1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
/*!
An implementation of the [Two-Way substring search algorithm][two-way].
[`Finder`] can be built for forward searches, while [`FinderRev`] can be built
for reverse searches.
Two-Way makes for a nice general purpose substring search algorithm because of
its time and space complexity properties. It also performs well in practice.
Namely, with `m = len(needle)` and `n = len(haystack)`, Two-Way takes `O(m)`
time to create a finder, `O(1)` space and `O(n)` search time. In other words,
the preprocessing step is quick, doesn't require any heap memory and the worst
case search time is guaranteed to be linear in the haystack regardless of the
size of the needle.
While vector algorithms will usually beat Two-Way handedly, vector algorithms
also usually have pathological or edge cases that are better handled by Two-Way.
Moreover, not all targets support vector algorithms or implementations for them
simply may not exist yet.
Two-Way can be found in the `memmem` implementations in at least [GNU libc] and
[musl].
[two-way]: https://en.wikipedia.org/wiki/Two-way_string-matching_algorithm
[GNU libc]: https://www.gnu.org/software/libc/
[musl]: https://www.musl-libc.org/
*/
use core::cmp;
use crate::{
arch::all::{is_prefix, is_suffix},
memmem::Pre,
};
/// A forward substring searcher that uses the Two-Way algorithm.
#[derive(Clone, Copy, Debug)]
pub struct Finder(TwoWay);
/// A reverse substring searcher that uses the Two-Way algorithm.
#[derive(Clone, Copy, Debug)]
pub struct FinderRev(TwoWay);
/// An implementation of the TwoWay substring search algorithm.
///
/// This searcher supports forward and reverse search, although not
/// simultaneously. It runs in `O(n + m)` time and `O(1)` space, where
/// `n ~ len(needle)` and `m ~ len(haystack)`.
///
/// The implementation here roughly matches that which was developed by
/// Crochemore and Perrin in their 1991 paper "Two-way string-matching." The
/// changes in this implementation are 1) the use of zero-based indices, 2) a
/// heuristic skip table based on the last byte (borrowed from Rust's standard
/// library) and 3) the addition of heuristics for a fast skip loop. For (3),
/// callers can pass any kind of prefilter they want, but usually it's one
/// based on a heuristic that uses an approximate background frequency of bytes
/// to choose rare bytes to quickly look for candidate match positions. Note
/// though that currently, this prefilter functionality is not exposed directly
/// in the public API. (File an issue if you want it and provide a use case
/// please.)
///
/// The heuristic for fast skipping is automatically shut off if it's
/// detected to be ineffective at search time. Generally, this only occurs in
/// pathological cases. But this is generally necessary in order to preserve
/// a `O(n + m)` time bound.
///
/// The code below is fairly complex and not obviously correct at all. It's
/// likely necessary to read the Two-Way paper cited above in order to fully
/// grok this code. The essence of it is:
///
/// 1. Do something to detect a "critical" position in the needle.
/// 2. For the current position in the haystack, look if `needle[critical..]`
/// matches at that position.
/// 3. If so, look if `needle[..critical]` matches.
/// 4. If a mismatch occurs, shift the search by some amount based on the
/// critical position and a pre-computed shift.
///
/// This type is wrapped in the forward and reverse finders that expose
/// consistent forward or reverse APIs.
#[derive(Clone, Copy, Debug)]
struct TwoWay {
/// A small bitset used as a quick prefilter (in addition to any prefilter
/// given by the caller). Namely, a bit `i` is set if and only if `b%64==i`
/// for any `b == needle[i]`.
///
/// When used as a prefilter, if the last byte at the current candidate
/// position is NOT in this set, then we can skip that entire candidate
/// position (the length of the needle). This is essentially the shift
/// trick found in Boyer-Moore, but only applied to bytes that don't appear
/// in the needle.
///
/// N.B. This trick was inspired by something similar in std's
/// implementation of Two-Way.
byteset: ApproximateByteSet,
/// A critical position in needle. Specifically, this position corresponds
/// to beginning of either the minimal or maximal suffix in needle. (N.B.
/// See SuffixType below for why "minimal" isn't quite the correct word
/// here.)
///
/// This is the position at which every search begins. Namely, search
/// starts by scanning text to the right of this position, and only if
/// there's a match does the text to the left of this position get scanned.
critical_pos: usize,
/// The amount we shift by in the Two-Way search algorithm. This
/// corresponds to the "small period" and "large period" cases.
shift: Shift,
}
impl Finder {
/// Create a searcher that finds occurrences of the given `needle`.
///
/// An empty `needle` results in a match at every position in a haystack,
/// including at `haystack.len()`.
#[inline]
pub fn new(needle: &[u8]) -> Finder {
let byteset = ApproximateByteSet::new(needle);
let min_suffix = Suffix::forward(needle, SuffixKind::Minimal);
let max_suffix = Suffix::forward(needle, SuffixKind::Maximal);
let (period_lower_bound, critical_pos) =
if min_suffix.pos > max_suffix.pos {
(min_suffix.period, min_suffix.pos)
} else {
(max_suffix.period, max_suffix.pos)
};
let shift = Shift::forward(needle, period_lower_bound, critical_pos);
Finder(TwoWay { byteset, critical_pos, shift })
}
/// Returns the first occurrence of `needle` in the given `haystack`, or
/// `None` if no such occurrence could be found.
///
/// The `needle` given must be the same as the `needle` provided to
/// [`Finder::new`].
///
/// An empty `needle` results in a match at every position in a haystack,
/// including at `haystack.len()`.
#[inline]
pub fn find(&self, haystack: &[u8], needle: &[u8]) -> Option<usize> {
self.find_with_prefilter(None, haystack, needle)
}
/// This is like [`Finder::find`], but it accepts a prefilter for
/// accelerating searches.
///
/// Currently this is not exposed in the public API because, at the time
/// of writing, I didn't want to spend time thinking about how to expose
/// the prefilter infrastructure (if at all). If you have a compelling use
/// case for exposing this routine, please create an issue. Do *not* open
/// a PR that just exposes `Pre` and friends. Exporting this routine will
/// require API design.
#[inline(always)]
pub(crate) fn find_with_prefilter(
&self,
pre: Option<Pre<'_>>,
haystack: &[u8],
needle: &[u8],
) -> Option<usize> {
match self.0.shift {
Shift::Small { period } => {
self.find_small_imp(pre, haystack, needle, period)
}
Shift::Large { shift } => {
self.find_large_imp(pre, haystack, needle, shift)
}
}
}
// Each of the two search implementations below can be accelerated by a
// prefilter, but it is not always enabled. To avoid its overhead when
// its disabled, we explicitly inline each search implementation based on
// whether a prefilter will be used or not. The decision on which to use
// is made in the parent meta searcher.
#[inline(always)]
fn find_small_imp(
&self,
mut pre: Option<Pre<'_>>,
haystack: &[u8],
needle: &[u8],
period: usize,
) -> Option<usize> {
let mut pos = 0;
let mut shift = 0;
let last_byte_pos = match needle.len().checked_sub(1) {
None => return Some(pos),
Some(last_byte) => last_byte,
};
while pos + needle.len() <= haystack.len() {
let mut i = cmp::max(self.0.critical_pos, shift);
if let Some(pre) = pre.as_mut() {
if pre.is_effective() {
pos += pre.find(&haystack[pos..])?;
shift = 0;
i = self.0.critical_pos;
if pos + needle.len() > haystack.len() {
return None;
}
}
}
if !self.0.byteset.contains(haystack[pos + last_byte_pos]) {
pos += needle.len();
shift = 0;
continue;
}
while i < needle.len() && needle[i] == haystack[pos + i] {
i += 1;
}
if i < needle.len() {
pos += i - self.0.critical_pos + 1;
shift = 0;
} else {
let mut j = self.0.critical_pos;
while j > shift && needle[j] == haystack[pos + j] {
j -= 1;
}
if j <= shift && needle[shift] == haystack[pos + shift] {
return Some(pos);
}
pos += period;
shift = needle.len() - period;
}
}
None
}
#[inline(always)]
fn find_large_imp(
&self,
mut pre: Option<Pre<'_>>,
haystack: &[u8],
needle: &[u8],
shift: usize,
) -> Option<usize> {
let mut pos = 0;
let last_byte_pos = match needle.len().checked_sub(1) {
None => return Some(pos),
Some(last_byte) => last_byte,
};
'outer: while pos + needle.len() <= haystack.len() {
if let Some(pre) = pre.as_mut() {
if pre.is_effective() {
pos += pre.find(&haystack[pos..])?;
if pos + needle.len() > haystack.len() {
return None;
}
}
}
if !self.0.byteset.contains(haystack[pos + last_byte_pos]) {
pos += needle.len();
continue;
}
let mut i = self.0.critical_pos;
while i < needle.len() && needle[i] == haystack[pos + i] {
i += 1;
}
if i < needle.len() {
pos += i - self.0.critical_pos + 1;
} else {
for j in (0..self.0.critical_pos).rev() {
if needle[j] != haystack[pos + j] {
pos += shift;
continue 'outer;
}
}
return Some(pos);
}
}
None
}
}
impl FinderRev {
/// Create a searcher that finds occurrences of the given `needle`.
///
/// An empty `needle` results in a match at every position in a haystack,
/// including at `haystack.len()`.
#[inline]
pub fn new(needle: &[u8]) -> FinderRev {
let byteset = ApproximateByteSet::new(needle);
let min_suffix = Suffix::reverse(needle, SuffixKind::Minimal);
let max_suffix = Suffix::reverse(needle, SuffixKind::Maximal);
let (period_lower_bound, critical_pos) =
if min_suffix.pos < max_suffix.pos {
(min_suffix.period, min_suffix.pos)
} else {
(max_suffix.period, max_suffix.pos)
};
let shift = Shift::reverse(needle, period_lower_bound, critical_pos);
FinderRev(TwoWay { byteset, critical_pos, shift })
}
/// Returns the last occurrence of `needle` in the given `haystack`, or
/// `None` if no such occurrence could be found.
///
/// The `needle` given must be the same as the `needle` provided to
/// [`FinderRev::new`].
///
/// An empty `needle` results in a match at every position in a haystack,
/// including at `haystack.len()`.
#[inline]
pub fn rfind(&self, haystack: &[u8], needle: &[u8]) -> Option<usize> {
// For the reverse case, we don't use a prefilter. It's plausible that
// perhaps we should, but it's a lot of additional code to do it, and
// it's not clear that it's actually worth it. If you have a really
// compelling use case for this, please file an issue.
match self.0.shift {
Shift::Small { period } => {
self.rfind_small_imp(haystack, needle, period)
}
Shift::Large { shift } => {
self.rfind_large_imp(haystack, needle, shift)
}
}
}
#[inline(always)]
fn rfind_small_imp(
&self,
haystack: &[u8],
needle: &[u8],
period: usize,
) -> Option<usize> {
let nlen = needle.len();
let mut pos = haystack.len();
let mut shift = nlen;
let first_byte = match needle.get(0) {
None => return Some(pos),
Some(&first_byte) => first_byte,
};
while pos >= nlen {
if !self.0.byteset.contains(haystack[pos - nlen]) {
pos -= nlen;
shift = nlen;
continue;
}
let mut i = cmp::min(self.0.critical_pos, shift);
while i > 0 && needle[i - 1] == haystack[pos - nlen + i - 1] {
i -= 1;
}
if i > 0 || first_byte != haystack[pos - nlen] {
pos -= self.0.critical_pos - i + 1;
shift = nlen;
} else {
let mut j = self.0.critical_pos;
while j < shift && needle[j] == haystack[pos - nlen + j] {
j += 1;
}
if j >= shift {
return Some(pos - nlen);
}
pos -= period;
shift = period;
}
}
None
}
#[inline(always)]
fn rfind_large_imp(
&self,
haystack: &[u8],
needle: &[u8],
shift: usize,
) -> Option<usize> {
let nlen = needle.len();
let mut pos = haystack.len();
let first_byte = match needle.get(0) {
None => return Some(pos),
Some(&first_byte) => first_byte,
};
while pos >= nlen {
if !self.0.byteset.contains(haystack[pos - nlen]) {
pos -= nlen;
continue;
}
let mut i = self.0.critical_pos;
while i > 0 && needle[i - 1] == haystack[pos - nlen + i - 1] {
i -= 1;
}
if i > 0 || first_byte != haystack[pos - nlen] {
pos -= self.0.critical_pos - i + 1;
} else {
let mut j = self.0.critical_pos;
while j < nlen && needle[j] == haystack[pos - nlen + j] {
j += 1;
}
if j == nlen {
return Some(pos - nlen);
}
pos -= shift;
}
}
None
}
}
/// A representation of the amount we're allowed to shift by during Two-Way
/// search.
///
/// When computing a critical factorization of the needle, we find the position
/// of the critical factorization by finding the needle's maximal (or minimal)
/// suffix, along with the period of that suffix. It turns out that the period
/// of that suffix is a lower bound on the period of the needle itself.
///
/// This lower bound is equivalent to the actual period of the needle in
/// some cases. To describe that case, we denote the needle as `x` where
/// `x = uv` and `v` is the lexicographic maximal suffix of `v`. The lower
/// bound given here is always the period of `v`, which is `<= period(x)`. The
/// case where `period(v) == period(x)` occurs when `len(u) < (len(x) / 2)` and
/// where `u` is a suffix of `v[0..period(v)]`.
///
/// This case is important because the search algorithm for when the
/// periods are equivalent is slightly different than the search algorithm
/// for when the periods are not equivalent. In particular, when they aren't
/// equivalent, we know that the period of the needle is no less than half its
/// length. In this case, we shift by an amount less than or equal to the
/// period of the needle (determined by the maximum length of the components
/// of the critical factorization of `x`, i.e., `max(len(u), len(v))`)..
///
/// The above two cases are represented by the variants below. Each entails
/// a different instantiation of the Two-Way search algorithm.
///
/// N.B. If we could find a way to compute the exact period in all cases,
/// then we could collapse this case analysis and simplify the algorithm. The
/// Two-Way paper suggests this is possible, but more reading is required to
/// grok why the authors didn't pursue that path.
#[derive(Clone, Copy, Debug)]
enum Shift {
Small { period: usize },
Large { shift: usize },
}
impl Shift {
/// Compute the shift for a given needle in the forward direction.
///
/// This requires a lower bound on the period and a critical position.
/// These can be computed by extracting both the minimal and maximal
/// lexicographic suffixes, and choosing the right-most starting position.
/// The lower bound on the period is then the period of the chosen suffix.
fn forward(
needle: &[u8],
period_lower_bound: usize,
critical_pos: usize,
) -> Shift {
let large = cmp::max(critical_pos, needle.len() - critical_pos);
if critical_pos * 2 >= needle.len() {
return Shift::Large { shift: large };
}
let (u, v) = needle.split_at(critical_pos);
if !is_suffix(&v[..period_lower_bound], u) {
return Shift::Large { shift: large };
}
Shift::Small { period: period_lower_bound }
}
/// Compute the shift for a given needle in the reverse direction.
///
/// This requires a lower bound on the period and a critical position.
/// These can be computed by extracting both the minimal and maximal
/// lexicographic suffixes, and choosing the left-most starting position.
/// The lower bound on the period is then the period of the chosen suffix.
fn reverse(
needle: &[u8],
period_lower_bound: usize,
critical_pos: usize,
) -> Shift {
let large = cmp::max(critical_pos, needle.len() - critical_pos);
if (needle.len() - critical_pos) * 2 >= needle.len() {
return Shift::Large { shift: large };
}
let (v, u) = needle.split_at(critical_pos);
if !is_prefix(&v[v.len() - period_lower_bound..], u) {
return Shift::Large { shift: large };
}
Shift::Small { period: period_lower_bound }
}
}
/// A suffix extracted from a needle along with its period.
#[derive(Debug)]
struct Suffix {
/// The starting position of this suffix.
///
/// If this is a forward suffix, then `&bytes[pos..]` can be used. If this
/// is a reverse suffix, then `&bytes[..pos]` can be used. That is, for
/// forward suffixes, this is an inclusive starting position, where as for
/// reverse suffixes, this is an exclusive ending position.
pos: usize,
/// The period of this suffix.
///
/// Note that this is NOT necessarily the period of the string from which
/// this suffix comes from. (It is always less than or equal to the period
/// of the original string.)
period: usize,
}
impl Suffix {
fn forward(needle: &[u8], kind: SuffixKind) -> Suffix {
// suffix represents our maximal (or minimal) suffix, along with
// its period.
let mut suffix = Suffix { pos: 0, period: 1 };
// The start of a suffix in `needle` that we are considering as a
// more maximal (or minimal) suffix than what's in `suffix`.
let mut candidate_start = 1;
// The current offset of our suffixes that we're comparing.
//
// When the characters at this offset are the same, then we mush on
// to the next position since no decision is possible. When the
// candidate's character is greater (or lesser) than the corresponding
// character than our current maximal (or minimal) suffix, then the
// current suffix is changed over to the candidate and we restart our
// search. Otherwise, the candidate suffix is no good and we restart
// our search on the next candidate.
//
// The three cases above correspond to the three cases in the loop
// below.
let mut offset = 0;
while candidate_start + offset < needle.len() {
let current = needle[suffix.pos + offset];
let candidate = needle[candidate_start + offset];
match kind.cmp(current, candidate) {
SuffixOrdering::Accept => {
suffix = Suffix { pos: candidate_start, period: 1 };
candidate_start += 1;
offset = 0;
}
SuffixOrdering::Skip => {
candidate_start += offset + 1;
offset = 0;
suffix.period = candidate_start - suffix.pos;
}
SuffixOrdering::Push => {
if offset + 1 == suffix.period {
candidate_start += suffix.period;
offset = 0;
} else {
offset += 1;
}
}
}
}
suffix
}
fn reverse(needle: &[u8], kind: SuffixKind) -> Suffix {
// See the comments in `forward` for how this works.
let mut suffix = Suffix { pos: needle.len(), period: 1 };
if needle.len() == 1 {
return suffix;
}
let mut candidate_start = match needle.len().checked_sub(1) {
None => return suffix,
Some(candidate_start) => candidate_start,
};
let mut offset = 0;
while offset < candidate_start {
let current = needle[suffix.pos - offset - 1];
let candidate = needle[candidate_start - offset - 1];
match kind.cmp(current, candidate) {
SuffixOrdering::Accept => {
suffix = Suffix { pos: candidate_start, period: 1 };
candidate_start -= 1;
offset = 0;
}
SuffixOrdering::Skip => {
candidate_start -= offset + 1;
offset = 0;
suffix.period = suffix.pos - candidate_start;
}
SuffixOrdering::Push => {
if offset + 1 == suffix.period {
candidate_start -= suffix.period;
offset = 0;
} else {
offset += 1;
}
}
}
}
suffix
}
}
/// The kind of suffix to extract.
#[derive(Clone, Copy, Debug)]
enum SuffixKind {
/// Extract the smallest lexicographic suffix from a string.
///
/// Technically, this doesn't actually pick the smallest lexicographic
/// suffix. e.g., Given the choice between `a` and `aa`, this will choose
/// the latter over the former, even though `a < aa`. The reasoning for
/// this isn't clear from the paper, but it still smells like a minimal
/// suffix.
Minimal,
/// Extract the largest lexicographic suffix from a string.
///
/// Unlike `Minimal`, this really does pick the maximum suffix. e.g., Given
/// the choice between `z` and `zz`, this will choose the latter over the
/// former.
Maximal,
}
/// The result of comparing corresponding bytes between two suffixes.
#[derive(Clone, Copy, Debug)]
enum SuffixOrdering {
/// This occurs when the given candidate byte indicates that the candidate
/// suffix is better than the current maximal (or minimal) suffix. That is,
/// the current candidate suffix should supplant the current maximal (or
/// minimal) suffix.
Accept,
/// This occurs when the given candidate byte excludes the candidate suffix
/// from being better than the current maximal (or minimal) suffix. That
/// is, the current candidate suffix should be dropped and the next one
/// should be considered.
Skip,
/// This occurs when no decision to accept or skip the candidate suffix
/// can be made, e.g., when corresponding bytes are equivalent. In this
/// case, the next corresponding bytes should be compared.
Push,
}
impl SuffixKind {
/// Returns true if and only if the given candidate byte indicates that
/// it should replace the current suffix as the maximal (or minimal)
/// suffix.
fn cmp(self, current: u8, candidate: u8) -> SuffixOrdering {
use self::SuffixOrdering::*;
match self {
SuffixKind::Minimal if candidate < current => Accept,
SuffixKind::Minimal if candidate > current => Skip,
SuffixKind::Minimal => Push,
SuffixKind::Maximal if candidate > current => Accept,
SuffixKind::Maximal if candidate < current => Skip,
SuffixKind::Maximal => Push,
}
}
}
/// A bitset used to track whether a particular byte exists in a needle or not.
///
/// Namely, bit 'i' is set if and only if byte%64==i for any byte in the
/// needle. If a particular byte in the haystack is NOT in this set, then one
/// can conclude that it is also not in the needle, and thus, one can advance
/// in the haystack by needle.len() bytes.
#[derive(Clone, Copy, Debug)]
struct ApproximateByteSet(u64);
impl ApproximateByteSet {
/// Create a new set from the given needle.
fn new(needle: &[u8]) -> ApproximateByteSet {
let mut bits = 0;
for &b in needle {
bits |= 1 << (b % 64);
}
ApproximateByteSet(bits)
}
/// Return true if and only if the given byte might be in this set. This
/// may return a false positive, but will never return a false negative.
#[inline(always)]
fn contains(&self, byte: u8) -> bool {
self.0 & (1 << (byte % 64)) != 0
}
}
#[cfg(test)]
mod tests {
use alloc::vec::Vec;
use super::*;
/// Convenience wrapper for computing the suffix as a byte string.
fn get_suffix_forward(needle: &[u8], kind: SuffixKind) -> (&[u8], usize) {
let s = Suffix::forward(needle, kind);
(&needle[s.pos..], s.period)
}
/// Convenience wrapper for computing the reverse suffix as a byte string.
fn get_suffix_reverse(needle: &[u8], kind: SuffixKind) -> (&[u8], usize) {
let s = Suffix::reverse(needle, kind);
(&needle[..s.pos], s.period)
}
/// Return all of the non-empty suffixes in the given byte string.
fn suffixes(bytes: &[u8]) -> Vec<&[u8]> {
(0..bytes.len()).map(|i| &bytes[i..]).collect()
}
/// Return the lexicographically maximal suffix of the given byte string.
fn naive_maximal_suffix_forward(needle: &[u8]) -> &[u8] {
let mut sufs = suffixes(needle);
sufs.sort();
sufs.pop().unwrap()
}
/// Return the lexicographically maximal suffix of the reverse of the given
/// byte string.
fn naive_maximal_suffix_reverse(needle: &[u8]) -> Vec<u8> {
let mut reversed = needle.to_vec();
reversed.reverse();
let mut got = naive_maximal_suffix_forward(&reversed).to_vec();
got.reverse();
got
}
define_substring_forward_quickcheck!(|h, n| Some(
Finder::new(n).find(h, n)
));
define_substring_reverse_quickcheck!(|h, n| Some(
FinderRev::new(n).rfind(h, n)
));
#[test]
fn forward() {
crate::tests::substring::Runner::new()
.fwd(|h, n| Some(Finder::new(n).find(h, n)))
.run();
}
#[test]
fn reverse() {
crate::tests::substring::Runner::new()
.rev(|h, n| Some(FinderRev::new(n).rfind(h, n)))
.run();
}
#[test]
fn suffix_forward() {
macro_rules! assert_suffix_min {
($given:expr, $expected:expr, $period:expr) => {
let (got_suffix, got_period) =
get_suffix_forward($given.as_bytes(), SuffixKind::Minimal);
let got_suffix = core::str::from_utf8(got_suffix).unwrap();
assert_eq!(($expected, $period), (got_suffix, got_period));
};
}
macro_rules! assert_suffix_max {
($given:expr, $expected:expr, $period:expr) => {
let (got_suffix, got_period) =
get_suffix_forward($given.as_bytes(), SuffixKind::Maximal);
let got_suffix = core::str::from_utf8(got_suffix).unwrap();
assert_eq!(($expected, $period), (got_suffix, got_period));
};
}
assert_suffix_min!("a", "a", 1);
assert_suffix_max!("a", "a", 1);
assert_suffix_min!("ab", "ab", 2);
assert_suffix_max!("ab", "b", 1);
assert_suffix_min!("ba", "a", 1);
assert_suffix_max!("ba", "ba", 2);
assert_suffix_min!("abc", "abc", 3);
assert_suffix_max!("abc", "c", 1);
assert_suffix_min!("acb", "acb", 3);
assert_suffix_max!("acb", "cb", 2);
assert_suffix_min!("cba", "a", 1);
assert_suffix_max!("cba", "cba", 3);
assert_suffix_min!("abcabc", "abcabc", 3);
assert_suffix_max!("abcabc", "cabc", 3);
assert_suffix_min!("abcabcabc", "abcabcabc", 3);
assert_suffix_max!("abcabcabc", "cabcabc", 3);
assert_suffix_min!("abczz", "abczz", 5);
assert_suffix_max!("abczz", "zz", 1);
assert_suffix_min!("zzabc", "abc", 3);
assert_suffix_max!("zzabc", "zzabc", 5);
assert_suffix_min!("aaa", "aaa", 1);
assert_suffix_max!("aaa", "aaa", 1);
assert_suffix_min!("foobar", "ar", 2);
assert_suffix_max!("foobar", "r", 1);
}
#[test]
fn suffix_reverse() {
macro_rules! assert_suffix_min {
($given:expr, $expected:expr, $period:expr) => {
let (got_suffix, got_period) =
get_suffix_reverse($given.as_bytes(), SuffixKind::Minimal);
let got_suffix = core::str::from_utf8(got_suffix).unwrap();
assert_eq!(($expected, $period), (got_suffix, got_period));
};
}
macro_rules! assert_suffix_max {
($given:expr, $expected:expr, $period:expr) => {
let (got_suffix, got_period) =
get_suffix_reverse($given.as_bytes(), SuffixKind::Maximal);
let got_suffix = core::str::from_utf8(got_suffix).unwrap();
assert_eq!(($expected, $period), (got_suffix, got_period));
};
}
assert_suffix_min!("a", "a", 1);
assert_suffix_max!("a", "a", 1);
assert_suffix_min!("ab", "a", 1);
assert_suffix_max!("ab", "ab", 2);
assert_suffix_min!("ba", "ba", 2);
assert_suffix_max!("ba", "b", 1);
assert_suffix_min!("abc", "a", 1);
assert_suffix_max!("abc", "abc", 3);
assert_suffix_min!("acb", "a", 1);
assert_suffix_max!("acb", "ac", 2);
assert_suffix_min!("cba", "cba", 3);
assert_suffix_max!("cba", "c", 1);
assert_suffix_min!("abcabc", "abca", 3);
assert_suffix_max!("abcabc", "abcabc", 3);
assert_suffix_min!("abcabcabc", "abcabca", 3);
assert_suffix_max!("abcabcabc", "abcabcabc", 3);
assert_suffix_min!("abczz", "a", 1);
assert_suffix_max!("abczz", "abczz", 5);
assert_suffix_min!("zzabc", "zza", 3);
assert_suffix_max!("zzabc", "zz", 1);
assert_suffix_min!("aaa", "aaa", 1);
assert_suffix_max!("aaa", "aaa", 1);
}
#[cfg(not(miri))]
quickcheck::quickcheck! {
fn qc_suffix_forward_maximal(bytes: Vec<u8>) -> bool {
if bytes.is_empty() {
return true;
}
let (got, _) = get_suffix_forward(&bytes, SuffixKind::Maximal);
let expected = naive_maximal_suffix_forward(&bytes);
got == expected
}
fn qc_suffix_reverse_maximal(bytes: Vec<u8>) -> bool {
if bytes.is_empty() {
return true;
}
let (got, _) = get_suffix_reverse(&bytes, SuffixKind::Maximal);
let expected = naive_maximal_suffix_reverse(&bytes);
expected == got
}
}
// This is a regression test caught by quickcheck that exercised a bug in
// the reverse small period handling. The bug was that we were using 'if j
// == shift' to determine if a match occurred, but the correct guard is 'if
// j >= shift', which matches the corresponding guard in the forward impl.
#[test]
fn regression_rev_small_period() {
let rfind = |h, n| FinderRev::new(n).rfind(h, n);
let haystack = "ababaz";
let needle = "abab";
assert_eq!(Some(0), rfind(haystack.as_bytes(), needle.as_bytes()));
}
}