1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
#[cfg(target_arch = "x86")]
use core::arch::x86 as arch;
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64 as arch;
#[derive(Clone)]
pub struct State {
state: u32,
}
impl State {
#[cfg(not(feature = "std"))]
pub fn new(state: u32) -> Option<Self> {
if cfg!(target_feature = "pclmulqdq")
&& cfg!(target_feature = "sse2")
&& cfg!(target_feature = "sse4.1")
{
// SAFETY: The conditions above ensure that all
// required instructions are supported by the CPU.
Some(Self { state })
} else {
None
}
}
#[cfg(feature = "std")]
pub fn new(state: u32) -> Option<Self> {
if is_x86_feature_detected!("pclmulqdq")
&& is_x86_feature_detected!("sse2")
&& is_x86_feature_detected!("sse4.1")
{
// SAFETY: The conditions above ensure that all
// required instructions are supported by the CPU.
Some(Self { state })
} else {
None
}
}
pub fn update(&mut self, buf: &[u8]) {
// SAFETY: The `State::new` constructor ensures that all
// required instructions are supported by the CPU.
self.state = unsafe { calculate(self.state, buf) }
}
pub fn finalize(self) -> u32 {
self.state
}
pub fn reset(&mut self) {
self.state = 0;
}
pub fn combine(&mut self, other: u32, amount: u64) {
self.state = ::combine::combine(self.state, other, amount);
}
}
const K1: i64 = 0x154442bd4;
const K2: i64 = 0x1c6e41596;
const K3: i64 = 0x1751997d0;
const K4: i64 = 0x0ccaa009e;
const K5: i64 = 0x163cd6124;
const P_X: i64 = 0x1DB710641;
const U_PRIME: i64 = 0x1F7011641;
#[cfg(feature = "std")]
unsafe fn debug(s: &str, a: arch::__m128i) -> arch::__m128i {
if false {
union A {
a: arch::__m128i,
b: [u8; 16],
}
let x = A { a }.b;
print!(" {:20} | ", s);
for x in x.iter() {
print!("{:02x} ", x);
}
println!();
}
return a;
}
#[cfg(not(feature = "std"))]
unsafe fn debug(_s: &str, a: arch::__m128i) -> arch::__m128i {
a
}
#[target_feature(enable = "pclmulqdq", enable = "sse2", enable = "sse4.1")]
unsafe fn calculate(crc: u32, mut data: &[u8]) -> u32 {
// In theory we can accelerate smaller chunks too, but for now just rely on
// the fallback implementation as it's too much hassle and doesn't seem too
// beneficial.
if data.len() < 128 {
return ::baseline::update_fast_16(crc, data);
}
// Step 1: fold by 4 loop
let mut x3 = get(&mut data);
let mut x2 = get(&mut data);
let mut x1 = get(&mut data);
let mut x0 = get(&mut data);
// fold in our initial value, part of the incremental crc checksum
x3 = arch::_mm_xor_si128(x3, arch::_mm_cvtsi32_si128(!crc as i32));
let k1k2 = arch::_mm_set_epi64x(K2, K1);
while data.len() >= 64 {
x3 = reduce128(x3, get(&mut data), k1k2);
x2 = reduce128(x2, get(&mut data), k1k2);
x1 = reduce128(x1, get(&mut data), k1k2);
x0 = reduce128(x0, get(&mut data), k1k2);
}
let k3k4 = arch::_mm_set_epi64x(K4, K3);
let mut x = reduce128(x3, x2, k3k4);
x = reduce128(x, x1, k3k4);
x = reduce128(x, x0, k3k4);
// Step 2: fold by 1 loop
while data.len() >= 16 {
x = reduce128(x, get(&mut data), k3k4);
}
debug("128 > 64 init", x);
// Perform step 3, reduction from 128 bits to 64 bits. This is
// significantly different from the paper and basically doesn't follow it
// at all. It's not really clear why, but implementations of this algorithm
// in Chrome/Linux diverge in the same way. It is beyond me why this is
// different than the paper, maybe the paper has like errata or something?
// Unclear.
//
// It's also not clear to me what's actually happening here and/or why, but
// algebraically what's happening is:
//
// x = (x[0:63] • K4) ^ x[64:127] // 96 bit result
// x = ((x[0:31] as u64) • K5) ^ x[32:95] // 64 bit result
//
// It's... not clear to me what's going on here. The paper itself is pretty
// vague on this part but definitely uses different constants at least.
// It's not clear to me, reading the paper, where the xor operations are
// happening or why things are shifting around. This implementation...
// appears to work though!
let x = arch::_mm_xor_si128(
arch::_mm_clmulepi64_si128(x, k3k4, 0x10),
arch::_mm_srli_si128(x, 8),
);
let x = arch::_mm_xor_si128(
arch::_mm_clmulepi64_si128(
arch::_mm_and_si128(x, arch::_mm_set_epi32(0, 0, 0, !0)),
arch::_mm_set_epi64x(0, K5),
0x00,
),
arch::_mm_srli_si128(x, 4),
);
debug("128 > 64 xx", x);
// Perform a Barrett reduction from our now 64 bits to 32 bits. The
// algorithm for this is described at the end of the paper, and note that
// this also implements the "bit reflected input" variant.
let pu = arch::_mm_set_epi64x(U_PRIME, P_X);
// T1(x) = ⌊(R(x) % x^32)⌋ • μ
let t1 = arch::_mm_clmulepi64_si128(
arch::_mm_and_si128(x, arch::_mm_set_epi32(0, 0, 0, !0)),
pu,
0x10,
);
// T2(x) = ⌊(T1(x) % x^32)⌋ • P(x)
let t2 = arch::_mm_clmulepi64_si128(
arch::_mm_and_si128(t1, arch::_mm_set_epi32(0, 0, 0, !0)),
pu,
0x00,
);
// We're doing the bit-reflected variant, so get the upper 32-bits of the
// 64-bit result instead of the lower 32-bits.
//
// C(x) = R(x) ^ T2(x) / x^32
let c = arch::_mm_extract_epi32(arch::_mm_xor_si128(x, t2), 1) as u32;
if !data.is_empty() {
::baseline::update_fast_16(!c, data)
} else {
!c
}
}
unsafe fn reduce128(a: arch::__m128i, b: arch::__m128i, keys: arch::__m128i) -> arch::__m128i {
let t1 = arch::_mm_clmulepi64_si128(a, keys, 0x00);
let t2 = arch::_mm_clmulepi64_si128(a, keys, 0x11);
arch::_mm_xor_si128(arch::_mm_xor_si128(b, t1), t2)
}
unsafe fn get(a: &mut &[u8]) -> arch::__m128i {
debug_assert!(a.len() >= 16);
let r = arch::_mm_loadu_si128(a.as_ptr() as *const arch::__m128i);
*a = &a[16..];
return r;
}
#[cfg(test)]
mod test {
quickcheck! {
fn check_against_baseline(init: u32, chunks: Vec<(Vec<u8>, usize)>) -> bool {
let mut baseline = super::super::super::baseline::State::new(init);
let mut pclmulqdq = super::State::new(init).expect("not supported");
for (chunk, mut offset) in chunks {
// simulate random alignments by offsetting the slice by up to 15 bytes
offset &= 0xF;
if chunk.len() <= offset {
baseline.update(&chunk);
pclmulqdq.update(&chunk);
} else {
baseline.update(&chunk[offset..]);
pclmulqdq.update(&chunk[offset..]);
}
}
pclmulqdq.finalize() == baseline.finalize()
}
}
}