1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
#![deny(missing_docs)]
#![deny(missing_debug_implementations)]
#![deny(warnings)]
#![cfg_attr(not(test), no_std)]
//! A light-weight lock guarded by an atomic boolean.
//!
//! Most efficient when contention is low, acquiring the lock is a single
//! atomic swap, and releasing it just 1 more atomic swap.
//!
//! # Example
//!
//! ```
//! use std::sync::Arc;
//! use try_lock::TryLock;
//!
//! // a thing we want to share
//! struct Widget {
//! name: String,
//! }
//!
//! // lock it up!
//! let widget1 = Arc::new(TryLock::new(Widget {
//! name: "Spanner".into(),
//! }));
//!
//! let widget2 = widget1.clone();
//!
//!
//! // mutate the widget
//! let mut locked = widget1.try_lock().expect("example isn't locked yet");
//! locked.name.push_str(" Bundle");
//!
//! // hands off, buddy
//! let not_locked = widget2.try_lock();
//! assert!(not_locked.is_none(), "widget1 has the lock");
//!
//! // ok, you can have it
//! drop(locked);
//!
//! let locked2 = widget2.try_lock().expect("widget1 lock is released");
//!
//! assert_eq!(locked2.name, "Spanner Bundle");
//! ```
#[cfg(test)]
extern crate core;
use core::cell::UnsafeCell;
use core::fmt;
use core::ops::{Deref, DerefMut};
use core::sync::atomic::{AtomicBool, Ordering};
use core::marker::PhantomData;
/// A light-weight lock guarded by an atomic boolean.
///
/// Most efficient when contention is low, acquiring the lock is a single
/// atomic swap, and releasing it just 1 more atomic swap.
///
/// It is only possible to try to acquire the lock, it is not possible to
/// wait for the lock to become ready, like with a `Mutex`.
#[derive(Default)]
pub struct TryLock<T> {
is_locked: AtomicBool,
value: UnsafeCell<T>,
}
impl<T> TryLock<T> {
/// Create a `TryLock` around the value.
#[inline]
pub const fn new(val: T) -> TryLock<T> {
TryLock {
is_locked: AtomicBool::new(false),
value: UnsafeCell::new(val),
}
}
/// Try to acquire the lock of this value.
///
/// If the lock is already acquired by someone else, this returns
/// `None`. You can try to acquire again whenever you want, perhaps
/// by spinning a few times, or by using some other means of
/// notification.
///
/// # Note
///
/// The default memory ordering is to use `Acquire` to lock, and `Release`
/// to unlock. If different ordering is required, use
/// [`try_lock_explicit`](TryLock::try_lock_explicit) or
/// [`try_lock_explicit_unchecked`](TryLock::try_lock_explicit_unchecked).
#[inline]
pub fn try_lock(&self) -> Option<Locked<T>> {
unsafe {
self.try_lock_explicit_unchecked(Ordering::Acquire, Ordering::Release)
}
}
/// Try to acquire the lock of this value using the lock and unlock orderings.
///
/// If the lock is already acquired by someone else, this returns
/// `None`. You can try to acquire again whenever you want, perhaps
/// by spinning a few times, or by using some other means of
/// notification.
#[inline]
#[deprecated(
since = "0.2.3",
note = "This method is actually unsafe because it unsafely allows \
the use of weaker memory ordering. Please use try_lock_explicit instead"
)]
pub fn try_lock_order(&self, lock_order: Ordering, unlock_order: Ordering) -> Option<Locked<T>> {
unsafe {
self.try_lock_explicit_unchecked(lock_order, unlock_order)
}
}
/// Try to acquire the lock of this value using the specified lock and
/// unlock orderings.
///
/// If the lock is already acquired by someone else, this returns
/// `None`. You can try to acquire again whenever you want, perhaps
/// by spinning a few times, or by using some other means of
/// notification.
///
/// # Panic
///
/// This method panics if `lock_order` is not any of `Acquire`, `AcqRel`,
/// and `SeqCst`, or `unlock_order` is not any of `Release` and `SeqCst`.
#[inline]
pub fn try_lock_explicit(&self, lock_order: Ordering, unlock_order: Ordering) -> Option<Locked<T>> {
match lock_order {
Ordering::Acquire |
Ordering::AcqRel |
Ordering::SeqCst => {}
_ => panic!("lock ordering must be `Acquire`, `AcqRel`, or `SeqCst`"),
}
match unlock_order {
Ordering::Release |
Ordering::SeqCst => {}
_ => panic!("unlock ordering must be `Release` or `SeqCst`"),
}
unsafe {
self.try_lock_explicit_unchecked(lock_order, unlock_order)
}
}
/// Try to acquire the lock of this value using the specified lock and
/// unlock orderings without checking that the specified orderings are
/// strong enough to be safe.
///
/// If the lock is already acquired by someone else, this returns
/// `None`. You can try to acquire again whenever you want, perhaps
/// by spinning a few times, or by using some other means of
/// notification.
///
/// # Safety
///
/// Unlike [`try_lock_explicit`], this method is unsafe because it does not
/// check that the given memory orderings are strong enough to prevent data
/// race.
///
/// [`try_lock_explicit`]: Self::try_lock_explicit
#[inline]
pub unsafe fn try_lock_explicit_unchecked(&self, lock_order: Ordering, unlock_order: Ordering) -> Option<Locked<T>> {
if !self.is_locked.swap(true, lock_order) {
Some(Locked {
lock: self,
order: unlock_order,
_p: PhantomData,
})
} else {
None
}
}
/// Take the value back out of the lock when this is the sole owner.
#[inline]
pub fn into_inner(self) -> T {
debug_assert!(!self.is_locked.load(Ordering::Relaxed), "TryLock was mem::forgotten");
self.value.into_inner()
}
}
unsafe impl<T: Send> Send for TryLock<T> {}
unsafe impl<T: Send> Sync for TryLock<T> {}
impl<T: fmt::Debug> fmt::Debug for TryLock<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// Used if the TryLock cannot acquire the lock.
struct LockedPlaceholder;
impl fmt::Debug for LockedPlaceholder {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str("<locked>")
}
}
let mut builder = f.debug_struct("TryLock");
if let Some(locked) = self.try_lock() {
builder.field("value", &*locked);
} else {
builder.field("value", &LockedPlaceholder);
}
builder.finish()
}
}
/// A locked value acquired from a `TryLock`.
///
/// The type represents an exclusive view at the underlying value. The lock is
/// released when this type is dropped.
///
/// This type derefs to the underlying value.
#[must_use = "TryLock will immediately unlock if not used"]
pub struct Locked<'a, T: 'a> {
lock: &'a TryLock<T>,
order: Ordering,
/// Suppresses Send and Sync autotraits for `struct Locked`.
_p: PhantomData<*mut T>,
}
impl<'a, T> Deref for Locked<'a, T> {
type Target = T;
#[inline]
fn deref(&self) -> &T {
unsafe { &*self.lock.value.get() }
}
}
impl<'a, T> DerefMut for Locked<'a, T> {
#[inline]
fn deref_mut(&mut self) -> &mut T {
unsafe { &mut *self.lock.value.get() }
}
}
impl<'a, T> Drop for Locked<'a, T> {
#[inline]
fn drop(&mut self) {
self.lock.is_locked.store(false, self.order);
}
}
impl<'a, T: fmt::Debug> fmt::Debug for Locked<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
#[cfg(test)]
mod tests {
use super::TryLock;
#[test]
fn fmt_debug() {
let lock = TryLock::new(5);
assert_eq!(format!("{:?}", lock), "TryLock { value: 5 }");
let locked = lock.try_lock().unwrap();
assert_eq!(format!("{:?}", locked), "5");
assert_eq!(format!("{:?}", lock), "TryLock { value: <locked> }");
}
}