1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
use alloc::string::String;
use regex_automata::{meta, Input, PatternID, PatternSet, PatternSetIter};
use crate::{Error, RegexSetBuilder};
/// Match multiple, possibly overlapping, regexes in a single search.
///
/// A regex set corresponds to the union of zero or more regular expressions.
/// That is, a regex set will match a haystack when at least one of its
/// constituent regexes matches. A regex set as its formulated here provides a
/// touch more power: it will also report *which* regular expressions in the
/// set match. Indeed, this is the key difference between regex sets and a
/// single `Regex` with many alternates, since only one alternate can match at
/// a time.
///
/// For example, consider regular expressions to match email addresses and
/// domains: `[a-z]+@[a-z]+\.(com|org|net)` and `[a-z]+\.(com|org|net)`. If a
/// regex set is constructed from those regexes, then searching the haystack
/// `foo@example.com` will report both regexes as matching. Of course, one
/// could accomplish this by compiling each regex on its own and doing two
/// searches over the haystack. The key advantage of using a regex set is
/// that it will report the matching regexes using a *single pass through the
/// haystack*. If one has hundreds or thousands of regexes to match repeatedly
/// (like a URL router for a complex web application or a user agent matcher),
/// then a regex set *can* realize huge performance gains.
///
/// # Limitations
///
/// Regex sets are limited to answering the following two questions:
///
/// 1. Does any regex in the set match?
/// 2. If so, which regexes in the set match?
///
/// As with the main [`Regex`][crate::Regex] type, it is cheaper to ask (1)
/// instead of (2) since the matching engines can stop after the first match
/// is found.
///
/// You cannot directly extract [`Match`][crate::Match] or
/// [`Captures`][crate::Captures] objects from a regex set. If you need these
/// operations, the recommended approach is to compile each pattern in the set
/// independently and scan the exact same haystack a second time with those
/// independently compiled patterns:
///
/// ```
/// use regex::{Regex, RegexSet};
///
/// let patterns = ["foo", "bar"];
/// // Both patterns will match different ranges of this string.
/// let hay = "barfoo";
///
/// // Compile a set matching any of our patterns.
/// let set = RegexSet::new(patterns).unwrap();
/// // Compile each pattern independently.
/// let regexes: Vec<_> = set
/// .patterns()
/// .iter()
/// .map(|pat| Regex::new(pat).unwrap())
/// .collect();
///
/// // Match against the whole set first and identify the individual
/// // matching patterns.
/// let matches: Vec<&str> = set
/// .matches(hay)
/// .into_iter()
/// // Dereference the match index to get the corresponding
/// // compiled pattern.
/// .map(|index| ®exes[index])
/// // To get match locations or any other info, we then have to search the
/// // exact same haystack again, using our separately-compiled pattern.
/// .map(|re| re.find(hay).unwrap().as_str())
/// .collect();
///
/// // Matches arrive in the order the constituent patterns were declared,
/// // not the order they appear in the haystack.
/// assert_eq!(vec!["foo", "bar"], matches);
/// ```
///
/// # Performance
///
/// A `RegexSet` has the same performance characteristics as `Regex`. Namely,
/// search takes `O(m * n)` time, where `m` is proportional to the size of the
/// regex set and `n` is proportional to the length of the haystack.
///
/// # Trait implementations
///
/// The `Default` trait is implemented for `RegexSet`. The default value
/// is an empty set. An empty set can also be explicitly constructed via
/// [`RegexSet::empty`].
///
/// # Example
///
/// This shows how the above two regexes (for matching email addresses and
/// domains) might work:
///
/// ```
/// use regex::RegexSet;
///
/// let set = RegexSet::new(&[
/// r"[a-z]+@[a-z]+\.(com|org|net)",
/// r"[a-z]+\.(com|org|net)",
/// ]).unwrap();
///
/// // Ask whether any regexes in the set match.
/// assert!(set.is_match("foo@example.com"));
///
/// // Identify which regexes in the set match.
/// let matches: Vec<_> = set.matches("foo@example.com").into_iter().collect();
/// assert_eq!(vec![0, 1], matches);
///
/// // Try again, but with a haystack that only matches one of the regexes.
/// let matches: Vec<_> = set.matches("example.com").into_iter().collect();
/// assert_eq!(vec![1], matches);
///
/// // Try again, but with a haystack that doesn't match any regex in the set.
/// let matches: Vec<_> = set.matches("example").into_iter().collect();
/// assert!(matches.is_empty());
/// ```
///
/// Note that it would be possible to adapt the above example to using `Regex`
/// with an expression like:
///
/// ```text
/// (?P<email>[a-z]+@(?P<email_domain>[a-z]+[.](com|org|net)))|(?P<domain>[a-z]+[.](com|org|net))
/// ```
///
/// After a match, one could then inspect the capture groups to figure out
/// which alternates matched. The problem is that it is hard to make this
/// approach scale when there are many regexes since the overlap between each
/// alternate isn't always obvious to reason about.
#[derive(Clone)]
pub struct RegexSet {
pub(crate) meta: meta::Regex,
pub(crate) patterns: alloc::sync::Arc<[String]>,
}
impl RegexSet {
/// Create a new regex set with the given regular expressions.
///
/// This takes an iterator of `S`, where `S` is something that can produce
/// a `&str`. If any of the strings in the iterator are not valid regular
/// expressions, then an error is returned.
///
/// # Example
///
/// Create a new regex set from an iterator of strings:
///
/// ```
/// use regex::RegexSet;
///
/// let set = RegexSet::new([r"\w+", r"\d+"]).unwrap();
/// assert!(set.is_match("foo"));
/// ```
pub fn new<I, S>(exprs: I) -> Result<RegexSet, Error>
where
S: AsRef<str>,
I: IntoIterator<Item = S>,
{
RegexSetBuilder::new(exprs).build()
}
/// Create a new empty regex set.
///
/// An empty regex never matches anything.
///
/// This is a convenience function for `RegexSet::new([])`, but doesn't
/// require one to specify the type of the input.
///
/// # Example
///
/// ```
/// use regex::RegexSet;
///
/// let set = RegexSet::empty();
/// assert!(set.is_empty());
/// // an empty set matches nothing
/// assert!(!set.is_match(""));
/// ```
pub fn empty() -> RegexSet {
let empty: [&str; 0] = [];
RegexSetBuilder::new(empty).build().unwrap()
}
/// Returns true if and only if one of the regexes in this set matches
/// the haystack given.
///
/// This method should be preferred if you only need to test whether any
/// of the regexes in the set should match, but don't care about *which*
/// regexes matched. This is because the underlying matching engine will
/// quit immediately after seeing the first match instead of continuing to
/// find all matches.
///
/// Note that as with searches using [`Regex`](crate::Regex), the
/// expression is unanchored by default. That is, if the regex does not
/// start with `^` or `\A`, or end with `$` or `\z`, then it is permitted
/// to match anywhere in the haystack.
///
/// # Example
///
/// Tests whether a set matches somewhere in a haystack:
///
/// ```
/// use regex::RegexSet;
///
/// let set = RegexSet::new([r"\w+", r"\d+"]).unwrap();
/// assert!(set.is_match("foo"));
/// assert!(!set.is_match("☃"));
/// ```
#[inline]
pub fn is_match(&self, haystack: &str) -> bool {
self.is_match_at(haystack, 0)
}
/// Returns true if and only if one of the regexes in this set matches the
/// haystack given, with the search starting at the offset given.
///
/// The significance of the starting point is that it takes the surrounding
/// context into consideration. For example, the `\A` anchor can only
/// match when `start == 0`.
///
/// # Panics
///
/// This panics when `start >= haystack.len() + 1`.
///
/// # Example
///
/// This example shows the significance of `start`. Namely, consider a
/// haystack `foobar` and a desire to execute a search starting at offset
/// `3`. You could search a substring explicitly, but then the look-around
/// assertions won't work correctly. Instead, you can use this method to
/// specify the start position of a search.
///
/// ```
/// use regex::RegexSet;
///
/// let set = RegexSet::new([r"\bbar\b", r"(?m)^bar$"]).unwrap();
/// let hay = "foobar";
/// // We get a match here, but it's probably not intended.
/// assert!(set.is_match(&hay[3..]));
/// // No match because the assertions take the context into account.
/// assert!(!set.is_match_at(hay, 3));
/// ```
#[inline]
pub fn is_match_at(&self, haystack: &str, start: usize) -> bool {
self.meta.is_match(Input::new(haystack).span(start..haystack.len()))
}
/// Returns the set of regexes that match in the given haystack.
///
/// The set returned contains the index of each regex that matches in
/// the given haystack. The index is in correspondence with the order of
/// regular expressions given to `RegexSet`'s constructor.
///
/// The set can also be used to iterate over the matched indices. The order
/// of iteration is always ascending with respect to the matching indices.
///
/// Note that as with searches using [`Regex`](crate::Regex), the
/// expression is unanchored by default. That is, if the regex does not
/// start with `^` or `\A`, or end with `$` or `\z`, then it is permitted
/// to match anywhere in the haystack.
///
/// # Example
///
/// Tests which regular expressions match the given haystack:
///
/// ```
/// use regex::RegexSet;
///
/// let set = RegexSet::new([
/// r"\w+",
/// r"\d+",
/// r"\pL+",
/// r"foo",
/// r"bar",
/// r"barfoo",
/// r"foobar",
/// ]).unwrap();
/// let matches: Vec<_> = set.matches("foobar").into_iter().collect();
/// assert_eq!(matches, vec![0, 2, 3, 4, 6]);
///
/// // You can also test whether a particular regex matched:
/// let matches = set.matches("foobar");
/// assert!(!matches.matched(5));
/// assert!(matches.matched(6));
/// ```
#[inline]
pub fn matches(&self, haystack: &str) -> SetMatches {
self.matches_at(haystack, 0)
}
/// Returns the set of regexes that match in the given haystack.
///
/// The set returned contains the index of each regex that matches in
/// the given haystack. The index is in correspondence with the order of
/// regular expressions given to `RegexSet`'s constructor.
///
/// The set can also be used to iterate over the matched indices. The order
/// of iteration is always ascending with respect to the matching indices.
///
/// The significance of the starting point is that it takes the surrounding
/// context into consideration. For example, the `\A` anchor can only
/// match when `start == 0`.
///
/// # Panics
///
/// This panics when `start >= haystack.len() + 1`.
///
/// # Example
///
/// Tests which regular expressions match the given haystack:
///
/// ```
/// use regex::RegexSet;
///
/// let set = RegexSet::new([r"\bbar\b", r"(?m)^bar$"]).unwrap();
/// let hay = "foobar";
/// // We get matches here, but it's probably not intended.
/// let matches: Vec<_> = set.matches(&hay[3..]).into_iter().collect();
/// assert_eq!(matches, vec![0, 1]);
/// // No matches because the assertions take the context into account.
/// let matches: Vec<_> = set.matches_at(hay, 3).into_iter().collect();
/// assert_eq!(matches, vec![]);
/// ```
#[inline]
pub fn matches_at(&self, haystack: &str, start: usize) -> SetMatches {
let input = Input::new(haystack).span(start..haystack.len());
let mut patset = PatternSet::new(self.meta.pattern_len());
self.meta.which_overlapping_matches(&input, &mut patset);
SetMatches(patset)
}
/// Returns the same as matches, but starts the search at the given
/// offset and stores the matches into the slice given.
///
/// The significance of the starting point is that it takes the surrounding
/// context into consideration. For example, the `\A` anchor can only
/// match when `start == 0`.
///
/// `matches` must have a length that is at least the number of regexes
/// in this set.
///
/// This method returns true if and only if at least one member of
/// `matches` is true after executing the set against `haystack`.
#[doc(hidden)]
#[inline]
pub fn matches_read_at(
&self,
matches: &mut [bool],
haystack: &str,
start: usize,
) -> bool {
// This is pretty dumb. We should try to fix this, but the
// regex-automata API doesn't provide a way to store matches in an
// arbitrary &mut [bool]. Thankfully, this API is doc(hidden) and
// thus not public... But regex-capi currently uses it. We should
// fix regex-capi to use a PatternSet, maybe? Not sure... PatternSet
// is in regex-automata, not regex. So maybe we should just accept a
// 'SetMatches', which is basically just a newtype around PatternSet.
let mut patset = PatternSet::new(self.meta.pattern_len());
let mut input = Input::new(haystack);
input.set_start(start);
self.meta.which_overlapping_matches(&input, &mut patset);
for pid in patset.iter() {
matches[pid] = true;
}
!patset.is_empty()
}
/// An alias for `matches_read_at` to preserve backward compatibility.
///
/// The `regex-capi` crate used this method, so to avoid breaking that
/// crate, we continue to export it as an undocumented API.
#[doc(hidden)]
#[inline]
pub fn read_matches_at(
&self,
matches: &mut [bool],
haystack: &str,
start: usize,
) -> bool {
self.matches_read_at(matches, haystack, start)
}
/// Returns the total number of regexes in this set.
///
/// # Example
///
/// ```
/// use regex::RegexSet;
///
/// assert_eq!(0, RegexSet::empty().len());
/// assert_eq!(1, RegexSet::new([r"[0-9]"]).unwrap().len());
/// assert_eq!(2, RegexSet::new([r"[0-9]", r"[a-z]"]).unwrap().len());
/// ```
#[inline]
pub fn len(&self) -> usize {
self.meta.pattern_len()
}
/// Returns `true` if this set contains no regexes.
///
/// # Example
///
/// ```
/// use regex::RegexSet;
///
/// assert!(RegexSet::empty().is_empty());
/// assert!(!RegexSet::new([r"[0-9]"]).unwrap().is_empty());
/// ```
#[inline]
pub fn is_empty(&self) -> bool {
self.meta.pattern_len() == 0
}
/// Returns the regex patterns that this regex set was constructed from.
///
/// This function can be used to determine the pattern for a match. The
/// slice returned has exactly as many patterns givens to this regex set,
/// and the order of the slice is the same as the order of the patterns
/// provided to the set.
///
/// # Example
///
/// ```
/// use regex::RegexSet;
///
/// let set = RegexSet::new(&[
/// r"\w+",
/// r"\d+",
/// r"\pL+",
/// r"foo",
/// r"bar",
/// r"barfoo",
/// r"foobar",
/// ]).unwrap();
/// let matches: Vec<_> = set
/// .matches("foobar")
/// .into_iter()
/// .map(|index| &set.patterns()[index])
/// .collect();
/// assert_eq!(matches, vec![r"\w+", r"\pL+", r"foo", r"bar", r"foobar"]);
/// ```
#[inline]
pub fn patterns(&self) -> &[String] {
&self.patterns
}
}
impl Default for RegexSet {
fn default() -> Self {
RegexSet::empty()
}
}
/// A set of matches returned by a regex set.
///
/// Values of this type are constructed by [`RegexSet::matches`].
#[derive(Clone, Debug)]
pub struct SetMatches(PatternSet);
impl SetMatches {
/// Whether this set contains any matches.
///
/// # Example
///
/// ```
/// use regex::RegexSet;
///
/// let set = RegexSet::new(&[
/// r"[a-z]+@[a-z]+\.(com|org|net)",
/// r"[a-z]+\.(com|org|net)",
/// ]).unwrap();
/// let matches = set.matches("foo@example.com");
/// assert!(matches.matched_any());
/// ```
#[inline]
pub fn matched_any(&self) -> bool {
!self.0.is_empty()
}
/// Whether all patterns in this set matched.
///
/// # Example
///
/// ```
/// use regex::RegexSet;
///
/// let set = RegexSet::new(&[
/// r"^foo",
/// r"[a-z]+\.com",
/// ]).unwrap();
/// let matches = set.matches("foo.example.com");
/// assert!(matches.matched_all());
/// ```
pub fn matched_all(&self) -> bool {
self.0.is_full()
}
/// Whether the regex at the given index matched.
///
/// The index for a regex is determined by its insertion order upon the
/// initial construction of a `RegexSet`, starting at `0`.
///
/// # Panics
///
/// If `index` is greater than or equal to the number of regexes in the
/// original set that produced these matches. Equivalently, when `index`
/// is greater than or equal to [`SetMatches::len`].
///
/// # Example
///
/// ```
/// use regex::RegexSet;
///
/// let set = RegexSet::new([
/// r"[a-z]+@[a-z]+\.(com|org|net)",
/// r"[a-z]+\.(com|org|net)",
/// ]).unwrap();
/// let matches = set.matches("example.com");
/// assert!(!matches.matched(0));
/// assert!(matches.matched(1));
/// ```
#[inline]
pub fn matched(&self, index: usize) -> bool {
self.0.contains(PatternID::new_unchecked(index))
}
/// The total number of regexes in the set that created these matches.
///
/// **WARNING:** This always returns the same value as [`RegexSet::len`].
/// In particular, it does *not* return the number of elements yielded by
/// [`SetMatches::iter`]. The only way to determine the total number of
/// matched regexes is to iterate over them.
///
/// # Example
///
/// Notice that this method returns the total number of regexes in the
/// original set, and *not* the total number of regexes that matched.
///
/// ```
/// use regex::RegexSet;
///
/// let set = RegexSet::new([
/// r"[a-z]+@[a-z]+\.(com|org|net)",
/// r"[a-z]+\.(com|org|net)",
/// ]).unwrap();
/// let matches = set.matches("example.com");
/// // Total number of patterns that matched.
/// assert_eq!(1, matches.iter().count());
/// // Total number of patterns in the set.
/// assert_eq!(2, matches.len());
/// ```
#[inline]
pub fn len(&self) -> usize {
self.0.capacity()
}
/// Returns an iterator over the indices of the regexes that matched.
///
/// This will always produces matches in ascending order, where the index
/// yielded corresponds to the index of the regex that matched with respect
/// to its position when initially building the set.
///
/// # Example
///
/// ```
/// use regex::RegexSet;
///
/// let set = RegexSet::new([
/// r"[0-9]",
/// r"[a-z]",
/// r"[A-Z]",
/// r"\p{Greek}",
/// ]).unwrap();
/// let hay = "βa1";
/// let matches: Vec<_> = set.matches(hay).iter().collect();
/// assert_eq!(matches, vec![0, 1, 3]);
/// ```
///
/// Note that `SetMatches` also implemnets the `IntoIterator` trait, so
/// this method is not always needed. For example:
///
/// ```
/// use regex::RegexSet;
///
/// let set = RegexSet::new([
/// r"[0-9]",
/// r"[a-z]",
/// r"[A-Z]",
/// r"\p{Greek}",
/// ]).unwrap();
/// let hay = "βa1";
/// let mut matches = vec![];
/// for index in set.matches(hay) {
/// matches.push(index);
/// }
/// assert_eq!(matches, vec![0, 1, 3]);
/// ```
#[inline]
pub fn iter(&self) -> SetMatchesIter<'_> {
SetMatchesIter(self.0.iter())
}
}
impl IntoIterator for SetMatches {
type IntoIter = SetMatchesIntoIter;
type Item = usize;
fn into_iter(self) -> Self::IntoIter {
let it = 0..self.0.capacity();
SetMatchesIntoIter { patset: self.0, it }
}
}
impl<'a> IntoIterator for &'a SetMatches {
type IntoIter = SetMatchesIter<'a>;
type Item = usize;
fn into_iter(self) -> Self::IntoIter {
self.iter()
}
}
/// An owned iterator over the set of matches from a regex set.
///
/// This will always produces matches in ascending order of index, where the
/// index corresponds to the index of the regex that matched with respect to
/// its position when initially building the set.
///
/// This iterator is created by calling `SetMatches::into_iter` via the
/// `IntoIterator` trait. This is automatically done in `for` loops.
///
/// # Example
///
/// ```
/// use regex::RegexSet;
///
/// let set = RegexSet::new([
/// r"[0-9]",
/// r"[a-z]",
/// r"[A-Z]",
/// r"\p{Greek}",
/// ]).unwrap();
/// let hay = "βa1";
/// let mut matches = vec![];
/// for index in set.matches(hay) {
/// matches.push(index);
/// }
/// assert_eq!(matches, vec![0, 1, 3]);
/// ```
#[derive(Debug)]
pub struct SetMatchesIntoIter {
patset: PatternSet,
it: core::ops::Range<usize>,
}
impl Iterator for SetMatchesIntoIter {
type Item = usize;
fn next(&mut self) -> Option<usize> {
loop {
let id = self.it.next()?;
if self.patset.contains(PatternID::new_unchecked(id)) {
return Some(id);
}
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.it.size_hint()
}
}
impl DoubleEndedIterator for SetMatchesIntoIter {
fn next_back(&mut self) -> Option<usize> {
loop {
let id = self.it.next_back()?;
if self.patset.contains(PatternID::new_unchecked(id)) {
return Some(id);
}
}
}
}
impl core::iter::FusedIterator for SetMatchesIntoIter {}
/// A borrowed iterator over the set of matches from a regex set.
///
/// The lifetime `'a` refers to the lifetime of the [`SetMatches`] value that
/// created this iterator.
///
/// This will always produces matches in ascending order, where the index
/// corresponds to the index of the regex that matched with respect to its
/// position when initially building the set.
///
/// This iterator is created by the [`SetMatches::iter`] method.
#[derive(Clone, Debug)]
pub struct SetMatchesIter<'a>(PatternSetIter<'a>);
impl<'a> Iterator for SetMatchesIter<'a> {
type Item = usize;
fn next(&mut self) -> Option<usize> {
self.0.next().map(|pid| pid.as_usize())
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.0.size_hint()
}
}
impl<'a> DoubleEndedIterator for SetMatchesIter<'a> {
fn next_back(&mut self) -> Option<usize> {
self.0.next_back().map(|pid| pid.as_usize())
}
}
impl<'a> core::iter::FusedIterator for SetMatchesIter<'a> {}
impl core::fmt::Debug for RegexSet {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(f, "RegexSet({:?})", self.patterns())
}
}