to do less work to keep track of them.
    /// let mut matches = Captures::matches(re.group_info().clone());
    /// re.captures("Bruce Springsteen", &mut matches);
    /// // We still get the overall match info.
    /// assert_eq!(Some(Match::must(0, 0..17)), matches.get_match());
    /// // But now the explicit groups are unavailable.
    /// assert_eq!(None, matches.get_group_by_name("first"));
    /// assert_eq!(None, matches.get_group_by_name("last"));
    ///
    /// // Finally, in this version, we don't ask to keep track of offsets for
    /// // *any* groups. All we get back is whether a match occurred, and if
    /// // so, the ID of the pattern that matched.
    /// let mut empty = Captures::empty(re.group_info().clone());
    /// re.captures("Bruce Springsteen", &mut empty);
    /// // it's a match!
    /// assert!(empty.is_match());
    /// // for pattern ID 0
    /// assert_eq!(Some(PatternID::ZERO), empty.pattern());
    /// // Match offsets are unavailable.
    /// assert_eq!(None, empty.get_match());
    /// // And of course, explicit groups are unavailable too.
    /// assert_eq!(None, empty.get_group_by_name("first"));
    /// assert_eq!(None, empty.get_group_by_name("last"));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn create_captures(&self) -> Captures {
        Captures::all(self.group_info().clone())
    }

    /// Creates a new cache for use with lower level search APIs like
    /// [`Regex::search_with`].
    ///
    /// The cache returned should only be used for searches for this `Regex`.
    /// If you want to reuse the cache for another `Regex`, then you must call
    /// [`Cache::reset`] with that `Regex`.
    ///
    /// This is a convenience routine for [`Cache::new`].
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{meta::Regex, Input, Match};
    ///
    /// let re = Regex::new(r"(?-u)m\w+\s+m\w+")?;
    /// let mut cache = re.create_cache();
    /// let input = Input::new("crazy janey and her mission man");
    /// assert_eq!(
    ///     Some(Match::must(0, 20..31)),
    ///     re.search_with(&mut cache, &input),
    /// );
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn create_cache(&self) -> Cache {
        self.imp.strat.create_cache()
    }

    /// Returns the total number of patterns in this regex.
    ///
    /// The standard [`Regex::new`] constructor always results in a `Regex`
    /// with a single pattern, but [`Regex::new_many`] permits building a
    /// multi-pattern regex.
    ///
    /// A `Regex` guarantees that the maximum possible `PatternID` returned in
    /// any match is `Regex::pattern_len() - 1`. In the case where the number
    /// of patterns is `0`, a match is impossible.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::meta::Regex;
    ///
    /// let re = Regex::new(r"(?m)^[a-z]$")?;
    /// assert_eq!(1, re.pattern_len());
    ///
    /// let re = Regex::new_many::<&str>(&[])?;
    /// assert_eq!(0, re.pattern_len());
    ///
    /// let re = Regex::new_many(&["a", "b", "c"])?;
    /// assert_eq!(3, re.pattern_len());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn pattern_len(&self) -> usize {
        self.imp.info.pattern_len()
    }

    /// Returns the total number of capturing groups.
    ///
    /// This includes the implicit capturing group corresponding to the
    /// entire match. Therefore, the minimum value returned is `1`.
    ///
    /// # Example
    ///
    /// This shows a few patterns and how many capture groups they have.
    ///
    /// ```
    /// use regex_automata::meta::Regex;
    ///
    /// let len = |pattern| {
    ///     Regex::new(pattern).map(|re| re.captures_len())
    /// };
    ///
    /// assert_eq!(1, len("a")?);
    /// assert_eq!(2, len("(a)")?);
    /// assert_eq!(3, len("(a)|(b)")?);
    /// assert_eq!(5, len("(a)(b)|(c)(d)")?);
    /// assert_eq!(2, len("(a)|b")?);
    /// assert_eq!(2, len("a|(b)")?);
    /// assert_eq!(2, len("(b)*")?);
    /// assert_eq!(2, len("(b)+")?);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// # Example: multiple patterns
    ///
    /// This routine also works for multiple patterns. The total number is
    /// the sum of the capture groups of each pattern.
    ///
    /// ```
    /// use regex_automata::meta::Regex;
    ///
    /// let len = |patterns| {
    ///     Regex::new_many(patterns).map(|re| re.captures_len())
    /// };
    ///
    /// assert_eq!(2, len(&["a", "b"])?);
    /// assert_eq!(4, len(&["(a)", "(b)"])?);
    /// assert_eq!(6, len(&["(a)|(b)", "(c)|(d)"])?);
    /// assert_eq!(8, len(&["(a)(b)|(c)(d)", "(x)(y)"])?);
    /// assert_eq!(3, len(&["(a)", "b"])?);
    /// assert_eq!(3, len(&["a", "(b)"])?);
    /// assert_eq!(4, len(&["(a)", "(b)*"])?);
    /// assert_eq!(4, len(&["(a)+", "(b)+"])?);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn captures_len(&self) -> usize {
        self.imp
            .info
            .props_union()
            .explicit_captures_len()
            .saturating_add(self.pattern_len())
    }

    /// Returns the total number of capturing groups that appear in every
    /// possible match.
    ///
    /// If the number of capture groups can vary depending on the match, then
    /// this returns `None`. That is, a value is only returned when the number
    /// of matching groups is invariant or "static."
    ///
    /// Note that like [`Regex::captures_len`], this **does** include the
    /// implicit capturing group corresponding to the entire match. Therefore,
    /// when a non-None value is returned, it is guaranteed to be at least `1`.
    /// Stated differently, a return value of `Some(0)` is impossible.
    ///
    /// # Example
    ///
    /// This shows a few cases where a static number of capture groups is
    /// available and a few cases where it is not.
    ///
    /// ```
    /// use regex_automata::meta::Regex;
    ///
    /// let len = |pattern| {
    ///     Regex::new(pattern).map(|re| re.static_captures_len())
    /// };
    ///
    /// assert_eq!(Some(1), len("a")?);
    /// assert_eq!(Some(2), len("(a)")?);
    /// assert_eq!(Some(2), len("(a)|(b)")?);
    /// assert_eq!(Some(3), len("(a)(b)|(c)(d)")?);
    /// assert_eq!(None, len("(a)|b")?);
    /// assert_eq!(None, len("a|(b)")?);
    /// assert_eq!(None, len("(b)*")?);
    /// assert_eq!(Some(2), len("(b)+")?);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// # Example: multiple patterns
    ///
    /// This property extends to regexes with multiple patterns as well. In
    /// order for their to be a static number of capture groups in this case,
    /// every pattern must have the same static number.
    ///
    /// ```
    /// use regex_automata::meta::Regex;
    ///
    /// let len = |patterns| {
    ///     Regex::new_many(patterns).map(|re| re.static_captures_len())
    /// };
    ///
    /// assert_eq!(Some(1), len(&["a", "b"])?);
    /// assert_eq!(Some(2), len(&["(a)", "(b)"])?);
    /// assert_eq!(Some(2), len(&["(a)|(b)", "(c)|(d)"])?);
    /// assert_eq!(Some(3), len(&["(a)(b)|(c)(d)", "(x)(y)"])?);
    /// assert_eq!(None, len(&["(a)", "b"])?);
    /// assert_eq!(None, len(&["a", "(b)"])?);
    /// assert_eq!(None, len(&["(a)", "(b)*"])?);
    /// assert_eq!(Some(2), len(&["(a)+", "(b)+"])?);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn static_captures_len(&self) -> Option<usize> {
        self.imp
            .info
            .props_union()
            .static_explicit_captures_len()
            .map(|len| len.saturating_add(1))
    }

    /// Return information about the capture groups in this `Regex`.
    ///
    /// A `GroupInfo` is an immutable object that can be cheaply cloned. It
    /// is responsible for maintaining a mapping between the capture groups
    /// in the concrete syntax of zero or more regex patterns and their
    /// internal representation used by some of the regex matchers. It is also
    /// responsible for maintaining a mapping between the name of each group
    /// (if one exists) and its corresponding group index.
    ///
    /// A `GroupInfo` is ultimately what is used to build a [`Captures`] value,
    /// which is some mutable space where group offsets are stored as a result
    /// of a search.
    ///
    /// # Example
    ///
    /// This shows some alternatives to [`Regex::create_captures`]:
    ///
    /// ```
    /// use regex_automata::{
    ///     meta::Regex,
    ///     util::captures::Captures,
    ///     Match, PatternID, Span,
    /// };
    ///
    /// let re = Regex::new(r"(?<first>[A-Z][a-z]+) (?<last>[A-Z][a-z]+)")?;
    ///
    /// // This is equivalent to Regex::create_captures. It stores matching
    /// // offsets for all groups in the regex.
    /// let mut all = Captures::all(re.group_info().clone());
    /// re.captures("Bruce Springsteen", &mut all);
    /// assert_eq!(Some(Match::must(0, 0..17)), all.get_match());
    /// assert_eq!(Some(Span::from(0..5)), all.get_group_by_name("first"));
    /// assert_eq!(Some(Span::from(6..17)), all.get_group_by_name("last"));
    ///
    /// // In this version, we only care about the implicit groups, which
    /// // means offsets for the explicit groups will be unavailable. It can
    /// // sometimes be faster to ask for fewer groups, since the underlying
    /// // regex engine needs to do less work to keep track of them.
    /// let mut matches = Captures::matches(re.group_info().clone());
    /// re.captures("Bruce Springsteen", &mut matches);
    /// // We still get the overall match info.
    /// assert_eq!(Some(Match::must(0, 0..17)), matches.get_match());
    /// // But now the explicit groups are unavailable.
    /// assert_eq!(None, matches.get_group_by_name("first"));
    /// assert_eq!(None, matches.get_group_by_name("last"));
    ///
    /// // Finally, in this version, we don't ask to keep track of offsets for
    /// // *any* groups. All we get back is whether a match occurred, and if
    /// // so, the ID of the pattern that matched.
    /// let mut empty = Captures::empty(re.group_info().clone());
    /// re.captures("Bruce Springsteen", &mut empty);
    /// // it's a match!
    /// assert!(empty.is_match());
    /// // for pattern ID 0
    /// assert_eq!(Some(PatternID::ZERO), empty.pattern());
    /// // Match offsets are unavailable.
    /// assert_eq!(None, empty.get_match());
    /// // And of course, explicit groups are unavailable too.
    /// assert_eq!(None, empty.get_group_by_name("first"));
    /// assert_eq!(None, empty.get_group_by_name("last"));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn group_info(&self) -> &GroupInfo {
        self.imp.strat.group_info()
    }

    /// Returns the configuration object used to build this `Regex`.
    ///
    /// If no configuration object was explicitly passed, then the
    /// configuration returned represents the default.
    #[inline]
    pub fn get_config(&self) -> &Config {
        self.imp.info.config()
    }

    /// Returns true if this regex has a high chance of being "accelerated."
    ///
    /// The precise meaning of "accelerated" is specifically left unspecified,
    /// but the general meaning is that the search is a high likelihood of
    /// running faster than a character-at-a-time loop inside a standard
    /// regex engine.
    ///
    /// When a regex is accelerated, it is only a *probabilistic* claim. That
    /// is, just because the regex is believed to be accelerated, that doesn't
    /// mean it will definitely execute searches very fast. Similarly, if a
    /// regex is *not* accelerated, that is also a probabilistic claim. That
    /// is, a regex for which `is_accelerated` returns `false` could still run
    /// searches more quickly than a regex for which `is_accelerated` returns
    /// `true`.
    ///
    /// Whether a regex is marked as accelerated or not is dependent on
    /// implementations details that may change in a semver compatible release.
    /// That is, a regex that is accelerated in a `x.y.1` release might not be
    /// accelerated in a `x.y.2` release.
    ///
    /// Basically, the value of acceleration boils down to a hedge: a hodge
    /// podge of internal heuristics combine to make a probabilistic guess
    /// that this regex search may run "fast." The value in knowing this from
    /// a caller's perspective is that it may act as a signal that no further
    /// work should be done to accelerate a search. For example, a grep-like
    /// tool might try to do some extra work extracting literals from a regex
    /// to create its own heuristic acceleration strategies. But it might
    /// choose to defer to this crate's acceleration strategy if one exists.
    /// This routine permits querying whether such a strategy is active for a
    /// particular regex.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::meta::Regex;
    ///
    /// // A simple literal is very likely to be accelerated.
    /// let re = Regex::new(r"foo")?;
    /// assert!(re.is_accelerated());
    ///
    /// // A regex with no literals is likely to not be accelerated.
    /// let re = Regex::new(r"\w")?;
    /// assert!(!re.is_accelerated());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn is_accelerated(&self) -> bool {
        self.imp.strat.is_accelerated()
    }

    /// Return the total approximate heap memory, in bytes, used by this `Regex`.
    ///
    /// Note that currently, there is no high level configuration for setting
    /// a limit on the specific value returned by this routine. Instead, the
    /// following routines can be used to control heap memory at a bit of a
    /// lower level:
    ///
    /// * [`Config::nfa_size_limit`] controls how big _any_ of the NFAs are
    /// allowed to be.
    /// * [`Config::onepass_size_limit`] controls how big the one-pass DFA is
    /// allowed to be.
    /// * [`Config::hybrid_cache_capacity`] controls how much memory the lazy
    /// DFA is permitted to allocate to store its transition table.
    /// * [`Config::dfa_size_limit`] controls how big a fully compiled DFA is
    /// allowed to be.
    /// * [`Config::dfa_state_limit`] controls the conditions under which the
    /// meta regex engine will even attempt to build a fully compiled DFA.
    #[inline]
    pub fn memory_usage(&self) -> usize {
        self.imp.strat.memory_usage()
    }
}

impl Clone for Regex {
    fn clone(&self) -> Regex {
        let imp = Arc::clone(&self.imp);
        let pool = {
            let strat = Arc::clone(&imp.strat);
            let create: CachePoolFn = Box::new(move || strat.create_cache());
            Pool::new(create)
        };
        Regex { imp, pool }
    }
}

#[derive(Clone, Debug)]
pub(crate) struct RegexInfo(Arc<RegexInfoI>);

#[derive(Clone, Debug)]
struct RegexInfoI {
    config: Config,
    props: Vec<hir::Properties>,
    props_union: hir::Properties,
}

impl RegexInfo {
    fn new(config: Config, hirs: &[&Hir]) -> RegexInfo {
        // Collect all of the properties from each of the HIRs, and also
        // union them into one big set of properties representing all HIRs
        // as if they were in one big alternation.
        let mut props = vec![];
        for hir in hirs.iter() {
            props.push(hir.properties().clone());
        }
        let props_union = hir::Properties::union(&props);

        RegexInfo(Arc::new(RegexInfoI { config, props, props_union }))
    }

    pub(crate) fn config(&self) -> &Config {
        &self.0.config
    }

    pub(crate) fn props(&self) -> &[hir::Properties] {
        &self.0.props
    }

    pub(crate) fn props_union(&self) -> &hir::Properties {
        &self.0.props_union
    }

    pub(crate) fn pattern_len(&self) -> usize {
        self.props().len()
    }

    pub(crate) fn memory_usage(&self) -> usize {
        self.props().iter().map(|p| p.memory_usage()).sum::<usize>()
            + self.props_union().memory_usage()
    }

    /// Returns true when the search is guaranteed to be anchored. That is,
    /// when a match is reported, its offset is guaranteed to correspond to
    /// the start of the search.
    ///
    /// This includes returning true when `input` _isn't_ anchored but the
    /// underlying regex is.
    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn is_anchored_start(&self, input: &Input<'_>) -> bool {
        input.get_anchored().is_anchored() || self.is_always_anchored_start()
    }

    /// Returns true when this regex is always anchored to the start of a
    /// search. And in particular, that regardless of an `Input` configuration,
    /// if any match is reported it must start at `0`.
    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn is_always_anchored_start(&self) -> bool {
        use regex_syntax::hir::Look;
        self.props_union().look_set_prefix().contains(Look::Start)
    }

    /// Returns true when this regex is always anchored to the end of a
    /// search. And in particular, that regardless of an `Input` configuration,
    /// if any match is reported it must end at the end of the haystack.
    #[cfg_attr(feature = "perf-inline", inline(always))]
    pub(crate) fn is_always_anchored_end(&self) -> bool {
        use regex_syntax::hir::Look;
        self.props_union().look_set_suffix().contains(Look::End)
    }

    /// Returns true if and only if it is known that a match is impossible
    /// for the given input. This is useful for short-circuiting and avoiding
    /// running the regex engine if it's known no match can be reported.
    ///
    /// Note that this doesn't necessarily detect every possible case. For
    /// example, when `pattern_len() == 0`, a match is impossible, but that
    /// case is so rare that it's fine to be handled by the regex engine
    /// itself. That is, it's not worth the cost of adding it here in order to
    /// make it a little faster. The reason is that this is called for every
    /// search. so there is some cost to adding checks here. Arguably, some of
    /// the checks that are here already probably shouldn't be here...
    #[cfg_attr(feature = "perf-inline", inline(always))]
    fn is_impossible(&self, input: &Input<'_>) -> bool {
        // The underlying regex is anchored, so if we don't start the search
        // at position 0, a match is impossible, because the anchor can only
        // match at position 0.
        if input.start() > 0 && self.is_always_anchored_start() {
            return true;
        }
        // Same idea, but for the end anchor.
        if input.end() < input.haystack().len()
            && self.is_always_anchored_end()
        {
            return true;
        }
        // If the haystack is smaller than the minimum length required, then
        // we know there can be no match.
        let minlen = match self.props_union().minimum_len() {
            None => return false,
            Some(minlen) => minlen,
        };
        if input.get_span().len() < minlen {
            return true;
        }
        // Same idea as minimum, but for maximum. This is trickier. We can
        // only apply the maximum when we know the entire span that we're
        // searching *has* to match according to the regex (and possibly the
        // input configuration). If we know there is too much for the regex
        // to match, we can bail early.
        //
        // I don't think we can apply the maximum otherwise unfortunately.
        if self.is_anchored_start(input) && self.is_always_anchored_end() {
            let maxlen = match self.props_union().maximum_len() {
                None => return false,
                Some(maxlen) => maxlen,
            };
            if input.get_span().len() > maxlen {
                return true;
            }
        }
        false
    }
}

/// An iterator over all non-overlapping matches.
///
/// The iterator yields a [`Match`] value until no more matches could be found.
///
/// The lifetime parameters are as follows:
///
/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
/// * `'h` represents the lifetime of the haystack being searched.
///
/// This iterator can be created with the [`Regex::find_iter`] method.
#[derive(Debug)]
pub struct FindMatches<'r, 'h> {
    re: &'r Regex,
    cache: CachePoolGuard<'r>,
    it: iter::Searcher<'h>,
}

impl<'r, 'h> FindMatches<'r, 'h> {
    /// Returns the `Regex` value that created this iterator.
    #[inline]
    pub fn regex(&self) -> &'r Regex {
        self.re
    }

    /// Returns the current `Input` associated with this iterator.
    ///
    /// The `start` position on the given `Input` may change during iteration,
    /// but all other values are guaranteed to remain invariant.
    #[inline]
    pub fn input<'s>(&'s self) -> &'s Input<'h> {
        self.it.input()
    }
}

impl<'r, 'h> Iterator for FindMatches<'r, 'h> {
    type Item = Match;

    #[inline]
    fn next(&mut self) -> Option<Match> {
        let FindMatches { re, ref mut cache, ref mut it } = *self;
        it.advance(|input| Ok(re.search_with(cache, input)))
    }

    #[inline]
    fn count(self) -> usize {
        // If all we care about is a count of matches, then we only need to
        // find the end position of each match. This can give us a 2x perf
        // boost in some cases, because it avoids needing to do a reverse scan
        // to find the start of a match.
        let FindMatches { re, mut cache, it } = self;
        // This does the deref for PoolGuard once instead of every iter.
        let cache = &mut *cache;
        it.into_half_matches_iter(
            |input| Ok(re.search_half_with(cache, input)),
        )
        .count()
    }
}

impl<'r, 'h> core::iter::FusedIterator for FindMatches<'r, 'h> {}

/// An iterator over all non-overlapping leftmost matches with their capturing
/// groups.
///
/// The iterator yields a [`Captures`] value until no more matches could be
/// found.
///
/// The lifetime parameters are as follows:
///
/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
/// * `'h` represents the lifetime of the haystack being searched.
///
/// This iterator can be created with the [`Regex::captures_iter`] method.
#[derive(Debug)]
pub struct CapturesMatches<'r, 'h> {
    re: &'r Regex,
    cache: CachePoolGuard<'r>,
    caps: Captures,
    it: iter::Searcher<'h>,
}

impl<'r, 'h> CapturesMatches<'r, 'h> {
    /// Returns the `Regex` value that created this iterator.
    #[inline]
    pub fn regex(&self) -> &'r Regex {
        self.re
    }

    /// Returns the current `Input` associated with this iterator.
    ///
    /// The `start` position on the given `Input` may change during iteration,
    /// but all other values are guaranteed to remain invariant.
    #[inline]
    pub fn input<'s>(&'s self) -> &'s Input<'h> {
        self.it.input()
    }
}

impl<'r, 'h> Iterator for CapturesMatches<'r, 'h> {
    type Item = Captures;

    #[inline]
    fn next(&mut self) -> Option<Captures> {
        // Splitting 'self' apart seems necessary to appease borrowck.
        let CapturesMatches { re, ref mut cache, ref mut caps, ref mut it } =
            *self;
        let _ = it.advance(|input| {
            re.search_captures_with(cache, input, caps);
            Ok(caps.get_match())
        });
        if caps.is_match() {
            Some(caps.clone())
        } else {
            None
        }
    }

    #[inline]
    fn count(self) -> usize {
        let CapturesMatches { re, mut cache, it, .. } = self;
        // This does the deref for PoolGuard once instead of every iter.
        let cache = &mut *cache;
        it.into_half_matches_iter(
            |input| Ok(re.search_half_with(cache, input)),
        )
        .count()
    }
}

impl<'r, 'h> core::iter::FusedIterator for CapturesMatches<'r, 'h> {}

/// Yields all substrings delimited by a regular expression match.
///
/// The spans correspond to the offsets between matches.
///
/// The lifetime parameters are as follows:
///
/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
/// * `'h` represents the lifetime of the haystack being searched.
///
/// This iterator can be created with the [`Regex::split`] method.
#[derive(Debug)]
pub struct Split<'r, 'h> {
    finder: FindMatches<'r, 'h>,
    last: usize,
}

impl<'r, 'h> Split<'r, 'h> {
    /// Returns the current `Input` associated with this iterator.
    ///
    /// The `start` position on the given `Input` may change during iteration,
    /// but all other values are guaranteed to remain invariant.
    #[inline]
    pub fn input<'s>(&'s self) -> &'s Input<'h> {
        self.finder.input()
    }
}

impl<'r, 'h> Iterator for Split<'r, 'h> {
    type Item = Span;

    fn next(&mut self) -> Option<Span> {
        match self.finder.next() {
            None => {
                let len = self.finder.it.input().haystack().len();
                if self.last > len {
                    None
                } else {
                    let span = Span::from(self.last..len);
                    self.last = len + 1; // Next call will return None
                    Some(span)
                }
            }
            Some(m) => {
                let span = Span::from(self.last..m.start());
                self.last = m.end();
                Some(span)
            }
        }
    }
}

impl<'r, 'h> core::iter::FusedIterator for Split<'r, 'h> {}

/// Yields at most `N` spans delimited by a regular expression match.
///
/// The spans correspond to the offsets between matches. The last span will be
/// whatever remains after splitting.
///
/// The lifetime parameters are as follows:
///
/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
/// * `'h` represents the lifetime of the haystack being searched.
///
/// This iterator can be created with the [`Regex::splitn`] method.
#[derive(Debug)]
pub struct SplitN<'r, 'h> {
    splits: Split<'r, 'h>,
    limit: usize,
}

impl<'r, 'h> SplitN<'r, 'h> {
    /// Returns the current `Input` associated with this iterator.
    ///
    /// The `start` position on the given `Input` may change during iteration,
    /// but all other values are guaranteed to remain invariant.
    #[inline]
    pub fn input<'s>(&'s self) -> &'s Input<'h> {
        self.splits.input()
    }
}

impl<'r, 'h> Iterator for SplitN<'r, 'h> {
    type Item = Span;

    fn next(&mut self) -> Option<Span> {
        if self.limit == 0 {
            return None;
        }

        self.limit -= 1;
        if self.limit > 0 {
            return self.splits.next();
        }

        let len = self.splits.finder.it.input().haystack().len();
        if self.splits.last > len {
            // We've already returned all substrings.
            None
        } else {
            // self.n == 0, so future calls will return None immediately
            Some(Span::from(self.splits.last..len))
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (0, Some(self.limit))
    }
}

impl<'r, 'h> core::iter::FusedIterator for SplitN<'r, 'h> {}

/// Represents mutable scratch space used by regex engines during a search.
///
/// Most of the regex engines in this crate require some kind of
/// mutable state in order to execute a search. This mutable state is
/// explicitly separated from the core regex object (such as a
/// [`thompson::NFA`](crate::nfa::thompson::NFA)) so that the read-only regex
/// object can be shared across multiple threads simultaneously without any
/// synchronization. Conversely, a `Cache` must either be duplicated if using
/// the same `Regex` from multiple threads, or else there must be some kind of
/// synchronization that guarantees exclusive access while it's in use by one
/// thread.
///
/// A `Regex` attempts to do this synchronization for you by using a thread
/// pool internally. Its size scales roughly with the number of simultaneous
/// regex searches.
///
/// For cases where one does not want to rely on a `Regex`'s internal thread
/// pool, lower level routines such as [`Regex::search_with`] are provided
/// that permit callers to pass a `Cache` into the search routine explicitly.
///
/// General advice is that the thread pool is often more than good enough.
/// However, it may be possible to observe the effects of its latency,
/// especially when searching many small haystacks from many threads
/// simultaneously.
///
/// Caches can be created from their corresponding `Regex` via
/// [`Regex::create_cache`]. A cache can only be used with either the `Regex`
/// that created it, or the `Regex` that was most recently used to reset it
/// with [`Cache::reset`]. Using a cache with any other `Regex` may result in
/// panics or incorrect results.
///
/// # Example
///
/// ```
/// use regex_automata::{meta::Regex, Input, Match};
///
/// let re = Regex::new(r"(?-u)m\w+\s+m\w+")?;
/// let mut cache = re.create_cache();
/// let input = Input::new("crazy janey and her mission man");
/// assert_eq!(
///     Some(Match::must(0, 20..31)),
///     re.search_with(&mut cache, &input),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Debug, Clone)]
pub struct Cache {
    pub(crate) capmatches: Captures,
    pub(crate) pikevm: wrappers::PikeVMCache,
    pub(crate) backtrack: wrappers::BoundedBacktrackerCache,
    pub(crate) onepass: wrappers::OnePassCache,
    pub(crate) hybrid: wrappers::HybridCache,
    pub(crate) revhybrid: wrappers::ReverseHybridCache,
}

impl Cache {
    /// Creates a new `Cache` for use with this regex.
    ///
    /// The cache returned should only be used for searches for the given
    /// `Regex`. If you want to reuse the cache for another `Regex`, then you
    /// must call [`Cache::reset`] with that `Regex`.
    pub fn new(re: &Regex) -> Cache {
        re.create_cache()
    }

    /// Reset this cache such that it can be used for searching with the given
    /// `Regex` (and only that `Regex`).
    ///
    /// A cache reset permits potentially reusing memory already allocated in
    /// this cache with a different `Regex`.
    ///
    /// # Example
    ///
    /// This shows how to re-purpose a cache for use with a different `Regex`.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{meta::Regex, Match, Input};
    ///
    /// let re1 = Regex::new(r"\w")?;
    /// let re2 = Regex::new(r"\W")?;
    ///
    /// let mut cache = re1.create_cache();
    /// assert_eq!(
    ///     Some(Match::must(0, 0..2)),
    ///     re1.search_with(&mut cache, &Input::new("Δ")),
    /// );
    ///
    /// // Using 'cache' with re2 is not allowed. It may result in panics or
    /// // incorrect results. In order to re-purpose the cache, we must reset
    /// // it with the Regex we'd like to use it with.
    /// //
    /// // Similarly, after this reset, using the cache with 're1' is also not
    /// // allowed.
    /// cache.reset(&re2);
    /// assert_eq!(
    ///     Some(Match::must(0, 0..3)),
    ///     re2.search_with(&mut cache, &Input::new("☃")),
    /// );
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn reset(&mut self, re: &Regex) {
        re.imp.strat.reset_cache(self)
    }

    /// Returns the heap memory usage, in bytes, of this cache.
    ///
    /// This does **not** include the stack size used up by this cache. To
    /// compute that, use `std::mem::size_of::<Cache>()`.
    pub fn memory_usage(&self) -> usize {
        let mut bytes = 0;
        bytes += self.pikevm.memory_usage();
        bytes += self.backtrack.memory_usage();
        bytes += self.onepass.memory_usage();
        bytes += self.hybrid.memory_usage();
        bytes += self.revhybrid.memory_usage();
        bytes
    }
}

/// An object describing the configuration of a `Regex`.
///
/// This configuration only includes options for the
/// non-syntax behavior of a `Regex`, and can be applied via the
/// [`Builder::configure`] method. For configuring the syntax options, see
/// [`util::syntax::Config`](crate::util::syntax::Config).
///
/// # Example: lower the NFA size limit
///
/// In some cases, the default size limit might be too big. The size limit can
/// be lowered, which will prevent large regex patterns from compiling.
///
/// ```
/// # if cfg!(miri) { return Ok(()); } // miri takes too long
/// use regex_automata::meta::Regex;
///
/// let result = Regex::builder()
///     .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10))))
///     // Not even 20KB is enough to build a single large Unicode class!
///     .build(r"\pL");
/// assert!(result.is_err());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Debug, Default)]
pub struct Config {
    // As with other configuration types in this crate, we put all our knobs
    // in options so that we can distinguish between "default" and "not set."
    // This makes it possible to easily combine multiple configurations
    // without default values overwriting explicitly specified values. See the
    // 'overwrite' method.
    //
    // For docs on the fields below, see the corresponding method setters.
    match_kind: Option<MatchKind>,
    utf8_empty: Option<bool>,
    autopre: Option<bool>,
    pre: Option<Option<Prefilter>>,
    which_captures: Option<WhichCaptures>,
    nfa_size_limit: Option<Option<usize>>,
    onepass_size_limit: Option<Option<usize>>,
    hybrid_cache_capacity: Option<usize>,
    hybrid: Option<bool>,
    dfa: Option<bool>,
    dfa_size_limit: Option<Option<usize>>,
    dfa_state_limit: Option<Option<usize>>,
    onepass: Option<bool>,
    backtrack: Option<bool>,
    byte_classes: Option<bool>,
    line_terminator: Option<u8>,
}

impl Config {
    /// Create a new configuration object for a `Regex`.
    pub fn new() -> Config {
        Config::default()
    }

    /// Set the match semantics for a `Regex`.
    ///
    /// The default value is [`MatchKind::LeftmostFirst`].
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{meta::Regex, Match, MatchKind};
    ///
    /// // By default, leftmost-first semantics are used, which
    /// // disambiguates matches at the same position by selecting
    /// // the one that corresponds earlier in the pattern.
    /// let re = Regex::new("sam|samwise")?;
    /// assert_eq!(Some(Match::must(0, 0..3)), re.find("samwise"));
    ///
    /// // But with 'all' semantics, match priority is ignored
    /// // and all match states are included. When coupled with
    /// // a leftmost search, the search will report the last
    /// // possible match.
    /// let re = Regex::builder()
    ///     .configure(Regex::config().match_kind(MatchKind::All))
    ///     .build("sam|samwise")?;
    /// assert_eq!(Some(Match::must(0, 0..7)), re.find("samwise"));
    /// // Beware that this can lead to skipping matches!
    /// // Usually 'all' is used for anchored reverse searches
    /// // only, or for overlapping searches.
    /// assert_eq!(Some(Match::must(0, 4..11)), re.find("sam samwise"));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn match_kind(self, kind: MatchKind) -> Config {
        Config { match_kind: Some(kind), ..self }
    }

    /// Toggles whether empty matches are permitted to occur between the code
    /// units of a UTF-8 encoded codepoint.
    ///
    /// This should generally be enabled when search a `&str` or anything that
    /// you otherwise know is valid UTF-8. It should be disabled in all other
    /// cases. Namely, if the haystack is not valid UTF-8 and this is enabled,
    /// then behavior is unspecified.
    ///
    /// By default, this is enabled.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{meta::Regex, Match};
    ///
    /// let re = Regex::new("")?;
    /// let got: Vec<Match> = re.find_iter("☃").collect();
    /// // Matches only occur at the beginning and end of the snowman.
    /// assert_eq!(got, vec![
    ///     Match::must(0, 0..0),
    ///     Match::must(0, 3..3),
    /// ]);
    ///
    /// let re = Regex::builder()
    ///     .configure(Regex::config().utf8_empty(false))
    ///     .build("")?;
    /// let got: Vec<Match> = re.find_iter("☃").collect();
    /// // Matches now occur at every position!
    /// assert_eq!(got, vec![
    ///     Match::must(0, 0..0),
    ///     Match::must(0, 1..1),
    ///     Match::must(0, 2..2),
    ///     Match::must(0, 3..3),
    /// ]);
    ///
    /// Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn utf8_empty(self, yes: bool) -> Config {
        Config { utf8_empty: Some(yes), ..self }
    }

    /// Toggles whether automatic prefilter support is enabled.
    ///
    /// If this is disabled and [`Config::prefilter`] is not set, then the
    /// meta regex engine will not use any prefilters. This can sometimes
    /// be beneficial in cases where you know (or have measured) that the
    /// prefilter leads to overall worse search performance.
    ///
    /// By default, this is enabled.
    ///
    /// # Example
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{meta::Regex, Match};
    ///
    /// let re = Regex::builder()
    ///     .configure(Regex::config().auto_prefilter(false))
    ///     .build(r"Bruce \w+")?;
    /// let hay = "Hello Bruce Springsteen!";
    /// assert_eq!(Some(Match::must(0, 6..23)), re.find(hay));
    ///
    /// Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn auto_prefilter(self, yes: bool) -> Config {
        Config { autopre: Some(yes), ..self }
    }

    /// Overrides and sets the prefilter to use inside a `Regex`.
    ///
    /// This permits one to forcefully set a prefilter in cases where the
    /// caller knows better than whatever the automatic prefilter logic is
    /// capable of.
    ///
    /// By default, this is set to `None` and an automatic prefilter will be
    /// used if one could be built. (Assuming [`Config::auto_prefilter`] is
    /// enabled, which it is by default.)
    ///
    /// # Example
    ///
    /// This example shows how to set your own prefilter. In the case of a
    /// pattern like `Bruce \w+`, the automatic prefilter is likely to be
    /// constructed in a way that it will look for occurrences of `Bruce `.
    /// In most cases, this is the best choice. But in some cases, it may be
    /// the case that running `memchr` on `B` is the best choice. One can
    /// achieve that behavior by overriding the automatic prefilter logic
    /// and providing a prefilter that just matches `B`.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{
    ///     meta::Regex,
    ///     util::prefilter::Prefilter,
    ///     Match, MatchKind,
    /// };
    ///
    /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["B"])
    ///     .expect("a prefilter");
    /// let re = Regex::builder()
    ///     .configure(Regex::config().prefilter(Some(pre)))
    ///     .build(r"Bruce \w+")?;
    /// let hay = "Hello Bruce Springsteen!";
    /// assert_eq!(Some(Match::must(0, 6..23)), re.find(hay));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// # Example: incorrect prefilters can lead to incorrect results!
    ///
    /// Be warned that setting an incorrect prefilter can lead to missed
    /// matches. So if you use this option, ensure your prefilter can _never_
    /// report false negatives. (A false positive is, on the other hand, quite
    /// okay and generally unavoidable.)
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::{
    ///     meta::Regex,
    ///     util::prefilter::Prefilter,
    ///     Match, MatchKind,
    /// };
    ///
    /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["Z"])
    ///     .expect("a prefilter");
    /// let re = Regex::builder()
    ///     .configure(Regex::config().prefilter(Some(pre)))
    ///     .build(r"Bruce \w+")?;
    /// let hay = "Hello Bruce Springsteen!";
    /// // Oops! No match found, but there should be one!
    /// assert_eq!(None, re.find(hay));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn prefilter(self, pre: Option<Prefilter>) -> Config {
        Config { pre: Some(pre), ..self }
    }

    /// Configures what kinds of groups are compiled as "capturing" in the
    /// underlying regex engine.
    ///
    /// This is set to [`WhichCaptures::All`] by default. Callers may wish to
    /// use [`WhichCaptures::Implicit`] in cases where one wants avoid the
    /// overhead of capture states for explicit groups.
    ///
    /// Note that another approach to avoiding the overhead of capture groups
    /// is by using non-capturing groups in the regex pattern. That is,
    /// `(?:a)` instead of `(a)`. This option is useful when you can't control
    /// the concrete syntax but know that you don't need the underlying capture
    /// states. For example, using `WhichCaptures::Implicit` will behave as if
    /// all explicit capturing groups in the pattern were non-capturing.
    ///
    /// Setting this to `WhichCaptures::None` is usually not the right thing to
    /// do. When no capture states are compiled, some regex engines (such as
    /// the `PikeVM`) won't be able to report match offsets. This will manifest
    /// as no match being found.
    ///
    /// # Example
    ///
    /// This example demonstrates how the results of capture groups can change
    /// based on this option. First we show the default (all capture groups in
    /// the pattern are capturing):
    ///
    /// ```
    /// use regex_automata::{meta::Regex, Match, Span};
    ///
    /// let re = Regex::new(r"foo([0-9]+)bar")?;
    /// let hay = "foo123bar";
    ///
    /// let mut caps = re.create_captures();
    /// re.captures(hay, &mut caps);
    /// assert_eq!(Some(Span::from(0..9)), caps.get_group(0));
    /// assert_eq!(Some(Span::from(3..6)), caps.get_group(1));
    ///
    /// Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// And now we show the behavior when we only include implicit capture
    /// groups. In this case, we can only find the overall match span, but the
    /// spans of any other explicit group don't exist because they are treated
    /// as non-capturing. (In effect, when `WhichCaptures::Implicit` is used,
    /// there is no real point in using [`Regex::captures`] since it will never
    /// be able to report more information than [`Regex::find`].)
    ///
    /// ```
    /// use regex_automata::{
    ///     meta::Regex,
    ///     nfa::thompson::WhichCaptures,
    ///     Match,
    ///     Span,
    /// };
    ///
    /// let re = Regex::builder()
    ///     .configure(Regex::config().which_captures(WhichCaptures::Implicit))
    ///     .build(r"foo([0-9]+)bar")?;
    /// let hay = "foo123bar";
    ///
    /// let mut caps = re.create_captures();
    /// re.captures(hay, &mut caps);
    /// assert_eq!(Some(Span::from(0..9)), caps.get_group(0));
    /// assert_eq!(None, caps.get_group(1));
    ///
    /// Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn which_captures(mut self, which_captures: WhichCaptures) -> Config {
        self.which_captures = Some(which_captures);
        self
    }

    /// Sets the size limit, in bytes, to enforce on the construction of every
    /// NFA build by the meta regex engine.
    ///
    /// Setting it to `None` disables the limit. This is not recommended if
    /// you're compiling untrusted patterns.
    ///
    /// Note that this limit is applied to _each_ NFA built, and if any of
    /// them exceed the limit, then construction will fail. This limit does
    /// _not_ correspond to the total memory used by all NFAs in the meta regex
    /// engine.
    ///
    /// This defaults to some reasonable number that permits most reasonable
    /// patterns.
    ///
    /// # Example
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::meta::Regex;
    ///
    /// let result = Regex::builder()
    ///     .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10))))
    ///     // Not even 20KB is enough to build a single large Unicode class!
    ///     .build(r"\pL");
    /// assert!(result.is_err());
    ///
    /// // But notice that building such a regex with the exact same limit
    /// // can succeed depending on other aspects of the configuration. For
    /// // example, a single *forward* NFA will (at time of writing) fit into
    /// // the 20KB limit, but a *reverse* NFA of the same pattern will not.
    /// // So if one configures a meta regex such that a reverse NFA is never
    /// // needed and thus never built, then the 20KB limit will be enough for
    /// // a pattern like \pL!
    /// let result = Regex::builder()
    ///     .configure(Regex::config()
    ///         .nfa_size_limit(Some(20 * (1<<10)))
    ///         // The DFAs are the only thing that (currently) need a reverse
    ///         // NFA. So if both are disabled, the meta regex engine will
    ///         // skip building the reverse NFA. Note that this isn't an API
    ///         // guarantee. A future semver compatible version may introduce
    ///         // new use cases for a reverse NFA.
    ///         .hybrid(false)
    ///         .dfa(false)
    ///     )
    ///     // Not even 20KB is enough to build a single large Unicode class!
    ///     .build(r"\pL");
    /// assert!(result.is_ok());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn nfa_size_limit(self, limit: Option<usize>) -> Config {
        Config { nfa_size_limit: Some(limit), ..self }
    }

    /// Sets the size limit, in bytes, for the one-pass DFA.
    ///
    /// Setting it to `None` disables the limit. Disabling the limit is
    /// strongly discouraged when compiling untrusted patterns. Even if the
    /// patterns are trusted, it still may not be a good idea, since a one-pass
    /// DFA can use a lot of memory. With that said, as the size of a regex
    /// increases, the likelihood of it being one-pass likely decreases.
    ///
    /// This defaults to some reasonable number that permits most reasonable
    /// one-pass patterns.
    ///
    /// # Example
    ///
    /// This shows how to set the one-pass DFA size limit. Note that since
    /// a one-pass DFA is an optional component of the meta regex engine,
    /// this size limit only impacts what is built internally and will never
    /// determine whether a `Regex` itself fails to build.
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::meta::Regex;
    ///
    /// let result = Regex::builder()
    ///     .configure(Regex::config().onepass_size_limit(Some(2 * (1<<20))))
    ///     .build(r"\pL{5}");
    /// assert!(result.is_ok());
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn onepass_size_limit(self, limit: Option<usize>) -> Config {
        Config { onepass_size_limit: Some(limit), ..self }
    }

    /// Set the cache capacity, in bytes, for the lazy DFA.
    ///
    /// The cache capacity of the lazy DFA determines approximately how much
    /// heap memory it is allowed to use to store its state transitions. The
    /// state transitions are computed at search time, and if the cache fills
    /// up it, it is cleared. At this point, any previously generated state
    /// transitions are lost and are re-generated if they're needed again.
    ///
    /// This sort of cache filling and clearing works quite well _so long as
    /// cache clearing happens infrequently_. If it happens too often, then the
    /// meta regex engine will stop using the lazy DFA and switch over to a
    /// different regex engine.
    ///
    /// In cases where the cache is cleared too often, it may be possible to
    /// give the cache more space and reduce (or eliminate) how often it is
    /// cleared. Similarly, sometimes a regex is so big that the lazy DFA isn't
    /// used at all if its cache capacity isn't big enough.
    ///
    /// The capacity set here is a _limit_ on how much memory is used. The
    /// actual memory used is only allocated as it's needed.
    ///
    /// Determining the right value for this is a little tricky and will likely
    /// required some profiling. Enabling the `logging` feature and setting the
    /// log level to `trace` will also tell you how often the cache is being
    /// cleared.
    ///
    /// # Example
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::meta::Regex;
    ///
    /// let result = Regex::builder()
    ///     .configure(Regex::config().hybrid_cache_capacity(20 * (1<<20)))
    ///     .build(r"\pL{5}");
    /// assert!(result.is_ok());
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn hybrid_cache_capacity(self, limit: usize) -> Config {
        Config { hybrid_cache_capacity: Some(limit), ..self }
    }

    /// Sets the size limit, in bytes, for heap memory used for a fully
    /// compiled DFA.
    ///
    /// **NOTE:** If you increase this, you'll likely also need to increase
    /// [`Config::dfa_state_limit`].
    ///
    /// In contrast to the lazy DFA, building a full DFA requires computing
    /// all of its state transitions up front. This can be a very expensive
    /// process, and runs in worst case `2^n` time and space (where `n` is
    /// proportional to the size of the regex). However, a full DFA unlocks
    /// some additional optimization opportunities.
    ///
    /// Because full DFAs can be so expensive, the default limits for them are
    /// incredibly small. Generally speaking, if your regex is moderately big
    /// or if you're using Unicode features (`\w` is Unicode-aware by default
    /// for example), then you can expect that the meta regex engine won't even
    /// attempt to build a DFA for it.
    ///
    /// If this and [`Config::dfa_state_limit`] are set to `None`, then the
    /// meta regex will not use any sort of limits when deciding whether to
    /// build a DFA. This in turn makes construction of a `Regex` take
    /// worst case exponential time and space. Even short patterns can result
    /// in huge space blow ups. So it is strongly recommended to keep some kind
    /// of limit set!
    ///
    /// The default is set to a small number that permits some simple regexes
    /// to get compiled into DFAs in reasonable time.
    ///
    /// # Example
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::meta::Regex;
    ///
    /// let result = Regex::builder()
    ///     // 100MB is much bigger than the default.
    ///     .configure(Regex::config()
    ///         .dfa_size_limit(Some(100 * (1<<20)))
    ///         // We don't care about size too much here, so just
    ///         // remove the NFA state limit altogether.
    ///         .dfa_state_limit(None))
    ///     .build(r"\pL{5}");
    /// assert!(result.is_ok());
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn dfa_size_limit(self, limit: Option<usize>) -> Config {
        Config { dfa_size_limit: Some(limit), ..self }
    }

    /// Sets a limit on the total number of NFA states, beyond which, a full
    /// DFA is not attempted to be compiled.
    ///
    /// This limit works in concert with [`Config::dfa_size_limit`]. Namely,
    /// where as `Config::dfa_size_limit` is applied by attempting to construct
    /// a DFA, this limit is used to avoid the attempt in the first place. This
    /// is useful to avoid hefty initialization costs associated with building
    /// a DFA for cases where it is obvious the DFA will ultimately be too big.
    ///
    /// By default, this is set to a very small number.
    ///
    /// # Example
    ///
    /// ```
    /// # if cfg!(miri) { return Ok(()); } // miri takes too long
    /// use regex_automata::meta::Regex;
    ///
    /// let result = Regex::builder()
    ///     .configure(Regex::config()
    ///         // Sometimes the default state limit rejects DFAs even
    ///         // if they would fit in the size limit. Here, we disable
    ///         // the check on the number of NFA states and just rely on
    ///         // the size limit.
    ///         .dfa_state_limit(None))
    ///     .build(r"(?-u)\w{30}");
    /// assert!(result.is_ok());
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn dfa_state_limit(self, limit: Option<usize>) -> Config {
        Config { dfa_state_limit: Some(limit), ..self }
    }

    /// Whether to attempt to shrink the size of the alphabet for the regex
    /// pattern or not. When enabled, the alphabet is shrunk into a set of
    /// equivalence classes, where every byte in the same equivalence class
    /// cannot discriminate between a match or non-match.
    ///
    /// **WARNING:** This is only useful for debugging DFAs. Disabling this
    /// does not yield any speed advantages. Indeed, disabling it can result
    /// in much higher memory usage. Disabling byte classes is useful for
    /// debugging the actual generated transitions because it lets one see the
    /// transitions defined on actual bytes instead of the equivalence classes.
    ///
    /// This option is enabled by default and should never be disabled unless
    /// one is debugging the meta regex engine's internals.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{meta::Regex, Match};
    ///
    /// let re = Regex::builder()
    ///     .configure(Regex::config().byte_classes(false))
    ///     .build(r"[a-z]+")?;
    /// let hay = "!!quux!!";
    /// assert_eq!(Some(Match::must(0, 2..6)), re.find(hay));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn byte_classes(self, yes: bool) -> Config {
        Config { byte_classes: Some(yes), ..self }
    }

    /// Set the line terminator to be used by the `^` and `$` anchors in
    /// multi-line mode.
    ///
    /// This option has no effect when CRLF mode is enabled. That is,
    /// regardless of this setting, `(?Rm:^)` and `(?Rm:$)` will always treat
    /// `\r` and `\n` as line terminators (and will never match between a `\r`
    /// and a `\n`).
    ///
    /// By default, `\n` is the line terminator.
    ///
    /// **Warning**: This does not change the behavior of `.`. To do that,
    /// you'll need to configure the syntax option
    /// [`syntax::Config::line_terminator`](crate::util::syntax::Config::line_terminator)
    /// in addition to this. Otherwise, `.` will continue to match any
    /// character other than `\n`.
    ///
    /// # Example
    ///
    /// ```
    /// use regex_automata::{meta::Regex, util::syntax, Match};
    ///
    /// let re = Regex::builder()
    ///     .syntax(syntax::Config::new().multi_line(true))
    ///     .configure(Regex::config().line_terminator(b'\x00'))
    ///     .build(r"^foo$")?;
    /// let hay = "\x00foo\x00";
    /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn line_terminator(self, byte: u8) -> Config {
        Config { line_terminator: Some(byte), ..self }
    }

    /// Toggle whether the hybrid NFA/DFA (also known as the "lazy DFA") should
    /// be available for use by the meta regex engine.
    ///
    /// Enabling this does not necessarily mean that the lazy DFA will
    /// definitely be used. It just means that it will be _available_ for use
    /// if the meta regex engine thinks it will be useful.
    ///
    /// When the `hybrid` crate feature is enabled, then this is enabled by
    /// default. Otherwise, if the crate feature is disabled, then this is
    /// always disabled, regardless of its setting by the caller.
    pub fn hybrid(self, yes: bool) -> Config {
        Config { hybrid: Some(yes), ..self }
    }

    /// Toggle whether a fully compiled DFA should be available for use by the
    /// meta regex engine.
    ///
    /// Enabling this does not necessarily mean that a DFA will definitely be
    /// used. It just means that it will be _available_ for use if the meta
    /// regex engine thinks it will be useful.
    ///
    /// When the `dfa-build` crate feature is enabled, then this is enabled by
    /// default. Otherwise, if the crate feature is disabled, then this is
    /// always disabled, regardless of its setting by the caller.
    pub fn dfa(self, yes: bool) -> Config {
        Config { dfa: Some(yes), ..self }
    }

    /// Toggle whether a one-pass DFA should be available for use by the meta
    /// regex engine.
    ///
    /// Enabling this does not necessarily mean that a one-pass DFA will
    /// definitely be used. It just means that it will be _available_ for
    /// use if the meta regex engine thinks it will be useful. (Indeed, a
    /// one-pass DFA can only be used when the regex is one-pass. See the
    /// [`dfa::onepass`](crate::dfa::onepass) module for more details.)
    ///
    /// When the `dfa-onepass` crate feature is enabled, then this is enabled
    /// by default. Otherwise, if the crate feature is disabled, then this is
    /// always disabled, regardless of its setting by the caller.
    pub fn onepass(self, yes: bool) -> Config {
        Config { onepass: Some(yes), ..self }
    }

    /// Toggle whether a bounded backtracking regex engine should be available
    /// for use by the meta regex engine.
    ///
    /// Enabling this does not necessarily mean that a bounded backtracker will
    /// definitely be used. It just means that it will be _available_ for use
    /// if the meta regex engine thinks it will be useful.
    ///
    /// When the `nfa-backtrack` crate feature is enabled, then this is enabled
    /// by default. Otherwise, if the crate feature is disabled, then this is
    /// always disabled, regardless of its setting by the caller.
    pub fn backtrack(self, yes: bool) -> Config {
        Config { backtrack: Some(yes), ..self }
    }

    /// Returns the match kind on this configuration, as set by
    /// [`Config::match_kind`].
    ///
    /// If it was not explicitly set, then a default value is returned.
    pub fn get_match_kind(&self) -> MatchKind {
        self.match_kind.unwrap_or(MatchKind::LeftmostFirst)
    }

    /// Returns whether empty matches must fall on valid UTF-8 boundaries, as
    /// set by [`Config::utf8_empty`].
    ///
    /// If it was not explicitly set, then a default value is returned.
    pub fn get_utf8_empty(&self) -> bool {
        self.utf8_empty.unwrap_or(true)
    }

    /// Returns whether automatic prefilters are enabled, as set by
    /// [`Config::auto_prefilter`].
    ///
    /// If it was not explicitly set, then a default value is returned.
    pub fn get_auto_prefilter(&self) -> bool {
        self.autopre.unwrap_or(true)
    }

    /// Returns a manually set prefilter, if one was set by
    /// [`Config::prefilter`].
    ///
    /// If it was not explicitly set, then a default value is returned.
    pub fn get_prefilter(&self) -> Option<&Prefilter> {
        self.pre.as_ref().unwrap_or(&None).as_ref()
    }

    /// Returns the capture configuration, as set by
    /// [`Config::which_captures`].
    ///
    /// If it was not explicitly set, then a default value is returned.
    pub fn get_which_captures(&self) -> WhichCaptures {
        self.which_captures.unwrap_or(WhichCaptures::All)
    }

    /// Returns NFA size limit, as set by [`Config::nfa_size_limit`].
    ///
    /// If it was not explicitly set, then a default value is returned.
    pub fn get_nfa_size_limit(&self) -> Option<usize> {
        self.nfa_size_limit.unwrap_or(Some(10 * (1 << 20)))
    }

    /// Returns one-pass DFA size limit, as set by
    /// [`Config::onepass_size_limit`].
    ///
    /// If it was not explicitly set, then a default value is returned.
    pub fn get_onepass_size_limit(&self) -> Option<usize> {
        self.onepass_size_limit.unwrap_or(Some(1 * (1 << 20)))
    }

    /// Returns hybrid NFA/DFA cache capacity, as set by
    /// [`Config::hybrid_cache_capacity`].
    ///
    /// If it was not explicitly set, then a default value is returned.
    pub fn get_hybrid_cache_capacity(&self) -> usize {
        self.hybrid_cache_capacity.unwrap_or(2 * (1 << 20))
    }

    /// Returns DFA size limit, as set by [`Config::dfa_size_limit`].
    ///
    /// If it was not explicitly set, then a default value is returned.
    pub fn get_dfa_size_limit(&self) -> Option<usize> {
        // The default for this is VERY small because building a full DFA is
        // ridiculously costly. But for regexes that are very small, it can be
        // beneficial to use a full DFA. In particular, a full DFA can enable
        // additional optimizations via something called "accelerated" states.
        // Namely, when there's a state with only a few outgoing transitions,
        // we can temporary suspend walking the transition table and use memchr
        // for just those outgoing transitions to skip ahead very quickly.
        //
        // Generally speaking, if Unicode is enabled in your regex and you're
        // using some kind of Unicode feature, then it's going to blow this
        // size limit. Moreover, Unicode tends to defeat the "accelerated"
        // state optimization too, so it's a double whammy.
        //
        // We also use a limit on the number of NFA states to avoid even
        // starting the DFA construction process. Namely, DFA construction
        // itself could make lots of initial allocs proportional to the size
        // of the NFA, and if the NFA is large, it doesn't make sense to pay
        // that cost if we know it's likely to be blown by a large margin.
        self.dfa_size_limit.unwrap_or(Some(40 * (1 << 10)))
    }

    /// Returns DFA size limit in terms of the number of states in the NFA, as
    /// set by [`Config::dfa_state_limit`].
    ///
    /// If it was not explicitly set, then a default value is returned.
    pub fn get_dfa_state_limit(&self) -> Option<usize> {
        // Again, as with the size limit, we keep this very small.
        self.dfa_state_limit.unwrap_or(Some(30))
    }

    /// Returns whether byte classes are enabled, as set by
    /// [`Config::byte_classes`].
    ///
    /// If it was not explicitly set, then a default value is returned.
    pub fn get_byte_classes(&self) -> bool {
        self.byte_classes.unwrap_or(true)
    }

    /// Returns the line terminator for this configuration, as set by
    /// [`Config::line_terminator`].
    ///
    /// If it was not explicitly set, then a default value is returned.
    pub fn get_line_terminator(&self) -> u8 {
        self.line_terminator.unwrap_or(b'\n')
    }

    /// Returns whether the hybrid NFA/DFA regex engine may be used, as set by
    /// [`Config::hybrid`].
    ///
    /// If it was not explicitly set, then a default value is returned.
    pub fn get_hybrid(&self) -> bool {
        #[cfg(feature = "hybrid")]
        {
            self.hybrid.unwrap_or(true)
        }
        #[cfg(not(feature = "hybrid"))]
        {
            false
        }
    }

    /// Returns whether the DFA regex engine may be used, as set by
    /// [`Config::dfa`].
    ///
    /// If it was not explicitly set, then a default value is returned.
    pub fn get_dfa(&self) -> bool {
        #[cfg(feature = "dfa-build")]
        {
            self.dfa.unwrap_or(true)
        }
        #[cfg(not(feature = "dfa-build"))]
        {
            false
        }
    }

    /// Returns whether the one-pass DFA regex engine may be used, as set by
    /// [`Config::onepass`].
    ///
    /// If it was not explicitly set, then a default value is returned.
    pub fn get_onepass(&self) -> bool {
        #[cfg(feature = "dfa-onepass")]
        {
            self.onepass.unwrap_or(true)
        }
        #[cfg(not(feature = "dfa-onepass"))]
        {
            false
        }
    }

    /// Returns whether the bounded backtracking regex engine may be used, as
    /// set by [`Config::backtrack`].
    ///
    /// If it was not explicitly set, then a default value is returned.
    pub fn get_backtrack(&self) -> bool {
        #[cfg(feature = "nfa-backtrack")]
        {
            self.backtrack.unwrap_or(true)
        }
        #[cfg(not(feature = "nfa-backtrack"))]
        {
            false
        }
    }

    /// Overwrite the default configuration such that the options in `o` are
    /// always used. If an option in `o` is not set, then the corresponding
    /// option in `self` is used. If it's not set in `self` either, then it
    /// remains not set.
    pub(crate) fn overwrite(&self, o: Config) -> Config {
        Config {
            match_kind: o.match_kind.or(self.match_kind),
            utf8_empty: o.utf8_empty.or(self.utf8_empty),
            autopre: o.autopre.or(self.autopre),
            pre: o.pre.or_else(|| self.pre.clone()),
            which_captures: o.which_captures.or(self.which_captures),
            nfa_size_limit: o.nfa_size_limit.or(self.nfa_size_limit),
            onepass_size_limit: o
                .onepass_size_limit
                .or(self.onepass_size_limit),
            hybrid_cache_capacity: o
                .hybrid_cache_capacity
                .or(self.hybrid_cache_capacity),
            hybrid: o.hybrid.or(self.hybrid),
            dfa: o.dfa.or(self.dfa),
            dfa_size_limit: o.dfa_size_limit.or(self.dfa_size_limit),
            dfa_state_limit: o.dfa_state_limit.or(self.dfa_state_limit),
            onepass: o.onepass.or(self.onepass),
            backtrack: o.backtrack.or(self.backtrack),
            byte_classes: o.byte_classes.or(self.byte_classes),
            line_terminator: o.line_terminator.or(self.line_terminator),
        }
    }
}

/// A builder for configuring and constructing a `Regex`.
///
/// The builder permits configuring two different aspects of a `Regex`:
///
/// * [`Builder::configure`] will set high-level configuration options as
/// described by a [`Config`].
/// * [`Builder::syntax`] will set the syntax level configuration options
/// as described by a [`util::syntax::Config`](crate::util::syntax::Config).
/// This only applies when building a `Regex` from pattern strings.
///
/// Once configured, the builder can then be used to construct a `Regex` from
/// one of 4 different inputs:
///
/// * [`Builder::build`] creates a regex from a single pattern string.
/// * [`Builder::build_many`] creates a regex from many pattern strings.
/// * [`Builder::build_from_hir`] creates a regex from a
/// [`regex-syntax::Hir`](Hir) expression.
/// * [`Builder::build_many_from_hir`] creates a regex from many
/// [`regex-syntax::Hir`](Hir) expressions.
///
/// The latter two methods in particular provide a way to construct a fully
/// feature regular expression matcher directly from an `Hir` expression
/// without having to first convert it to a string. (This is in contrast to the
/// top-level `regex` crate which intentionally provides no such API in order
/// to avoid making `regex-syntax` a public dependency.)
///
/// As a convenience, this builder may be created via [`Regex::builder`], which
/// may help avoid an extra import.
///
/// # Example: change the line terminator
///
/// This example shows how to enable multi-line mode by default and change the
/// line terminator to the NUL byte:
///
/// ```
/// use regex_automata::{meta::Regex, util::syntax, Match};
///
/// let re = Regex::builder()
///     .syntax(syntax::Config::new().multi_line(true))
///     .configure(Regex::config().line_terminator(b'\x00'))
///     .build(r"^foo$")?;
/// let hay = "\x00foo\x00";
/// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: disable UTF-8 requirement
///
/// By default, regex patterns are required to match UTF-8. This includes
/// regex patterns that can produce matches of length zero. In the case of an
/// empty match, by default, matches will not appear between the code units of
/// a UTF-8 encoded codepoint.
///
/// However, it can be useful to disable this requirement, particularly if
/// you're searching things like `&[u8]` that are not known to be valid UTF-8.
///
/// ```
/// use regex_automata::{meta::Regex, util::syntax, Match};
///
/// let mut builder = Regex::builder();
/// // Disables the requirement that non-empty matches match UTF-8.
/// builder.syntax(syntax::Config::new().utf8(false));
/// // Disables the requirement that empty matches match UTF-8 boundaries.
/// builder.configure(Regex::config().utf8_empty(false));
///
/// // We can match raw bytes via \xZZ syntax, but we need to disable
/// // Unicode mode to do that. We could disable it everywhere, or just
/// // selectively, as shown here.
/// let re = builder.build(r"(?-u:\xFF)foo(?-u:\xFF)")?;
/// let hay = b"\xFFfoo\xFF";
/// assert_eq!(Some(Match::must(0, 0..5)), re.find(hay));
///
/// // We can also match between code units.
/// let re = builder.build(r"")?;
/// let hay = "☃";
/// assert_eq!(re.find_iter(hay).collect::<Vec<Match>>(), vec![
///     Match::must(0, 0..0),
///     Match::must(0, 1..1),
///     Match::must(0, 2..2),
///     Match::must(0, 3..3),
/// ]);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Debug)]
pub struct Builder {
    config: Config,
    ast: ast::parse::ParserBuilder,
    hir: hir::translate::TranslatorBuilder,
}

impl Builder {
    /// Creates a new builder for configuring and constructing a [`Regex`].
    pub fn new() -> Builder {
        Builder {
            config: Config::default(),
            ast: ast::parse::ParserBuilder::new(),
            hir: hir::translate::TranslatorBuilder::new(),
        }
    }

    /// Builds a `Regex` from a single pattern string.
    ///
    /// If there was a problem parsing the pattern or a problem turning it into
    /// a regex matcher, then an error is returned.
    ///
    /// # Example
    ///
    /// This example shows how to configure syntax options.
    ///
    /// ```
    /// use regex_automata::{meta::Regex, util::syntax, Match};
    ///
    /// let re = Regex::builder()
    ///     .syntax(syntax::Config::new().crlf(true).multi_line(true))
    ///     .build(r"^foo$")?;
    /// let hay = "\r\nfoo\r\n";
    /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn build(&self, pattern: &str) -> Result<Regex, BuildError> {
        self.build_many(&[pattern])
    }

    /// Builds a `Regex` from many pattern strings.
    ///
    /// If there was a problem parsing any of the patterns or a problem turning
    /// them into a regex matcher, then an error is returned.
    ///
    /// # Example: finding the pattern that caused an error
    ///
    /// When a syntax error occurs, it is possible to ask which pattern
    /// caused the syntax error.
    ///
    /// ```
    /// use regex_automata::{meta::Regex, PatternID};
    ///
    /// let err = Regex::builder()
    ///     .build_many(&["a", "b", r"\p{Foo}", "c"])
    ///     .unwrap_err();
    /// assert_eq!(Some(PatternID::must(2)), err.pattern());
    /// ```
    ///
    /// # Example: zero patterns is valid
    ///
    /// Building a regex with zero patterns results in a regex that never
    /// matches anything. Because this routine is generic, passing an empty
    /// slice usually requires a turbo-fish (or something else to help type
    /// inference).
    ///
    /// ```
    /// use regex_automata::{meta::Regex, util::syntax, Match};
    ///
    /// let re = Regex::builder()
    ///     .build_many::<&str>(&[])?;
    /// assert_eq!(None, re.find(""));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn build_many<P: AsRef<str>>(
        &self,
        patterns: &[P],
    ) -> Result<Regex, BuildError> {
        use crate::util::primitives::IteratorIndexExt;
        log! {
            debug!("building meta regex with {} patterns:", patterns.len());
            for (pid, p) in patterns.iter().with_pattern_ids() {
                let p = p.as_ref();
                // We might split a grapheme with this truncation logic, but
                // that's fine. We at least avoid splitting a codepoint.
                let maxoff = p
                    .char_indices()
                    .map(|(i, ch)| i + ch.len_utf8())
                    .take(1000)
                    .last()
                    .unwrap_or(0);
                if maxoff < p.len() {
                    debug!("{:?}: {}[... snip ...]", pid, &p[..maxoff]);
                } else {
                    debug!("{:?}: {}", pid, p);
                }
            }
        }
        let (mut asts, mut hirs) = (vec![], vec![]);
        for (pid, p) in patterns.iter().with_pattern_ids() {
            let ast = self
                .ast
                .build()
                .parse(p.as_ref())
                .map_err(|err| BuildError::ast(pid, err))?;
            asts.push(ast);
        }
        for ((pid, p), ast) in
            patterns.iter().with_pattern_ids().zip(asts.iter())
        {
            let hir = self
                .hir
                .build()
                .translate(p.as_ref(), ast)
                .map_err(|err| BuildError::hir(pid, err))?;
            hirs.push(hir);
        }
        self.build_many_from_hir(&hirs)
    }

    /// Builds a `Regex` directly from an `Hir` expression.
    ///
    /// This is useful if you needed to parse a pattern string into an `Hir`
    /// for other reasons (such as analysis or transformations). This routine
    /// permits building a `Regex` directly from the `Hir` expression instead
    /// of first converting the `Hir` back to a pattern string.
    ///
    /// When using this method, any options set via [`Builder::syntax`] are
    /// ignored. Namely, the syntax options only apply when parsing a pattern
    /// string, which isn't relevant here.
    ///
    /// If there was a problem building the underlying regex matcher for the
    /// given `Hir`, then an error is returned.
    ///
    /// # Example
    ///
    /// This example shows how one can hand-construct an `Hir` expression and
    /// build a regex from it without doing any parsing at all.
    ///
    /// ```
    /// use {
    ///     regex_automata::{meta::Regex, Match},
    ///     regex_syntax::hir::{Hir, Look},
    /// };
    ///
    /// // (?Rm)^foo$
    /// let hir = Hir::concat(vec![
    ///     Hir::look(Look::StartCRLF),
    ///     Hir::literal("foo".as_bytes()),
    ///     Hir::look(Look::EndCRLF),
    /// ]);
    /// let re = Regex::builder()
    ///     .build_from_hir(&hir)?;
    /// let hay = "\r\nfoo\r\n";
    /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay));
    ///
    /// Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn build_from_hir(&self, hir: &Hir) -> Result<Regex, BuildError> {
        self.build_many_from_hir(&[hir])
    }

    /// Builds a `Regex` directly from many `Hir` expressions.
    ///
    /// This is useful if you needed to parse pattern strings into `Hir`
    /// expressions for other reasons (such as analysis or transformations).
    /// This routine permits building a `Regex` directly from the `Hir`
    /// expressions instead of first converting the `Hir` expressions back to
    /// pattern strings.
    ///
    /// When using this method, any options set via [`Builder::syntax`] are
    /// ignored. Namely, the syntax options only apply when parsing a pattern
    /// string, which isn't relevant here.
    ///
    /// If there was a problem building the underlying regex matcher for the
    /// given `Hir` expressions, then an error is returned.
    ///
    /// Note that unlike [`Builder::build_many`], this can only fail as a
    /// result of building the underlying matcher. In that case, there is
    /// no single `Hir` expression that can be isolated as a reason for the
    /// failure. So if this routine fails, it's not possible to determine which
    /// `Hir` expression caused the failure.
    ///
    /// # Example
    ///
    /// This example shows how one can hand-construct multiple `Hir`
    /// expressions and build a single regex from them without doing any
    /// parsing at all.
    ///
    /// ```
    /// use {
    ///     regex_automata::{meta::Regex, Match},
    ///     regex_syntax::hir::{Hir, Look},
    /// };
    ///
    /// // (?Rm)^foo$
    /// let hir1 = Hir::concat(vec![
    ///     Hir::look(Look::StartCRLF),
    ///     Hir::literal("foo".as_bytes()),
    ///     Hir::look(Look::EndCRLF),
    /// ]);
    /// // (?Rm)^bar$
    /// let hir2 = Hir::concat(vec![
    ///     Hir::look(Look::StartCRLF),
    ///     Hir::literal("bar".as_bytes()),
    ///     Hir::look(Look::EndCRLF),
    /// ]);
    /// let re = Regex::builder()
    ///     .build_many_from_hir(&[&hir1, &hir2])?;
    /// let hay = "\r\nfoo\r\nbar";
    /// let got: Vec<Match> = re.find_iter(hay).collect();
    /// let expected = vec![
    ///     Match::must(0, 2..5),
    ///     Match::must(1, 7..10),
    /// ];
    /// assert_eq!(expected, got);
    ///
    /// Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn build_many_from_hir<H: Borrow<Hir>>(
        &self,
        hirs: &[H],
    ) -> Result<Regex, BuildError> {
        let config = self.config.clone();
        // We collect the HIRs into a vec so we can write internal routines
        // with '&[&Hir]'. i.e., Don't use generics everywhere to keep code
        // bloat down..
        let hirs: Vec<&Hir> = hirs.iter().map(|hir| hir.borrow()).collect();
        let info = RegexInfo::new(config, &hirs);
        let strat = strategy::new(&info, &hirs)?;
        let pool = {
            let strat = Arc::clone(&strat);
            let create: CachePoolFn = Box::new(move || strat.create_cache());
            Pool::new(create)
        };
        Ok(Regex { imp: Arc::new(RegexI { strat, info }), pool })
    }

    /// Configure the behavior of a `Regex`.
    ///
    /// This configuration controls non-syntax options related to the behavior
    /// of a `Regex`. This includes things like whether empty matches can split
    /// a codepoint, prefilters, line terminators and a long list of options
    /// for configuring which regex engines the meta regex engine will be able
    /// to use internally.
    ///
    /// # Example
    ///
    /// This example shows how to disable UTF-8 empty mode. This will permit
    /// empty matches to occur between the UTF-8 encoding of a codepoint.
    ///
    /// ```
    /// use regex_automata::{meta::Regex, Match};
    ///
    /// let re = Regex::new("")?;
    /// let got: Vec<Match> = re.find_iter("☃").collect();
    /// // Matches only occur at the beginning and end of the snowman.
    /// assert_eq!(got, vec![
    ///     Match::must(0, 0..0),
    ///     Match::must(0, 3..3),
    /// ]);
    ///
    /// let re = Regex::builder()
    ///     .configure(Regex::config().utf8_empty(false))
    ///     .build("")?;
    /// let got: Vec<Match> = re.find_iter("☃").collect();
    /// // Matches now occur at every position!
    /// assert_eq!(got, vec![
    ///     Match::must(0, 0..0),
    ///     Match::must(0, 1..1),
    ///     Match::must(0, 2..2),
    ///     Match::must(0, 3..3),
    /// ]);
    ///
    /// Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn configure(&mut self, config: Config) -> &mut Builder {
        self.config = self.config.overwrite(config);
        self
    }

    /// Configure the syntax options when parsing a pattern string while
    /// building a `Regex`.
    ///
    /// These options _only_ apply when [`Builder::build`] or [`Builder::build_many`]
    /// are used. The other build methods accept `Hir` values, which have
    /// already been parsed.
    ///
    /// # Example
    ///
    /// This example shows how to enable case insensitive mode.
    ///
    /// ```
    /// use regex_automata::{meta::Regex, util::syntax, Match};
    ///
    /// let re = Regex::builder()
    ///     .syntax(syntax::Config::new().case_insensitive(true))
    ///     .build(r"δ")?;
    /// assert_eq!(Some(Match::must(0, 0..2)), re.find(r"Δ"));
    ///
    /// Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn syntax(
        &mut self,
        config: crate::util::syntax::Config,
    ) -> &mut Builder {
        config.apply_ast(&mut self.ast);
        config.apply_hir(&mut self.hir);
        self
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    // I found this in the course of building out the benchmark suite for
    // rebar.
    #[test]
    fn regression_suffix_literal_count() {
        let _ = env_logger::try_init();

        let re = Regex::new(r"[a-zA-Z]+ing").unwrap();
        assert_eq!(1, re.find_iter("tingling").count());
    }
}