1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#[cfg(target_arch = "x86")]
use core::arch::x86 as arch;
#[cfg(target_arch = "x86_64")]
use core::arch::x86_64 as arch;

#[derive(Clone)]
pub struct State {
    state: u32,
}

impl State {
    #[cfg(not(feature = "std"))]
    pub fn new(state: u32) -> Option<Self> {
        if cfg!(target_feature = "pclmulqdq")
            && cfg!(target_feature = "sse2")
            && cfg!(target_feature = "sse4.1")
        {
            // SAFETY: The conditions above ensure that all
            //         required instructions are supported by the CPU.
            Some(Self { state })
        } else {
            None
        }
    }

    #[cfg(feature = "std")]
    pub fn new(state: u32) -> Option<Self> {
        if is_x86_feature_detected!("pclmulqdq")
            && is_x86_feature_detected!("sse2")
            && is_x86_feature_detected!("sse4.1")
        {
            // SAFETY: The conditions above ensure that all
            //         required instructions are supported by the CPU.
            Some(Self { state })
        } else {
            None
        }
    }

    pub fn update(&mut self, buf: &[u8]) {
        // SAFETY: The `State::new` constructor ensures that all
        //         required instructions are supported by the CPU.
        self.state = unsafe { calculate(self.state, buf) }
    }

    pub fn finalize(self) -> u32 {
        self.state
    }

    pub fn reset(&mut self) {
        self.state = 0;
    }

    pub fn combine(&mut self, other: u32, amount: u64) {
        self.state = ::combine::combine(self.state, other, amount);
    }
}

const K1: i64 = 0x154442bd4;
const K2: i64 = 0x1c6e41596;
const K3: i64 = 0x1751997d0;
const K4: i64 = 0x0ccaa009e;
const K5: i64 = 0x163cd6124;

const P_X: i64 = 0x1DB710641;
const U_PRIME: i64 = 0x1F7011641;

#[cfg(feature = "std")]
unsafe fn debug(s: &str, a: arch::__m128i) -> arch::__m128i {
    if false {
        union A {
            a: arch::__m128i,
            b: [u8; 16],
        }
        let x = A { a }.b;
        print!(" {:20} | ", s);
        for x in x.iter() {
            print!("{:02x} ", x);
        }
        println!();
    }
    return a;
}

#[cfg(not(feature = "std"))]
unsafe fn debug(_s: &str, a: arch::__m128i) -> arch::__m128i {
    a
}

#[target_feature(enable = "pclmulqdq", enable = "sse2", enable = "sse4.1")]
unsafe fn calculate(crc: u32, mut data: &[u8]) -> u32 {
    // In theory we can accelerate smaller chunks too, but for now just rely on
    // the fallback implementation as it's too much hassle and doesn't seem too
    // beneficial.
    if data.len() < 128 {
        return ::baseline::update_fast_16(crc, data);
    }

    // Step 1: fold by 4 loop
    let mut x3 = get(&mut data);
    let mut x2 = get(&mut data);
    let mut x1 = get(&mut data);
    let mut x0 = get(&mut data);

    // fold in our initial value, part of the incremental crc checksum
    x3 = arch::_mm_xor_si128(x3, arch::_mm_cvtsi32_si128(!crc as i32));

    let k1k2 = arch::_mm_set_epi64x(K2, K1);
    while data.len() >= 64 {
        x3 = reduce128(x3, get(&mut data), k1k2);
        x2 = reduce128(x2, get(&mut data), k1k2);
        x1 = reduce128(x1, get(&mut data), k1k2);
        x0 = reduce128(x0, get(&mut data), k1k2);
    }

    let k3k4 = arch::_mm_set_epi64x(K4, K3);
    let mut x = reduce128(x3, x2, k3k4);
    x = reduce128(x, x1, k3k4);
    x = reduce128(x, x0, k3k4);

    // Step 2: fold by 1 loop
    while data.len() >= 16 {
        x = reduce128(x, get(&mut data), k3k4);
    }

    debug("128 > 64 init", x);

    // Perform step 3, reduction from 128 bits to 64 bits. This is
    // significantly different from the paper and basically doesn't follow it
    // at all. It's not really clear why, but implementations of this algorithm
    // in Chrome/Linux diverge in the same way. It is beyond me why this is
    // different than the paper, maybe the paper has like errata or something?
    // Unclear.
    //
    // It's also not clear to me what's actually happening here and/or why, but
    // algebraically what's happening is:
    //
    // x = (x[0:63] • K4) ^ x[64:127]           // 96 bit result
    // x = ((x[0:31] as u64) • K5) ^ x[32:95]   // 64 bit result
    //
    // It's... not clear to me what's going on here. The paper itself is pretty
    // vague on this part but definitely uses different constants at least.
    // It's not clear to me, reading the paper, where the xor operations are
    // happening or why things are shifting around. This implementation...
    // appears to work though!
    let x = arch::_mm_xor_si128(
        arch::_mm_clmulepi64_si128(x, k3k4, 0x10),
        arch::_mm_srli_si128(x, 8),
    );
    let x = arch::_mm_xor_si128(
        arch::_mm_clmulepi64_si128(
            arch::_mm_and_si128(x, arch::_mm_set_epi32(0, 0, 0, !0)),
            arch::_mm_set_epi64x(0, K5),
            0x00,
        ),
        arch::_mm_srli_si128(x, 4),
    );
    debug("128 > 64 xx", x);

    // Perform a Barrett reduction from our now 64 bits to 32 bits. The
    // algorithm for this is described at the end of the paper, and note that
    // this also implements the "bit reflected input" variant.
    let pu = arch::_mm_set_epi64x(U_PRIME, P_X);

    // T1(x) = ⌊(R(x) % x^32)⌋ • μ
    let t1 = arch::_mm_clmulepi64_si128(
        arch::_mm_and_si128(x, arch::_mm_set_epi32(0, 0, 0, !0)),
        pu,
        0x10,
    );
    // T2(x) = ⌊(T1(x) % x^32)⌋ • P(x)
    let t2 = arch::_mm_clmulepi64_si128(
        arch::_mm_and_si128(t1, arch::_mm_set_epi32(0, 0, 0, !0)),
        pu,
        0x00,
    );
    // We're doing the bit-reflected variant, so get the upper 32-bits of the
    // 64-bit result instead of the lower 32-bits.
    //
    // C(x) = R(x) ^ T2(x) / x^32
    let c = arch::_mm_extract_epi32(arch::_mm_xor_si128(x, t2), 1) as u32;

    if !data.is_empty() {
        ::baseline::update_fast_16(!c, data)
    } else {
        !c
    }
}

unsafe fn reduce128(a: arch::__m128i, b: arch::__m128i, keys: arch::__m128i) -> arch::__m128i {
    let t1 = arch::_mm_clmulepi64_si128(a, keys, 0x00);
    let t2 = arch::_mm_clmulepi64_si128(a, keys, 0x11);
    arch::_mm_xor_si128(arch::_mm_xor_si128(b, t1), t2)
}

unsafe fn get(a: &mut &[u8]) -> arch::__m128i {
    debug_assert!(a.len() >= 16);
    let r = arch::_mm_loadu_si128(a.as_ptr() as *const arch::__m128i);
    *a = &a[16..];
    return r;
}

#[cfg(test)]
mod test {
    quickcheck! {
        fn check_against_baseline(init: u32, chunks: Vec<(Vec<u8>, usize)>) -> bool {
            let mut baseline = super::super::super::baseline::State::new(init);
            let mut pclmulqdq = super::State::new(init).expect("not supported");
            for (chunk, mut offset) in chunks {
                // simulate random alignments by offsetting the slice by up to 15 bytes
                offset &= 0xF;
                if chunk.len() <= offset {
                    baseline.update(&chunk);
                    pclmulqdq.update(&chunk);
                } else {
                    baseline.update(&chunk[offset..]);
                    pclmulqdq.update(&chunk[offset..]);
                }
            }
            pclmulqdq.finalize() == baseline.finalize()
        }
    }
}