regex_lite/
nfa.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
use core::{cell::RefCell, mem::size_of};

use alloc::{string::String, sync::Arc, vec, vec::Vec};

use crate::{
    error::Error,
    hir::{self, Hir, HirKind},
    int::U32,
};

pub(crate) type StateID = u32;

#[derive(Clone, Copy, Debug)]
pub(crate) struct Config {
    pub(crate) size_limit: Option<usize>,
}

impl Default for Config {
    fn default() -> Config {
        Config { size_limit: Some(10 * (1 << 20)) }
    }
}

#[derive(Clone)]
pub(crate) struct NFA {
    /// The pattern string this NFA was generated from.
    ///
    /// We put it here for lack of a better place to put it. ¯\_(ツ)_/¯
    pattern: String,
    /// The states that make up this NFA.
    states: Vec<State>,
    /// The ID of the start state.
    start: StateID,
    /// Whether this NFA can only match at the beginning of a haystack.
    is_start_anchored: bool,
    /// Whether this NFA can match the empty string.
    is_match_empty: bool,
    /// If every match has the same number of matching capture groups, then
    /// this corresponds to the number of groups.
    static_explicit_captures_len: Option<usize>,
    /// A map from capture group name to its corresponding index.
    cap_name_to_index: CaptureNameMap,
    /// A map from capture group index to the corresponding name, if one
    /// exists.
    cap_index_to_name: Vec<Option<Arc<str>>>,
    /// Heap memory used indirectly by NFA states and other things (like the
    /// various capturing group representations above). Since each state
    /// might use a different amount of heap, we need to keep track of this
    /// incrementally.
    memory_extra: usize,
}

impl NFA {
    /// Creates a new NFA from the given configuration and HIR.
    pub(crate) fn new(
        config: Config,
        pattern: String,
        hir: &Hir,
    ) -> Result<NFA, Error> {
        Compiler::new(config, pattern).compile(hir)
    }

    /// Returns the pattern string used to construct this NFA.
    pub(crate) fn pattern(&self) -> &str {
        &self.pattern
    }

    /// Returns the state corresponding to the given ID.
    ///
    /// # Panics
    ///
    /// If the ID does not refer to a valid state, then this panics.
    pub(crate) fn state(&self, id: StateID) -> &State {
        &self.states[id.as_usize()]
    }

    /// Returns the total number of states in this NFA.
    pub(crate) fn len(&self) -> usize {
        self.states.len()
    }

    /// Returns the ID of the starting state for this NFA.
    pub(crate) fn start(&self) -> StateID {
        self.start
    }

    /// Returns the capture group index for the corresponding named group.
    /// If no such group with the given name exists, then `None` is returned.
    pub(crate) fn to_index(&self, name: &str) -> Option<usize> {
        self.cap_name_to_index.get(name).cloned().map(|i| i.as_usize())
    }

    /*
    /// Returns the capture group name for the corresponding index.
    /// If no such group with the given index, then `None` is returned.
    pub(crate) fn to_name(&self, index: usize) -> Option<&str> {
        self.cap_index_to_name.get(index)?.as_deref()
    }
    */

    /// Returns an iterator over all of the capture groups, along with their
    /// names if they exist, in this NFA.
    pub(crate) fn capture_names(&self) -> CaptureNames<'_> {
        CaptureNames { it: self.cap_index_to_name.iter() }
    }

    /// Returns the total number of capture groups, including the first and
    /// implicit group, in this NFA.
    pub(crate) fn group_len(&self) -> usize {
        self.cap_index_to_name.len()
    }

    /// Returns true if and only if this NFA can only match at the beginning of
    /// a haystack.
    pub(crate) fn is_start_anchored(&self) -> bool {
        self.is_start_anchored
    }

    /// If the pattern always reports the same number of matching capture groups
    /// for every match, then this returns the number of those groups. This
    /// doesn't include the implicit group found in every pattern.
    pub(crate) fn static_explicit_captures_len(&self) -> Option<usize> {
        self.static_explicit_captures_len
    }

    /// Returns the heap memory usage, in bytes, used by this NFA.
    fn memory_usage(&self) -> usize {
        (self.states.len() * size_of::<State>())
            + (self.cap_index_to_name.len() * size_of::<Option<Arc<str>>>())
            + self.memory_extra
    }
}

impl core::fmt::Debug for NFA {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        writeln!(f, "NFA(")?;
        writeln!(f, "pattern: {}", self.pattern)?;
        for (sid, state) in self.states.iter().enumerate() {
            writeln!(f, "{:07?}: {:?}", sid, state)?;
        }
        writeln!(f, ")")?;
        Ok(())
    }
}

/// An iterator over all capture groups in an NFA.
///
/// If a particular group has a name, then it is yielded. Otherwise, `None`
/// is yielded.
#[derive(Clone, Debug)]
pub(crate) struct CaptureNames<'a> {
    it: core::slice::Iter<'a, Option<Arc<str>>>,
}

impl<'a> Iterator for CaptureNames<'a> {
    type Item = Option<&'a str>;

    fn next(&mut self) -> Option<Option<&'a str>> {
        self.it.next().map(|n| n.as_deref())
    }
}

#[derive(Clone, Eq, PartialEq)]
pub(crate) enum State {
    Char { target: StateID, ch: char },
    Ranges { target: StateID, ranges: Vec<(char, char)> },
    Splits { targets: Vec<StateID>, reverse: bool },
    Goto { target: StateID, look: Option<hir::Look> },
    Capture { target: StateID, slot: u32 },
    Fail,
    Match,
}

impl State {
    /// Returns the heap memory usage of this NFA state in bytes.
    fn memory_usage(&self) -> usize {
        match *self {
            State::Char { .. }
            | State::Goto { .. }
            | State::Capture { .. }
            | State::Fail { .. }
            | State::Match => 0,
            State::Splits { ref targets, .. } => {
                targets.len() * size_of::<StateID>()
            }
            State::Ranges { ref ranges, .. } => {
                ranges.len() * size_of::<(char, char)>()
            }
        }
    }

    /// Returns an iterator over the given split targets. The order of the
    /// iterator yields elements in reverse when `reverse` is true.
    pub(crate) fn iter_splits<'a>(
        splits: &'a [StateID],
        reverse: bool,
    ) -> impl Iterator<Item = StateID> + 'a {
        let mut it = splits.iter();
        core::iter::from_fn(move || {
            if reverse { it.next_back() } else { it.next() }.copied()
        })
    }
}

impl core::fmt::Debug for State {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        match *self {
            State::Char { target, ch } => {
                write!(f, "{:?} => {:?}", ch, target)
            }
            State::Ranges { target, ref ranges } => {
                for (i, &(start, end)) in ranges.iter().enumerate() {
                    if i > 0 {
                        write!(f, ", ")?;
                    }
                    write!(f, "{:?}-{:?} => {:?}", start, end, target)?;
                }
                Ok(())
            }
            State::Splits { ref targets, reverse } => {
                write!(f, "splits(")?;
                for (i, sid) in
                    State::iter_splits(targets, reverse).enumerate()
                {
                    if i > 0 {
                        write!(f, ", ")?;
                    }
                    write!(f, "{:?}", sid)?;
                }
                write!(f, ")")
            }
            State::Goto { target, look: None } => {
                write!(f, "goto({:?})", target)
            }
            State::Goto { target, look: Some(look) } => {
                write!(f, "{:?} => {:?}", look, target)
            }
            State::Capture { target, slot } => {
                write!(f, "capture(slot={:?}) => {:?}", slot, target,)
            }
            State::Fail => write!(f, "FAIL"),
            State::Match => {
                write!(f, "MATCH")
            }
        }
    }
}

/// A map from capture group name to its corresponding capture group index.
///
/// We define a type alias here so that we can transparently use a `HashMap`
/// whenever it's available. We do so presumably because it's faster, although
/// there are no benchmarks verifying this.
#[cfg(feature = "std")]
type CaptureNameMap = std::collections::HashMap<Arc<str>, u32>;
#[cfg(not(feature = "std"))]
type CaptureNameMap = alloc::collections::BTreeMap<Arc<str>, u32>;

#[derive(Debug)]
struct Compiler {
    config: Config,
    nfa: RefCell<NFA>,
}

impl Compiler {
    fn new(config: Config, pattern: String) -> Compiler {
        let nfa = RefCell::new(NFA {
            pattern,
            states: vec![],
            start: 0,
            is_start_anchored: false,
            is_match_empty: false,
            static_explicit_captures_len: None,
            cap_name_to_index: CaptureNameMap::default(),
            cap_index_to_name: vec![],
            memory_extra: 0,
        });
        Compiler { config, nfa }
    }

    fn compile(self, hir: &Hir) -> Result<NFA, Error> {
        self.nfa.borrow_mut().is_start_anchored = hir.is_start_anchored();
        self.nfa.borrow_mut().is_match_empty = hir.is_match_empty();
        self.nfa.borrow_mut().static_explicit_captures_len =
            hir.static_explicit_captures_len();
        let compiled = self.c_capture(0, None, hir)?;
        let mat = self.add(State::Match)?;
        self.patch(compiled.end, mat)?;
        self.nfa.borrow_mut().start = compiled.start;
        Ok(self.nfa.into_inner())
    }

    fn c(&self, hir: &Hir) -> Result<ThompsonRef, Error> {
        match *hir.kind() {
            HirKind::Empty => self.c_empty(),
            HirKind::Char(ch) => self.c_char(ch),
            HirKind::Class(ref class) => self.c_class(class),
            HirKind::Look(ref look) => self.c_look(look),
            HirKind::Repetition(ref rep) => self.c_repetition(rep),
            HirKind::Capture(ref cap) => {
                self.c_capture(cap.index, cap.name.as_deref(), &cap.sub)
            }
            HirKind::Concat(ref subs) => {
                self.c_concat(subs.iter().map(|s| self.c(s)))
            }
            HirKind::Alternation(ref subs) => {
                self.c_alternation(subs.iter().map(|s| self.c(s)))
            }
        }
    }

    /// Compile a "fail" state that can never be transitioned out of.
    fn c_fail(&self) -> Result<ThompsonRef, Error> {
        let id = self.add(State::Fail)?;
        Ok(ThompsonRef { start: id, end: id })
    }

    /// Compile an "empty" state with one unconditional epsilon transition.
    ///
    /// Both the `start` and `end` locations point to the state created.
    /// Callers will likely want to keep the `start`, but patch the `end` to
    /// point to some other state.
    fn c_empty(&self) -> Result<ThompsonRef, Error> {
        let id = self.add_empty()?;
        Ok(ThompsonRef { start: id, end: id })
    }

    /// Compile the given literal char to an NFA.
    fn c_char(&self, ch: char) -> Result<ThompsonRef, Error> {
        let id = self.add(State::Char { target: 0, ch })?;
        Ok(ThompsonRef { start: id, end: id })
    }

    /// Compile the given character class into an NFA.
    ///
    /// If the class is empty, then this compiles to a `Fail` state.
    fn c_class(&self, class: &hir::Class) -> Result<ThompsonRef, Error> {
        let id = if class.ranges.is_empty() {
            // Technically using an explicit fail state probably isn't
            // necessary. Because if you try to match against an empty Ranges,
            // then it should turn up with nothing regardless of input, and
            // thus "acts" like a Fail state. But it's better to be more
            // explicit, and there's no real cost to doing so.
            self.add(State::Fail)
        } else {
            let ranges =
                class.ranges.iter().map(|r| (r.start, r.end)).collect();
            self.add(State::Ranges { target: 0, ranges })
        }?;
        Ok(ThompsonRef { start: id, end: id })
    }

    /// Compile the given HIR look-around assertion to an NFA look-around
    /// assertion.
    fn c_look(&self, look: &hir::Look) -> Result<ThompsonRef, Error> {
        let id = self.add(State::Goto { target: 0, look: Some(*look) })?;
        Ok(ThompsonRef { start: id, end: id })
    }

    /// Compile the given repetition expression. This handles all types of
    /// repetitions and greediness.
    fn c_repetition(
        &self,
        rep: &hir::Repetition,
    ) -> Result<ThompsonRef, Error> {
        match (rep.min, rep.max) {
            (0, Some(1)) => self.c_zero_or_one(&rep.sub, rep.greedy),
            (min, None) => self.c_at_least(&rep.sub, rep.greedy, min),
            (min, Some(max)) if min == max => self.c_exactly(&rep.sub, min),
            (min, Some(max)) => self.c_bounded(&rep.sub, rep.greedy, min, max),
        }
    }

    /// Compile the given expression such that it matches at least `min` times,
    /// but no more than `max` times.
    ///
    /// When `greedy` is true, then the preference is for the expression to
    /// match as much as possible. Otherwise, it will match as little as
    /// possible.
    fn c_bounded(
        &self,
        hir: &Hir,
        greedy: bool,
        min: u32,
        max: u32,
    ) -> Result<ThompsonRef, Error> {
        let prefix = self.c_exactly(hir, min)?;
        if min == max {
            return Ok(prefix);
        }

        // It is tempting here to compile the rest here as a concatenation
        // of zero-or-one matches. i.e., for `a{2,5}`, compile it as if it
        // were `aaa?a?a?`. The problem here is that it leads to this program:
        //
        //     >000000: 61 => 01
        //      000001: 61 => 02
        //      000002: union(03, 04)
        //      000003: 61 => 04
        //      000004: union(05, 06)
        //      000005: 61 => 06
        //      000006: union(07, 08)
        //      000007: 61 => 08
        //      000008: MATCH
        //
        // And effectively, once you hit state 2, the epsilon closure will
        // include states 3, 5, 6, 7 and 8, which is quite a bit. It is better
        // to instead compile it like so:
        //
        //     >000000: 61 => 01
        //      000001: 61 => 02
        //      000002: union(03, 08)
        //      000003: 61 => 04
        //      000004: union(05, 08)
        //      000005: 61 => 06
        //      000006: union(07, 08)
        //      000007: 61 => 08
        //      000008: MATCH
        //
        // So that the epsilon closure of state 2 is now just 3 and 8.
        let empty = self.add_empty()?;
        let mut prev_end = prefix.end;
        for _ in min..max {
            let splits =
                self.add(State::Splits { targets: vec![], reverse: !greedy })?;
            let compiled = self.c(hir)?;
            self.patch(prev_end, splits)?;
            self.patch(splits, compiled.start)?;
            self.patch(splits, empty)?;
            prev_end = compiled.end;
        }
        self.patch(prev_end, empty)?;
        Ok(ThompsonRef { start: prefix.start, end: empty })
    }

    /// Compile the given expression such that it may be matched `n` or more
    /// times, where `n` can be any integer. (Although a particularly large
    /// integer is likely to run afoul of any configured size limits.)
    ///
    /// When `greedy` is true, then the preference is for the expression to
    /// match as much as possible. Otherwise, it will match as little as
    /// possible.
    fn c_at_least(
        &self,
        hir: &Hir,
        greedy: bool,
        n: u32,
    ) -> Result<ThompsonRef, Error> {
        if n == 0 {
            // When the expression cannot match the empty string, then we
            // can get away with something much simpler: just one 'alt'
            // instruction that optionally repeats itself. But if the expr
            // can match the empty string... see below.
            if !hir.is_match_empty() {
                let splits = self.add(State::Splits {
                    targets: vec![],
                    reverse: !greedy,
                })?;
                let compiled = self.c(hir)?;
                self.patch(splits, compiled.start)?;
                self.patch(compiled.end, splits)?;
                return Ok(ThompsonRef { start: splits, end: splits });
            }

            // What's going on here? Shouldn't x* be simpler than this? It
            // turns out that when implementing leftmost-first (Perl-like)
            // match semantics, x* results in an incorrect preference order
            // when computing the transitive closure of states if and only if
            // 'x' can match the empty string. So instead, we compile x* as
            // (x+)?, which preserves the correct preference order.
            //
            // See: https://github.com/rust-lang/regex/issues/779
            let compiled = self.c(hir)?;
            let plus =
                self.add(State::Splits { targets: vec![], reverse: !greedy })?;
            self.patch(compiled.end, plus)?;
            self.patch(plus, compiled.start)?;

            let question =
                self.add(State::Splits { targets: vec![], reverse: !greedy })?;
            let empty = self.add_empty()?;
            self.patch(question, compiled.start)?;
            self.patch(question, empty)?;
            self.patch(plus, empty)?;
            Ok(ThompsonRef { start: question, end: empty })
        } else if n == 1 {
            let compiled = self.c(hir)?;
            let splits =
                self.add(State::Splits { targets: vec![], reverse: !greedy })?;
            self.patch(compiled.end, splits)?;
            self.patch(splits, compiled.start)?;
            Ok(ThompsonRef { start: compiled.start, end: splits })
        } else {
            let prefix = self.c_exactly(hir, n - 1)?;
            let last = self.c(hir)?;
            let splits =
                self.add(State::Splits { targets: vec![], reverse: !greedy })?;
            self.patch(prefix.end, last.start)?;
            self.patch(last.end, splits)?;
            self.patch(splits, last.start)?;
            Ok(ThompsonRef { start: prefix.start, end: splits })
        }
    }

    /// Compile the given expression such that it may be matched zero or one
    /// times.
    ///
    /// When `greedy` is true, then the preference is for the expression to
    /// match as much as possible. Otherwise, it will match as little as
    /// possible.
    fn c_zero_or_one(
        &self,
        hir: &Hir,
        greedy: bool,
    ) -> Result<ThompsonRef, Error> {
        let splits =
            self.add(State::Splits { targets: vec![], reverse: !greedy })?;
        let compiled = self.c(hir)?;
        let empty = self.add_empty()?;
        self.patch(splits, compiled.start)?;
        self.patch(splits, empty)?;
        self.patch(compiled.end, empty)?;
        Ok(ThompsonRef { start: splits, end: empty })
    }

    /// Compile the given HIR expression exactly `n` times.
    fn c_exactly(&self, hir: &Hir, n: u32) -> Result<ThompsonRef, Error> {
        self.c_concat((0..n).map(|_| self.c(hir)))
    }

    /// Compile the given expression and insert capturing states at the
    /// beginning and end of it. The slot for the capture states is computed
    /// from the index.
    fn c_capture(
        &self,
        index: u32,
        name: Option<&str>,
        hir: &Hir,
    ) -> Result<ThompsonRef, Error> {
        // For discontiguous indices, push placeholders for earlier capture
        // groups that weren't explicitly added. This can happen, for example,
        // with patterns like '(a){0}(a)' where '(a){0}' is completely removed
        // from the pattern.
        let existing_groups_len = self.nfa.borrow().cap_index_to_name.len();
        for _ in 0..(index.as_usize().saturating_sub(existing_groups_len)) {
            self.nfa.borrow_mut().cap_index_to_name.push(None);
        }
        if index.as_usize() >= existing_groups_len {
            if let Some(name) = name {
                let name = Arc::from(name);
                let mut nfa = self.nfa.borrow_mut();
                nfa.cap_name_to_index.insert(Arc::clone(&name), index);
                nfa.cap_index_to_name.push(Some(Arc::clone(&name)));
                // This is an approximation.
                nfa.memory_extra += name.len() + size_of::<u32>();
            } else {
                self.nfa.borrow_mut().cap_index_to_name.push(None);
            }
        }

        let Some(slot) = index.checked_mul(2) else {
            return Err(Error::new("capture group slots exhausted"));
        };
        let start = self.add(State::Capture { target: 0, slot })?;
        let inner = self.c(hir)?;
        let Some(slot) = slot.checked_add(1) else {
            return Err(Error::new("capture group slots exhausted"));
        };
        let end = self.add(State::Capture { target: 0, slot })?;
        self.patch(start, inner.start)?;
        self.patch(inner.end, end)?;

        Ok(ThompsonRef { start, end })
    }

    /// Compile a concatenation of the sub-expressions yielded by the given
    /// iterator. If the iterator yields no elements, then this compiles down
    /// to an "empty" state that always matches.
    fn c_concat<I>(&self, mut it: I) -> Result<ThompsonRef, Error>
    where
        I: Iterator<Item = Result<ThompsonRef, Error>>,
    {
        let ThompsonRef { start, mut end } = match it.next() {
            Some(result) => result?,
            None => return self.c_empty(),
        };
        for result in it {
            let compiled = result?;
            self.patch(end, compiled.start)?;
            end = compiled.end;
        }
        Ok(ThompsonRef { start, end })
    }

    /// Compile an alternation, where each element yielded by the given
    /// iterator represents an item in the alternation. If the iterator yields
    /// no elements, then this compiles down to a "fail" state.
    ///
    /// In an alternation, expressions appearing earlier are "preferred" at
    /// match time over expressions appearing later. (This is currently always
    /// true, as this crate only supports leftmost-first semantics.)
    fn c_alternation<I>(&self, mut it: I) -> Result<ThompsonRef, Error>
    where
        I: Iterator<Item = Result<ThompsonRef, Error>>,
    {
        let first = match it.next() {
            None => return self.c_fail(),
            Some(result) => result?,
        };
        let second = match it.next() {
            None => return Ok(first),
            Some(result) => result?,
        };

        let splits =
            self.add(State::Splits { targets: vec![], reverse: false })?;
        let end = self.add_empty()?;
        self.patch(splits, first.start)?;
        self.patch(first.end, end)?;
        self.patch(splits, second.start)?;
        self.patch(second.end, end)?;
        for result in it {
            let compiled = result?;
            self.patch(splits, compiled.start)?;
            self.patch(compiled.end, end)?;
        }
        Ok(ThompsonRef { start: splits, end })
    }

    /// A convenience routine for adding an empty state, also known as an
    /// unconditional epsilon transition. These are quite useful for making
    /// NFA construction simpler.
    ///
    /// (In the regex crate, we do a second pass to remove these, but don't
    /// bother with that here.)
    fn add_empty(&self) -> Result<StateID, Error> {
        self.add(State::Goto { target: 0, look: None })
    }

    /// The common implementation of "add a state." It handles the common
    /// error cases of state ID exhausting (by owning state ID allocation) and
    /// whether the size limit has been exceeded.
    fn add(&self, state: State) -> Result<StateID, Error> {
        let id = u32::try_from(self.nfa.borrow().states.len())
            .map_err(|_| Error::new("exhausted state IDs, too many states"))?;
        self.nfa.borrow_mut().memory_extra += state.memory_usage();
        self.nfa.borrow_mut().states.push(state);
        self.check_size_limit()?;
        Ok(id)
    }

    /// Add a transition from one state to another.
    ///
    /// This routine is called "patch" since it is very common to add the
    /// states you want, typically with "dummy" state ID transitions, and then
    /// "patch" in the real state IDs later. This is because you don't always
    /// know all of the necessary state IDs to add because they might not
    /// exist yet.
    ///
    /// # Errors
    ///
    /// This may error if patching leads to an increase in heap usage beyond
    /// the configured size limit. Heap usage only grows when patching adds a
    /// new transition (as in the case of a "splits" state).
    fn patch(&self, from: StateID, to: StateID) -> Result<(), Error> {
        let mut new_memory_extra = self.nfa.borrow().memory_extra;
        match self.nfa.borrow_mut().states[from.as_usize()] {
            State::Char { ref mut target, .. } => {
                *target = to;
            }
            State::Ranges { ref mut target, .. } => {
                *target = to;
            }
            State::Splits { ref mut targets, .. } => {
                targets.push(to);
                new_memory_extra += size_of::<StateID>();
            }
            State::Goto { ref mut target, .. } => {
                *target = to;
            }
            State::Capture { ref mut target, .. } => {
                *target = to;
            }
            State::Fail | State::Match => {}
        }
        if new_memory_extra != self.nfa.borrow().memory_extra {
            self.nfa.borrow_mut().memory_extra = new_memory_extra;
            self.check_size_limit()?;
        }
        Ok(())
    }

    /// Checks that the current heap memory usage of the NFA being compiled
    /// doesn't exceed the configured size limit. If it does, an error is
    /// returned.
    fn check_size_limit(&self) -> Result<(), Error> {
        if let Some(limit) = self.config.size_limit {
            if self.nfa.borrow().memory_usage() > limit {
                return Err(Error::new("compiled regex exceeded size limit"));
            }
        }
        Ok(())
    }
}

/// A value that represents the result of compiling a sub-expression of a
/// regex's HIR. Specifically, this represents a sub-graph of the NFA that
/// has an initial state at `start` and a final state at `end`.
#[derive(Clone, Copy, Debug)]
struct ThompsonRef {
    start: StateID,
    end: StateID,
}