1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
//! # simd-adler32
//!
//! A SIMD-accelerated Adler-32 hash algorithm implementation.
//!
//! ## Features
//!
//! - No dependencies
//! - Support `no_std` (with `default-features = false`)
//! - Runtime CPU feature detection (when `std` enabled)
//! - Blazing fast performance on as many targets as possible (currently only x86 and x86_64)
//! - Default to scalar implementation when simd not available
//!
//! ## Quick start
//!
//! > Cargo.toml
//!
//! ```toml
//! [dependencies]
//! simd-adler32 = "*"
//! ```
//!
//! > example.rs
//!
//! ```rust
//! use simd_adler32::Adler32;
//!
//! let mut adler = Adler32::new();
//! adler.write(b"rust is pretty cool, man");
//! let hash = adler.finish();
//!
//! println!("{}", hash);
//! // 1921255656
//! ```
//!
//! ## Feature flags
//!
//! * `std` - Enabled by default
//!
//! Enables std support, see [CPU Feature Detection](#cpu-feature-detection) for runtime
//! detection support.
//! * `nightly`
//!
//! Enables nightly features required for avx512 support.
//!
//! * `const-generics` - Enabled by default
//!
//! Enables const-generics support allowing for user-defined array hashing by value. See
//! [`Adler32Hash`] for details.
//!
//! ## Support
//!
//! **CPU Features**
//!
//! | impl | arch | feature |
//! | ---- | ---------------- | ------- |
//! | ✅ | `x86`, `x86_64` | avx512 |
//! | ✅ | `x86`, `x86_64` | avx2 |
//! | ✅ | `x86`, `x86_64` | ssse3 |
//! | ✅ | `x86`, `x86_64` | sse2 |
//! | 🚧 | `arm`, `aarch64` | neon |
//! | | `wasm32` | simd128 |
//!
//! **MSRV** `1.36.0`\*\*
//!
//! Minimum supported rust version is tested before a new version is published. [**] Feature
//! `const-generics` needs to disabled to build on rustc versions `<1.51` which can be done
//! by updating your dependency definition to the following.
//!
//! ## CPU Feature Detection
//! simd-adler32 supports both runtime and compile time CPU feature detection using the
//! `std::is_x86_feature_detected` macro when the `Adler32` struct is instantiated with
//! the `new` fn.
//!
//! Without `std` feature enabled simd-adler32 falls back to compile time feature detection
//! using `target-feature` or `target-cpu` flags supplied to rustc. See [https://rust-lang.github.io/packed_simd/perf-guide/target-feature/rustflags.html](https://rust-lang.github.io/packed_simd/perf-guide/target-feature/rustflags.html)
//! for more information.
//!
//! Feature detection tries to use the fastest supported feature first.
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(feature = "nightly", feature(stdsimd, avx512_target_feature))]
#[doc(hidden)]
pub mod hash;
#[doc(hidden)]
pub mod imp;
pub use hash::*;
use imp::{get_imp, Adler32Imp};
/// An adler32 hash generator type.
#[derive(Clone)]
pub struct Adler32 {
a: u16,
b: u16,
update: Adler32Imp,
}
impl Adler32 {
/// Constructs a new `Adler32`.
///
/// Potential overhead here due to runtime feature detection although in testing on 100k
/// and 10k random byte arrays it was not really noticeable.
///
/// # Examples
/// ```rust
/// use simd_adler32::Adler32;
///
/// let mut adler = Adler32::new();
/// ```
pub fn new() -> Self {
Default::default()
}
/// Constructs a new `Adler32` using existing checksum.
///
/// Potential overhead here due to runtime feature detection although in testing on 100k
/// and 10k random byte arrays it was not really noticeable.
///
/// # Examples
/// ```rust
/// use simd_adler32::Adler32;
///
/// let mut adler = Adler32::from_checksum(0xdeadbeaf);
/// ```
pub fn from_checksum(checksum: u32) -> Self {
Self {
a: checksum as u16,
b: (checksum >> 16) as u16,
update: get_imp(),
}
}
/// Computes hash for supplied data and stores results in internal state.
pub fn write(&mut self, data: &[u8]) {
let (a, b) = (self.update)(self.a, self.b, data);
self.a = a;
self.b = b;
}
/// Returns the hash value for the values written so far.
///
/// Despite its name, the method does not reset the hasher’s internal state. Additional
/// writes will continue from the current value. If you need to start a fresh hash
/// value, you will have to use `reset`.
pub fn finish(&self) -> u32 {
(u32::from(self.b) << 16) | u32::from(self.a)
}
/// Resets the internal state.
pub fn reset(&mut self) {
self.a = 1;
self.b = 0;
}
}
/// Compute Adler-32 hash on `Adler32Hash` type.
///
/// # Arguments
/// * `hash` - A Adler-32 hash-able type.
///
/// # Examples
/// ```rust
/// use simd_adler32::adler32;
///
/// let hash = adler32(b"Adler-32");
/// println!("{}", hash); // 800813569
/// ```
pub fn adler32<H: Adler32Hash>(hash: &H) -> u32 {
hash.hash()
}
/// A Adler-32 hash-able type.
pub trait Adler32Hash {
/// Feeds this value into `Adler32`.
fn hash(&self) -> u32;
}
impl Default for Adler32 {
fn default() -> Self {
Self {
a: 1,
b: 0,
update: get_imp(),
}
}
}
#[cfg(feature = "std")]
pub mod read {
//! Reader-based hashing.
//!
//! # Example
//! ```rust
//! use std::io::Cursor;
//! use simd_adler32::read::adler32;
//!
//! let mut reader = Cursor::new(b"Hello there");
//! let hash = adler32(&mut reader).unwrap();
//!
//! println!("{}", hash) // 800813569
//! ```
use crate::Adler32;
use std::io::{Read, Result};
/// Compute Adler-32 hash on reader until EOF.
///
/// # Example
/// ```rust
/// use std::io::Cursor;
/// use simd_adler32::read::adler32;
///
/// let mut reader = Cursor::new(b"Hello there");
/// let hash = adler32(&mut reader).unwrap();
///
/// println!("{}", hash) // 800813569
/// ```
pub fn adler32<R: Read>(reader: &mut R) -> Result<u32> {
let mut hash = Adler32::new();
let mut buf = [0; 4096];
loop {
match reader.read(&mut buf) {
Ok(0) => return Ok(hash.finish()),
Ok(n) => {
hash.write(&buf[..n]);
}
Err(err) => return Err(err),
}
}
}
}
#[cfg(feature = "std")]
pub mod bufread {
//! BufRead-based hashing.
//!
//! Separate `BufRead` trait implemented to allow for custom buffer size optimization.
//!
//! # Example
//! ```rust
//! use std::io::{Cursor, BufReader};
//! use simd_adler32::bufread::adler32;
//!
//! let mut reader = Cursor::new(b"Hello there");
//! let mut reader = BufReader::new(reader);
//! let hash = adler32(&mut reader).unwrap();
//!
//! println!("{}", hash) // 800813569
//! ```
use crate::Adler32;
use std::io::{BufRead, ErrorKind, Result};
/// Compute Adler-32 hash on buf reader until EOF.
///
/// # Example
/// ```rust
/// use std::io::{Cursor, BufReader};
/// use simd_adler32::bufread::adler32;
///
/// let mut reader = Cursor::new(b"Hello there");
/// let mut reader = BufReader::new(reader);
/// let hash = adler32(&mut reader).unwrap();
///
/// println!("{}", hash) // 800813569
/// ```
pub fn adler32<R: BufRead>(reader: &mut R) -> Result<u32> {
let mut hash = Adler32::new();
loop {
let consumed = match reader.fill_buf() {
Ok(buf) => {
if buf.is_empty() {
return Ok(hash.finish());
}
hash.write(buf);
buf.len()
}
Err(err) => match err.kind() {
ErrorKind::Interrupted => continue,
ErrorKind::UnexpectedEof => return Ok(hash.finish()),
_ => return Err(err),
},
};
reader.consume(consumed);
}
}
}
#[cfg(test)]
mod tests {
#[test]
fn test_from_checksum() {
let buf = b"rust is pretty cool man";
let sum = 0xdeadbeaf;
let mut simd = super::Adler32::from_checksum(sum);
let mut adler = adler::Adler32::from_checksum(sum);
simd.write(buf);
adler.write_slice(buf);
let simd = simd.finish();
let scalar = adler.checksum();
assert_eq!(simd, scalar);
}
}