regex_lite/nfa.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
use core::{cell::RefCell, mem::size_of};
use alloc::{string::String, sync::Arc, vec, vec::Vec};
use crate::{
error::Error,
hir::{self, Hir, HirKind},
int::U32,
};
pub(crate) type StateID = u32;
#[derive(Clone, Copy, Debug)]
pub(crate) struct Config {
pub(crate) size_limit: Option<usize>,
}
impl Default for Config {
fn default() -> Config {
Config { size_limit: Some(10 * (1 << 20)) }
}
}
#[derive(Clone)]
pub(crate) struct NFA {
/// The pattern string this NFA was generated from.
///
/// We put it here for lack of a better place to put it. ¯\_(ツ)_/¯
pattern: String,
/// The states that make up this NFA.
states: Vec<State>,
/// The ID of the start state.
start: StateID,
/// Whether this NFA can only match at the beginning of a haystack.
is_start_anchored: bool,
/// Whether this NFA can match the empty string.
is_match_empty: bool,
/// If every match has the same number of matching capture groups, then
/// this corresponds to the number of groups.
static_explicit_captures_len: Option<usize>,
/// A map from capture group name to its corresponding index.
cap_name_to_index: CaptureNameMap,
/// A map from capture group index to the corresponding name, if one
/// exists.
cap_index_to_name: Vec<Option<Arc<str>>>,
/// Heap memory used indirectly by NFA states and other things (like the
/// various capturing group representations above). Since each state
/// might use a different amount of heap, we need to keep track of this
/// incrementally.
memory_extra: usize,
}
impl NFA {
/// Creates a new NFA from the given configuration and HIR.
pub(crate) fn new(
config: Config,
pattern: String,
hir: &Hir,
) -> Result<NFA, Error> {
Compiler::new(config, pattern).compile(hir)
}
/// Returns the pattern string used to construct this NFA.
pub(crate) fn pattern(&self) -> &str {
&self.pattern
}
/// Returns the state corresponding to the given ID.
///
/// # Panics
///
/// If the ID does not refer to a valid state, then this panics.
pub(crate) fn state(&self, id: StateID) -> &State {
&self.states[id.as_usize()]
}
/// Returns the total number of states in this NFA.
pub(crate) fn len(&self) -> usize {
self.states.len()
}
/// Returns the ID of the starting state for this NFA.
pub(crate) fn start(&self) -> StateID {
self.start
}
/// Returns the capture group index for the corresponding named group.
/// If no such group with the given name exists, then `None` is returned.
pub(crate) fn to_index(&self, name: &str) -> Option<usize> {
self.cap_name_to_index.get(name).cloned().map(|i| i.as_usize())
}
/*
/// Returns the capture group name for the corresponding index.
/// If no such group with the given index, then `None` is returned.
pub(crate) fn to_name(&self, index: usize) -> Option<&str> {
self.cap_index_to_name.get(index)?.as_deref()
}
*/
/// Returns an iterator over all of the capture groups, along with their
/// names if they exist, in this NFA.
pub(crate) fn capture_names(&self) -> CaptureNames<'_> {
CaptureNames { it: self.cap_index_to_name.iter() }
}
/// Returns the total number of capture groups, including the first and
/// implicit group, in this NFA.
pub(crate) fn group_len(&self) -> usize {
self.cap_index_to_name.len()
}
/// Returns true if and only if this NFA can only match at the beginning of
/// a haystack.
pub(crate) fn is_start_anchored(&self) -> bool {
self.is_start_anchored
}
/// If the pattern always reports the same number of matching capture groups
/// for every match, then this returns the number of those groups. This
/// doesn't include the implicit group found in every pattern.
pub(crate) fn static_explicit_captures_len(&self) -> Option<usize> {
self.static_explicit_captures_len
}
/// Returns the heap memory usage, in bytes, used by this NFA.
fn memory_usage(&self) -> usize {
(self.states.len() * size_of::<State>())
+ (self.cap_index_to_name.len() * size_of::<Option<Arc<str>>>())
+ self.memory_extra
}
}
impl core::fmt::Debug for NFA {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
writeln!(f, "NFA(")?;
writeln!(f, "pattern: {}", self.pattern)?;
for (sid, state) in self.states.iter().enumerate() {
writeln!(f, "{:07?}: {:?}", sid, state)?;
}
writeln!(f, ")")?;
Ok(())
}
}
/// An iterator over all capture groups in an NFA.
///
/// If a particular group has a name, then it is yielded. Otherwise, `None`
/// is yielded.
#[derive(Clone, Debug)]
pub(crate) struct CaptureNames<'a> {
it: core::slice::Iter<'a, Option<Arc<str>>>,
}
impl<'a> Iterator for CaptureNames<'a> {
type Item = Option<&'a str>;
fn next(&mut self) -> Option<Option<&'a str>> {
self.it.next().map(|n| n.as_deref())
}
}
#[derive(Clone, Eq, PartialEq)]
pub(crate) enum State {
Char { target: StateID, ch: char },
Ranges { target: StateID, ranges: Vec<(char, char)> },
Splits { targets: Vec<StateID>, reverse: bool },
Goto { target: StateID, look: Option<hir::Look> },
Capture { target: StateID, slot: u32 },
Fail,
Match,
}
impl State {
/// Returns the heap memory usage of this NFA state in bytes.
fn memory_usage(&self) -> usize {
match *self {
State::Char { .. }
| State::Goto { .. }
| State::Capture { .. }
| State::Fail { .. }
| State::Match => 0,
State::Splits { ref targets, .. } => {
targets.len() * size_of::<StateID>()
}
State::Ranges { ref ranges, .. } => {
ranges.len() * size_of::<(char, char)>()
}
}
}
/// Returns an iterator over the given split targets. The order of the
/// iterator yields elements in reverse when `reverse` is true.
pub(crate) fn iter_splits<'a>(
splits: &'a [StateID],
reverse: bool,
) -> impl Iterator<Item = StateID> + 'a {
let mut it = splits.iter();
core::iter::from_fn(move || {
if reverse { it.next_back() } else { it.next() }.copied()
})
}
}
impl core::fmt::Debug for State {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
match *self {
State::Char { target, ch } => {
write!(f, "{:?} => {:?}", ch, target)
}
State::Ranges { target, ref ranges } => {
for (i, &(start, end)) in ranges.iter().enumerate() {
if i > 0 {
write!(f, ", ")?;
}
write!(f, "{:?}-{:?} => {:?}", start, end, target)?;
}
Ok(())
}
State::Splits { ref targets, reverse } => {
write!(f, "splits(")?;
for (i, sid) in
State::iter_splits(targets, reverse).enumerate()
{
if i > 0 {
write!(f, ", ")?;
}
write!(f, "{:?}", sid)?;
}
write!(f, ")")
}
State::Goto { target, look: None } => {
write!(f, "goto({:?})", target)
}
State::Goto { target, look: Some(look) } => {
write!(f, "{:?} => {:?}", look, target)
}
State::Capture { target, slot } => {
write!(f, "capture(slot={:?}) => {:?}", slot, target,)
}
State::Fail => write!(f, "FAIL"),
State::Match => {
write!(f, "MATCH")
}
}
}
}
/// A map from capture group name to its corresponding capture group index.
///
/// We define a type alias here so that we can transparently use a `HashMap`
/// whenever it's available. We do so presumably because it's faster, although
/// there are no benchmarks verifying this.
#[cfg(feature = "std")]
type CaptureNameMap = std::collections::HashMap<Arc<str>, u32>;
#[cfg(not(feature = "std"))]
type CaptureNameMap = alloc::collections::BTreeMap<Arc<str>, u32>;
#[derive(Debug)]
struct Compiler {
config: Config,
nfa: RefCell<NFA>,
}
impl Compiler {
fn new(config: Config, pattern: String) -> Compiler {
let nfa = RefCell::new(NFA {
pattern,
states: vec![],
start: 0,
is_start_anchored: false,
is_match_empty: false,
static_explicit_captures_len: None,
cap_name_to_index: CaptureNameMap::default(),
cap_index_to_name: vec![],
memory_extra: 0,
});
Compiler { config, nfa }
}
fn compile(self, hir: &Hir) -> Result<NFA, Error> {
self.nfa.borrow_mut().is_start_anchored = hir.is_start_anchored();
self.nfa.borrow_mut().is_match_empty = hir.is_match_empty();
self.nfa.borrow_mut().static_explicit_captures_len =
hir.static_explicit_captures_len();
let compiled = self.c_capture(0, None, hir)?;
let mat = self.add(State::Match)?;
self.patch(compiled.end, mat)?;
self.nfa.borrow_mut().start = compiled.start;
Ok(self.nfa.into_inner())
}
fn c(&self, hir: &Hir) -> Result<ThompsonRef, Error> {
match *hir.kind() {
HirKind::Empty => self.c_empty(),
HirKind::Char(ch) => self.c_char(ch),
HirKind::Class(ref class) => self.c_class(class),
HirKind::Look(ref look) => self.c_look(look),
HirKind::Repetition(ref rep) => self.c_repetition(rep),
HirKind::Capture(ref cap) => {
self.c_capture(cap.index, cap.name.as_deref(), &cap.sub)
}
HirKind::Concat(ref subs) => {
self.c_concat(subs.iter().map(|s| self.c(s)))
}
HirKind::Alternation(ref subs) => {
self.c_alternation(subs.iter().map(|s| self.c(s)))
}
}
}
/// Compile a "fail" state that can never be transitioned out of.
fn c_fail(&self) -> Result<ThompsonRef, Error> {
let id = self.add(State::Fail)?;
Ok(ThompsonRef { start: id, end: id })
}
/// Compile an "empty" state with one unconditional epsilon transition.
///
/// Both the `start` and `end` locations point to the state created.
/// Callers will likely want to keep the `start`, but patch the `end` to
/// point to some other state.
fn c_empty(&self) -> Result<ThompsonRef, Error> {
let id = self.add_empty()?;
Ok(ThompsonRef { start: id, end: id })
}
/// Compile the given literal char to an NFA.
fn c_char(&self, ch: char) -> Result<ThompsonRef, Error> {
let id = self.add(State::Char { target: 0, ch })?;
Ok(ThompsonRef { start: id, end: id })
}
/// Compile the given character class into an NFA.
///
/// If the class is empty, then this compiles to a `Fail` state.
fn c_class(&self, class: &hir::Class) -> Result<ThompsonRef, Error> {
let id = if class.ranges.is_empty() {
// Technically using an explicit fail state probably isn't
// necessary. Because if you try to match against an empty Ranges,
// then it should turn up with nothing regardless of input, and
// thus "acts" like a Fail state. But it's better to be more
// explicit, and there's no real cost to doing so.
self.add(State::Fail)
} else {
let ranges =
class.ranges.iter().map(|r| (r.start, r.end)).collect();
self.add(State::Ranges { target: 0, ranges })
}?;
Ok(ThompsonRef { start: id, end: id })
}
/// Compile the given HIR look-around assertion to an NFA look-around
/// assertion.
fn c_look(&self, look: &hir::Look) -> Result<ThompsonRef, Error> {
let id = self.add(State::Goto { target: 0, look: Some(*look) })?;
Ok(ThompsonRef { start: id, end: id })
}
/// Compile the given repetition expression. This handles all types of
/// repetitions and greediness.
fn c_repetition(
&self,
rep: &hir::Repetition,
) -> Result<ThompsonRef, Error> {
match (rep.min, rep.max) {
(0, Some(1)) => self.c_zero_or_one(&rep.sub, rep.greedy),
(min, None) => self.c_at_least(&rep.sub, rep.greedy, min),
(min, Some(max)) if min == max => self.c_exactly(&rep.sub, min),
(min, Some(max)) => self.c_bounded(&rep.sub, rep.greedy, min, max),
}
}
/// Compile the given expression such that it matches at least `min` times,
/// but no more than `max` times.
///
/// When `greedy` is true, then the preference is for the expression to
/// match as much as possible. Otherwise, it will match as little as
/// possible.
fn c_bounded(
&self,
hir: &Hir,
greedy: bool,
min: u32,
max: u32,
) -> Result<ThompsonRef, Error> {
let prefix = self.c_exactly(hir, min)?;
if min == max {
return Ok(prefix);
}
// It is tempting here to compile the rest here as a concatenation
// of zero-or-one matches. i.e., for `a{2,5}`, compile it as if it
// were `aaa?a?a?`. The problem here is that it leads to this program:
//
// >000000: 61 => 01
// 000001: 61 => 02
// 000002: union(03, 04)
// 000003: 61 => 04
// 000004: union(05, 06)
// 000005: 61 => 06
// 000006: union(07, 08)
// 000007: 61 => 08
// 000008: MATCH
//
// And effectively, once you hit state 2, the epsilon closure will
// include states 3, 5, 6, 7 and 8, which is quite a bit. It is better
// to instead compile it like so:
//
// >000000: 61 => 01
// 000001: 61 => 02
// 000002: union(03, 08)
// 000003: 61 => 04
// 000004: union(05, 08)
// 000005: 61 => 06
// 000006: union(07, 08)
// 000007: 61 => 08
// 000008: MATCH
//
// So that the epsilon closure of state 2 is now just 3 and 8.
let empty = self.add_empty()?;
let mut prev_end = prefix.end;
for _ in min..max {
let splits =
self.add(State::Splits { targets: vec![], reverse: !greedy })?;
let compiled = self.c(hir)?;
self.patch(prev_end, splits)?;
self.patch(splits, compiled.start)?;
self.patch(splits, empty)?;
prev_end = compiled.end;
}
self.patch(prev_end, empty)?;
Ok(ThompsonRef { start: prefix.start, end: empty })
}
/// Compile the given expression such that it may be matched `n` or more
/// times, where `n` can be any integer. (Although a particularly large
/// integer is likely to run afoul of any configured size limits.)
///
/// When `greedy` is true, then the preference is for the expression to
/// match as much as possible. Otherwise, it will match as little as
/// possible.
fn c_at_least(
&self,
hir: &Hir,
greedy: bool,
n: u32,
) -> Result<ThompsonRef, Error> {
if n == 0 {
// When the expression cannot match the empty string, then we
// can get away with something much simpler: just one 'alt'
// instruction that optionally repeats itself. But if the expr
// can match the empty string... see below.
if !hir.is_match_empty() {
let splits = self.add(State::Splits {
targets: vec![],
reverse: !greedy,
})?;
let compiled = self.c(hir)?;
self.patch(splits, compiled.start)?;
self.patch(compiled.end, splits)?;
return Ok(ThompsonRef { start: splits, end: splits });
}
// What's going on here? Shouldn't x* be simpler than this? It
// turns out that when implementing leftmost-first (Perl-like)
// match semantics, x* results in an incorrect preference order
// when computing the transitive closure of states if and only if
// 'x' can match the empty string. So instead, we compile x* as
// (x+)?, which preserves the correct preference order.
//
// See: https://github.com/rust-lang/regex/issues/779
let compiled = self.c(hir)?;
let plus =
self.add(State::Splits { targets: vec![], reverse: !greedy })?;
self.patch(compiled.end, plus)?;
self.patch(plus, compiled.start)?;
let question =
self.add(State::Splits { targets: vec![], reverse: !greedy })?;
let empty = self.add_empty()?;
self.patch(question, compiled.start)?;
self.patch(question, empty)?;
self.patch(plus, empty)?;
Ok(ThompsonRef { start: question, end: empty })
} else if n == 1 {
let compiled = self.c(hir)?;
let splits =
self.add(State::Splits { targets: vec![], reverse: !greedy })?;
self.patch(compiled.end, splits)?;
self.patch(splits, compiled.start)?;
Ok(ThompsonRef { start: compiled.start, end: splits })
} else {
let prefix = self.c_exactly(hir, n - 1)?;
let last = self.c(hir)?;
let splits =
self.add(State::Splits { targets: vec![], reverse: !greedy })?;
self.patch(prefix.end, last.start)?;
self.patch(last.end, splits)?;
self.patch(splits, last.start)?;
Ok(ThompsonRef { start: prefix.start, end: splits })
}
}
/// Compile the given expression such that it may be matched zero or one
/// times.
///
/// When `greedy` is true, then the preference is for the expression to
/// match as much as possible. Otherwise, it will match as little as
/// possible.
fn c_zero_or_one(
&self,
hir: &Hir,
greedy: bool,
) -> Result<ThompsonRef, Error> {
let splits =
self.add(State::Splits { targets: vec![], reverse: !greedy })?;
let compiled = self.c(hir)?;
let empty = self.add_empty()?;
self.patch(splits, compiled.start)?;
self.patch(splits, empty)?;
self.patch(compiled.end, empty)?;
Ok(ThompsonRef { start: splits, end: empty })
}
/// Compile the given HIR expression exactly `n` times.
fn c_exactly(&self, hir: &Hir, n: u32) -> Result<ThompsonRef, Error> {
self.c_concat((0..n).map(|_| self.c(hir)))
}
/// Compile the given expression and insert capturing states at the
/// beginning and end of it. The slot for the capture states is computed
/// from the index.
fn c_capture(
&self,
index: u32,
name: Option<&str>,
hir: &Hir,
) -> Result<ThompsonRef, Error> {
// For discontiguous indices, push placeholders for earlier capture
// groups that weren't explicitly added. This can happen, for example,
// with patterns like '(a){0}(a)' where '(a){0}' is completely removed
// from the pattern.
let existing_groups_len = self.nfa.borrow().cap_index_to_name.len();
for _ in 0..(index.as_usize().saturating_sub(existing_groups_len)) {
self.nfa.borrow_mut().cap_index_to_name.push(None);
}
if index.as_usize() >= existing_groups_len {
if let Some(name) = name {
let name = Arc::from(name);
let mut nfa = self.nfa.borrow_mut();
nfa.cap_name_to_index.insert(Arc::clone(&name), index);
nfa.cap_index_to_name.push(Some(Arc::clone(&name)));
// This is an approximation.
nfa.memory_extra += name.len() + size_of::<u32>();
} else {
self.nfa.borrow_mut().cap_index_to_name.push(None);
}
}
let Some(slot) = index.checked_mul(2) else {
return Err(Error::new("capture group slots exhausted"));
};
let start = self.add(State::Capture { target: 0, slot })?;
let inner = self.c(hir)?;
let Some(slot) = slot.checked_add(1) else {
return Err(Error::new("capture group slots exhausted"));
};
let end = self.add(State::Capture { target: 0, slot })?;
self.patch(start, inner.start)?;
self.patch(inner.end, end)?;
Ok(ThompsonRef { start, end })
}
/// Compile a concatenation of the sub-expressions yielded by the given
/// iterator. If the iterator yields no elements, then this compiles down
/// to an "empty" state that always matches.
fn c_concat<I>(&self, mut it: I) -> Result<ThompsonRef, Error>
where
I: Iterator<Item = Result<ThompsonRef, Error>>,
{
let ThompsonRef { start, mut end } = match it.next() {
Some(result) => result?,
None => return self.c_empty(),
};
for result in it {
let compiled = result?;
self.patch(end, compiled.start)?;
end = compiled.end;
}
Ok(ThompsonRef { start, end })
}
/// Compile an alternation, where each element yielded by the given
/// iterator represents an item in the alternation. If the iterator yields
/// no elements, then this compiles down to a "fail" state.
///
/// In an alternation, expressions appearing earlier are "preferred" at
/// match time over expressions appearing later. (This is currently always
/// true, as this crate only supports leftmost-first semantics.)
fn c_alternation<I>(&self, mut it: I) -> Result<ThompsonRef, Error>
where
I: Iterator<Item = Result<ThompsonRef, Error>>,
{
let first = match it.next() {
None => return self.c_fail(),
Some(result) => result?,
};
let second = match it.next() {
None => return Ok(first),
Some(result) => result?,
};
let splits =
self.add(State::Splits { targets: vec![], reverse: false })?;
let end = self.add_empty()?;
self.patch(splits, first.start)?;
self.patch(first.end, end)?;
self.patch(splits, second.start)?;
self.patch(second.end, end)?;
for result in it {
let compiled = result?;
self.patch(splits, compiled.start)?;
self.patch(compiled.end, end)?;
}
Ok(ThompsonRef { start: splits, end })
}
/// A convenience routine for adding an empty state, also known as an
/// unconditional epsilon transition. These are quite useful for making
/// NFA construction simpler.
///
/// (In the regex crate, we do a second pass to remove these, but don't
/// bother with that here.)
fn add_empty(&self) -> Result<StateID, Error> {
self.add(State::Goto { target: 0, look: None })
}
/// The common implementation of "add a state." It handles the common
/// error cases of state ID exhausting (by owning state ID allocation) and
/// whether the size limit has been exceeded.
fn add(&self, state: State) -> Result<StateID, Error> {
let id = u32::try_from(self.nfa.borrow().states.len())
.map_err(|_| Error::new("exhausted state IDs, too many states"))?;
self.nfa.borrow_mut().memory_extra += state.memory_usage();
self.nfa.borrow_mut().states.push(state);
self.check_size_limit()?;
Ok(id)
}
/// Add a transition from one state to another.
///
/// This routine is called "patch" since it is very common to add the
/// states you want, typically with "dummy" state ID transitions, and then
/// "patch" in the real state IDs later. This is because you don't always
/// know all of the necessary state IDs to add because they might not
/// exist yet.
///
/// # Errors
///
/// This may error if patching leads to an increase in heap usage beyond
/// the configured size limit. Heap usage only grows when patching adds a
/// new transition (as in the case of a "splits" state).
fn patch(&self, from: StateID, to: StateID) -> Result<(), Error> {
let mut new_memory_extra = self.nfa.borrow().memory_extra;
match self.nfa.borrow_mut().states[from.as_usize()] {
State::Char { ref mut target, .. } => {
*target = to;
}
State::Ranges { ref mut target, .. } => {
*target = to;
}
State::Splits { ref mut targets, .. } => {
targets.push(to);
new_memory_extra += size_of::<StateID>();
}
State::Goto { ref mut target, .. } => {
*target = to;
}
State::Capture { ref mut target, .. } => {
*target = to;
}
State::Fail | State::Match => {}
}
if new_memory_extra != self.nfa.borrow().memory_extra {
self.nfa.borrow_mut().memory_extra = new_memory_extra;
self.check_size_limit()?;
}
Ok(())
}
/// Checks that the current heap memory usage of the NFA being compiled
/// doesn't exceed the configured size limit. If it does, an error is
/// returned.
fn check_size_limit(&self) -> Result<(), Error> {
if let Some(limit) = self.config.size_limit {
if self.nfa.borrow().memory_usage() > limit {
return Err(Error::new("compiled regex exceeded size limit"));
}
}
Ok(())
}
}
/// A value that represents the result of compiling a sub-expression of a
/// regex's HIR. Specifically, this represents a sub-graph of the NFA that
/// has an initial state at `start` and a final state at `end`.
#[derive(Clone, Copy, Debug)]
struct ThompsonRef {
start: StateID,
end: StateID,
}