simd_adler32/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
//! # simd-adler32
//!
//! A SIMD-accelerated Adler-32 hash algorithm implementation.
//!
//! ## Features
//!
//! - No dependencies
//! - Support `no_std` (with `default-features = false`)
//! - Runtime CPU feature detection (when `std` enabled)
//! - Blazing fast performance on as many targets as possible (currently only x86 and x86_64)
//! - Default to scalar implementation when simd not available
//!
//! ## Quick start
//!
//! > Cargo.toml
//!
//! ```toml
//! [dependencies]
//! simd-adler32 = "*"
//! ```
//!
//! > example.rs
//!
//! ```rust
//! use simd_adler32::Adler32;
//!
//! let mut adler = Adler32::new();
//! adler.write(b"rust is pretty cool, man");
//! let hash = adler.finish();
//!
//! println!("{}", hash);
//! // 1921255656
//! ```
//!
//! ## Feature flags
//!
//! * `std` - Enabled by default
//!
//! Enables std support, see [CPU Feature Detection](#cpu-feature-detection) for runtime
//! detection support.
//! * `nightly`
//!
//! Enables nightly features required for avx512 support.
//!
//! * `const-generics` - Enabled by default
//!
//! Enables const-generics support allowing for user-defined array hashing by value.  See
//! [`Adler32Hash`] for details.
//!
//! ## Support
//!
//! **CPU Features**
//!
//! | impl | arch             | feature |
//! | ---- | ---------------- | ------- |
//! | ✅   | `x86`, `x86_64`  | avx512  |
//! | ✅   | `x86`, `x86_64`  | avx2    |
//! | ✅   | `x86`, `x86_64`  | ssse3   |
//! | ✅   | `x86`, `x86_64`  | sse2    |
//! | 🚧   | `arm`, `aarch64` | neon    |
//! |      | `wasm32`         | simd128 |
//!
//! **MSRV** `1.36.0`\*\*
//!
//! Minimum supported rust version is tested before a new version is published. [**] Feature
//! `const-generics` needs to disabled to build on rustc versions `<1.51` which can be done
//! by updating your dependency definition to the following.
//!
//! ## CPU Feature Detection
//! simd-adler32 supports both runtime and compile time CPU feature detection using the
//! `std::is_x86_feature_detected` macro when the `Adler32` struct is instantiated with
//! the `new` fn.  
//!
//! Without `std` feature enabled simd-adler32 falls back to compile time feature detection
//! using `target-feature` or `target-cpu` flags supplied to rustc. See [https://rust-lang.github.io/packed_simd/perf-guide/target-feature/rustflags.html](https://rust-lang.github.io/packed_simd/perf-guide/target-feature/rustflags.html)
//! for more information.
//!
//! Feature detection tries to use the fastest supported feature first.
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(feature = "nightly", feature(stdsimd, avx512_target_feature))]

#[doc(hidden)]
pub mod hash;
#[doc(hidden)]
pub mod imp;

pub use hash::*;
use imp::{get_imp, Adler32Imp};

/// An adler32 hash generator type.
#[derive(Clone)]
pub struct Adler32 {
  a: u16,
  b: u16,
  update: Adler32Imp,
}

impl Adler32 {
  /// Constructs a new `Adler32`.
  ///
  /// Potential overhead here due to runtime feature detection although in testing on 100k
  /// and 10k random byte arrays it was not really noticeable.
  ///
  /// # Examples
  /// ```rust
  /// use simd_adler32::Adler32;
  ///
  /// let mut adler = Adler32::new();
  /// ```
  pub fn new() -> Self {
    Default::default()
  }

  /// Constructs a new `Adler32` using existing checksum.
  ///
  /// Potential overhead here due to runtime feature detection although in testing on 100k
  /// and 10k random byte arrays it was not really noticeable.
  ///
  /// # Examples
  /// ```rust
  /// use simd_adler32::Adler32;
  ///
  /// let mut adler = Adler32::from_checksum(0xdeadbeaf);
  /// ```
  pub fn from_checksum(checksum: u32) -> Self {
    Self {
      a: checksum as u16,
      b: (checksum >> 16) as u16,
      update: get_imp(),
    }
  }

  /// Computes hash for supplied data and stores results in internal state.
  pub fn write(&mut self, data: &[u8]) {
    let (a, b) = (self.update)(self.a, self.b, data);

    self.a = a;
    self.b = b;
  }

  /// Returns the hash value for the values written so far.
  ///
  /// Despite its name, the method does not reset the hasher’s internal state. Additional
  /// writes will continue from the current value. If you need to start a fresh hash
  /// value, you will have to use `reset`.
  pub fn finish(&self) -> u32 {
    (u32::from(self.b) << 16) | u32::from(self.a)
  }

  /// Resets the internal state.
  pub fn reset(&mut self) {
    self.a = 1;
    self.b = 0;
  }
}

/// Compute Adler-32 hash on `Adler32Hash` type.
///
/// # Arguments
/// * `hash` - A Adler-32 hash-able type.
///
/// # Examples
/// ```rust
/// use simd_adler32::adler32;
///
/// let hash = adler32(b"Adler-32");
/// println!("{}", hash); // 800813569
/// ```
pub fn adler32<H: Adler32Hash>(hash: &H) -> u32 {
  hash.hash()
}

/// A Adler-32 hash-able type.
pub trait Adler32Hash {
  /// Feeds this value into `Adler32`.
  fn hash(&self) -> u32;
}

impl Default for Adler32 {
  fn default() -> Self {
    Self {
      a: 1,
      b: 0,
      update: get_imp(),
    }
  }
}

#[cfg(feature = "std")]
pub mod read {
  //! Reader-based hashing.
  //!
  //! # Example
  //! ```rust
  //! use std::io::Cursor;
  //! use simd_adler32::read::adler32;
  //!
  //! let mut reader = Cursor::new(b"Hello there");
  //! let hash = adler32(&mut reader).unwrap();
  //!
  //! println!("{}", hash) // 800813569
  //! ```
  use crate::Adler32;
  use std::io::{Read, Result};

  /// Compute Adler-32 hash on reader until EOF.
  ///
  /// # Example
  /// ```rust
  /// use std::io::Cursor;
  /// use simd_adler32::read::adler32;
  ///
  /// let mut reader = Cursor::new(b"Hello there");
  /// let hash = adler32(&mut reader).unwrap();
  ///
  /// println!("{}", hash) // 800813569
  /// ```
  pub fn adler32<R: Read>(reader: &mut R) -> Result<u32> {
    let mut hash = Adler32::new();
    let mut buf = [0; 4096];

    loop {
      match reader.read(&mut buf) {
        Ok(0) => return Ok(hash.finish()),
        Ok(n) => {
          hash.write(&buf[..n]);
        }
        Err(err) => return Err(err),
      }
    }
  }
}

#[cfg(feature = "std")]
pub mod bufread {
  //! BufRead-based hashing.
  //!
  //! Separate `BufRead` trait implemented to allow for custom buffer size optimization.
  //!
  //! # Example
  //! ```rust
  //! use std::io::{Cursor, BufReader};
  //! use simd_adler32::bufread::adler32;
  //!
  //! let mut reader = Cursor::new(b"Hello there");
  //! let mut reader = BufReader::new(reader);
  //! let hash = adler32(&mut reader).unwrap();
  //!
  //! println!("{}", hash) // 800813569
  //! ```
  use crate::Adler32;
  use std::io::{BufRead, ErrorKind, Result};

  /// Compute Adler-32 hash on buf reader until EOF.
  ///
  /// # Example
  /// ```rust
  /// use std::io::{Cursor, BufReader};
  /// use simd_adler32::bufread::adler32;
  ///
  /// let mut reader = Cursor::new(b"Hello there");
  /// let mut reader = BufReader::new(reader);
  /// let hash = adler32(&mut reader).unwrap();
  ///
  /// println!("{}", hash) // 800813569
  /// ```
  pub fn adler32<R: BufRead>(reader: &mut R) -> Result<u32> {
    let mut hash = Adler32::new();

    loop {
      let consumed = match reader.fill_buf() {
        Ok(buf) => {
          if buf.is_empty() {
            return Ok(hash.finish());
          }

          hash.write(buf);
          buf.len()
        }
        Err(err) => match err.kind() {
          ErrorKind::Interrupted => continue,
          ErrorKind::UnexpectedEof => return Ok(hash.finish()),
          _ => return Err(err),
        },
      };

      reader.consume(consumed);
    }
  }
}

#[cfg(test)]
mod tests {
  #[test]
  fn test_from_checksum() {
    let buf = b"rust is pretty cool man";
    let sum = 0xdeadbeaf;

    let mut simd = super::Adler32::from_checksum(sum);
    let mut adler = adler::Adler32::from_checksum(sum);

    simd.write(buf);
    adler.write_slice(buf);

    let simd = simd.finish();
    let scalar = adler.checksum();

    assert_eq!(simd, scalar);
  }
}