arc_swap/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
#![doc(test(attr(deny(warnings))))]
#![warn(missing_docs)]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![allow(deprecated)]
#![cfg_attr(feature = "experimental-thread-local", no_std)]
#![cfg_attr(feature = "experimental-thread-local", feature(thread_local))]

//! Making [`Arc`][Arc] itself atomic
//!
//! The [`ArcSwap`] type is a container for an `Arc` that can be changed atomically. Semantically,
//! it is similar to something like `Atomic<Arc<T>>` (if there was such a thing) or
//! `RwLock<Arc<T>>` (but without the need for the locking). It is optimized for read-mostly
//! scenarios, with consistent performance characteristics.
//!
//! # Motivation
//!
//! There are many situations in which one might want to have some data structure that is often
//! read and seldom updated. Some examples might be a configuration of a service, routing tables,
//! snapshot of some data that is renewed every few minutes, etc.
//!
//! In all these cases one needs:
//! * Being able to read the current value of the data structure, fast, often and concurrently from
//!   many threads.
//! * Using the same version of the data structure over longer period of time ‒ a query should be
//!   answered by a consistent version of data, a packet should be routed either by an old or by a
//!   new version of the routing table but not by a combination, etc.
//! * Perform an update without disrupting the processing.
//!
//! The first idea would be to use [`RwLock<T>`][RwLock] and keep a read-lock for the whole time of
//! processing. Update would, however, pause all processing until done.
//!
//! Better option would be to have [`RwLock<Arc<T>>`][RwLock]. Then one would lock, clone the [Arc]
//! and unlock. This suffers from CPU-level contention (on the lock and on the reference count of
//! the [Arc]) which makes it relatively slow. Depending on the implementation, an update may be
//! blocked for arbitrary long time by a steady inflow of readers.
//!
//! ```rust
//! # use std::sync::{Arc, RwLock};
//! # use once_cell::sync::Lazy;
//! # struct RoutingTable; struct Packet; impl RoutingTable { fn route(&self, _: Packet) {} }
//! static ROUTING_TABLE: Lazy<RwLock<Arc<RoutingTable>>> = Lazy::new(|| {
//!     RwLock::new(Arc::new(RoutingTable))
//! });
//!
//! fn process_packet(packet: Packet) {
//!     let table = Arc::clone(&ROUTING_TABLE.read().unwrap());
//!     table.route(packet);
//! }
//! # fn main() { process_packet(Packet); }
//! ```
//!
//! The [ArcSwap] can be used instead, which solves the above problems and has better performance
//! characteristics than the [RwLock], both in contended and non-contended scenarios.
//!
//! ```rust
//! # use arc_swap::ArcSwap;
//! # use once_cell::sync::Lazy;
//! # struct RoutingTable; struct Packet; impl RoutingTable { fn route(&self, _: Packet) {} }
//! static ROUTING_TABLE: Lazy<ArcSwap<RoutingTable>> = Lazy::new(|| {
//!     ArcSwap::from_pointee(RoutingTable)
//! });
//!
//! fn process_packet(packet: Packet) {
//!     let table = ROUTING_TABLE.load();
//!     table.route(packet);
//! }
//! # fn main() { process_packet(Packet); }
//! ```
//!
//! # Crate contents
//!
//! At the heart of the crate there are [`ArcSwap`] and [`ArcSwapOption`] types, containers for an
//! [`Arc`] and [`Option<Arc>`][Option].
//!
//! Technically, these are type aliases for partial instantiations of the [`ArcSwapAny`] type. The
//! [`ArcSwapAny`] is more flexible and allows tweaking of many things (can store other things than
//! [`Arc`]s, can configure the locking [`Strategy`]). For details about the tweaking, see the
//! documentation of the [`strategy`] module and the [`RefCnt`] trait.
//!
//! The [`cache`] module provides means for speeding up read access of the contained data at the
//! cost of delayed reclamation.
//!
//! The [`access`] module can be used to do projections into the contained data to separate parts
//! of application from each other (eg. giving a component access to only its own part of
//! configuration while still having it reloaded as a whole).
//!
//! # Before using
//!
//! The data structure is a bit niche. Before using, please check the
//! [limitations and common pitfalls][docs::limitations] and the [performance
//! characteristics][docs::performance], including choosing the right [read
//! operation][docs::performance#read-operations].
//!
//! You can also get an inspiration about what's possible in the [common patterns][docs::patterns]
//! section.
//!
//! # Examples
//!
//! ```rust
//! use std::sync::Arc;
//!
//! use arc_swap::ArcSwap;
//! use crossbeam_utils::thread;
//!
//! let config = ArcSwap::from(Arc::new(String::default()));
//! thread::scope(|scope| {
//!     scope.spawn(|_| {
//!         let new_conf = Arc::new("New configuration".to_owned());
//!         config.store(new_conf);
//!     });
//!     for _ in 0..10 {
//!         scope.spawn(|_| {
//!             loop {
//!                 let cfg = config.load();
//!                 if !cfg.is_empty() {
//!                     assert_eq!(**cfg, "New configuration");
//!                     return;
//!                 }
//!             }
//!         });
//!     }
//! }).unwrap();
//! ```
//!
//! [RwLock]: https://doc.rust-lang.org/std/sync/struct.RwLock.html

#[allow(unused_imports)]
#[macro_use]
extern crate alloc;

pub mod access;
mod as_raw;
pub mod cache;
mod compile_fail_tests;
mod debt;
pub mod docs;
mod ref_cnt;
#[cfg(feature = "serde")]
mod serde;
pub mod strategy;
#[cfg(feature = "weak")]
mod weak;

use core::borrow::Borrow;
use core::fmt::{Debug, Display, Formatter, Result as FmtResult};
use core::marker::PhantomData;
use core::mem;
use core::ops::Deref;
use core::ptr;
use core::sync::atomic::{AtomicPtr, Ordering};

use alloc::sync::Arc;

use crate::access::{Access, Map};
pub use crate::as_raw::AsRaw;
pub use crate::cache::Cache;
pub use crate::ref_cnt::RefCnt;
use crate::strategy::hybrid::{DefaultConfig, HybridStrategy};
use crate::strategy::sealed::Protected;
use crate::strategy::{CaS, Strategy};
pub use crate::strategy::{DefaultStrategy, IndependentStrategy};

/// A temporary storage of the pointer.
///
/// This guard object is returned from most loading methods (with the notable exception of
/// [`load_full`](struct.ArcSwapAny.html#method.load_full)). It dereferences to the smart pointer
/// loaded, so most operations are to be done using that.
pub struct Guard<T: RefCnt, S: Strategy<T> = DefaultStrategy> {
    inner: S::Protected,
}

impl<T: RefCnt, S: Strategy<T>> Guard<T, S> {
    /// Converts it into the held value.
    ///
    /// This, on occasion, may be a tiny bit faster than cloning the Arc or whatever is being held
    /// inside.
    // Associated function on purpose, because of deref
    #[allow(clippy::wrong_self_convention)]
    #[inline]
    pub fn into_inner(lease: Self) -> T {
        lease.inner.into_inner()
    }

    /// Create a guard for a given value `inner`.
    ///
    /// This can be useful on occasion to pass a specific object to code that expects or
    /// wants to store a Guard.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use arc_swap::{ArcSwap, DefaultStrategy, Guard};
    /// # use std::sync::Arc;
    /// # let p = ArcSwap::from_pointee(42);
    /// // Create two guards pointing to the same object
    /// let g1 = p.load();
    /// let g2 = Guard::<_, DefaultStrategy>::from_inner(Arc::clone(&*g1));
    /// # drop(g2);
    /// ```
    pub fn from_inner(inner: T) -> Self {
        Guard {
            inner: S::Protected::from_inner(inner),
        }
    }
}

impl<T: RefCnt, S: Strategy<T>> Deref for Guard<T, S> {
    type Target = T;
    #[inline]
    fn deref(&self) -> &T {
        self.inner.borrow()
    }
}

impl<T: RefCnt, S: Strategy<T>> From<T> for Guard<T, S> {
    fn from(inner: T) -> Self {
        Self::from_inner(inner)
    }
}

impl<T: Default + RefCnt, S: Strategy<T>> Default for Guard<T, S> {
    fn default() -> Self {
        Self::from(T::default())
    }
}

impl<T: Debug + RefCnt, S: Strategy<T>> Debug for Guard<T, S> {
    fn fmt(&self, formatter: &mut Formatter) -> FmtResult {
        self.deref().fmt(formatter)
    }
}

impl<T: Display + RefCnt, S: Strategy<T>> Display for Guard<T, S> {
    fn fmt(&self, formatter: &mut Formatter) -> FmtResult {
        self.deref().fmt(formatter)
    }
}

/// Comparison of two pointer-like things.
// A and B are likely to *be* references, or thin wrappers around that. Calling that with extra
// reference is just annoying.
#[allow(clippy::needless_pass_by_value)]
fn ptr_eq<Base, A, B>(a: A, b: B) -> bool
where
    A: AsRaw<Base>,
    B: AsRaw<Base>,
{
    let a = a.as_raw();
    let b = b.as_raw();
    ptr::eq(a, b)
}

/// An atomic storage for a reference counted smart pointer like [`Arc`] or `Option<Arc>`.
///
/// This is a storage where a smart pointer may live. It can be read and written atomically from
/// several threads, but doesn't act like a pointer itself.
///
/// One can be created [`from`] an [`Arc`]. To get the pointer back, use the
/// [`load`](#method.load).
///
/// # Note
///
/// This is the common generic implementation. This allows sharing the same code for storing
/// both `Arc` and `Option<Arc>` (and possibly other similar types).
///
/// In your code, you most probably want to interact with it through the
/// [`ArcSwap`](type.ArcSwap.html) and [`ArcSwapOption`](type.ArcSwapOption.html) aliases. However,
/// the methods they share are described here and are applicable to both of them. That's why the
/// examples here use `ArcSwap` ‒ but they could as well be written with `ArcSwapOption` or
/// `ArcSwapAny`.
///
/// # Type parameters
///
/// * `T`: The smart pointer to be kept inside. This crate provides implementation for `Arc<_>` and
///   `Option<Arc<_>>` (`Rc` too, but that one is not practically useful). But third party could
///   provide implementations of the [`RefCnt`] trait and plug in others.
/// * `S`: Chooses the [strategy] used to protect the data inside. They come with various
///   performance trade offs, the default [`DefaultStrategy`] is good rule of thumb for most use
///   cases.
///
/// # Examples
///
/// ```rust
/// # use std::sync::Arc;
/// # use arc_swap::ArcSwap;
/// let arc = Arc::new(42);
/// let arc_swap = ArcSwap::from(arc);
/// assert_eq!(42, **arc_swap.load());
/// // It can be read multiple times
/// assert_eq!(42, **arc_swap.load());
///
/// // Put a new one in there
/// let new_arc = Arc::new(0);
/// assert_eq!(42, *arc_swap.swap(new_arc));
/// assert_eq!(0, **arc_swap.load());
/// ```
///
/// # Known bugs
///
/// Currently, things like `ArcSwapAny<Option<Option<Arc<_>>>>` (notice the double Option) don't
/// work properly. A proper solution is being looked into
/// ([#81](https://github.com/vorner/arc-swap/issues)).
///
/// [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
/// [`from`]: https://doc.rust-lang.org/nightly/std/convert/trait.From.html#tymethod.from
/// [`RefCnt`]: trait.RefCnt.html
pub struct ArcSwapAny<T: RefCnt, S: Strategy<T> = DefaultStrategy> {
    // Notes: AtomicPtr needs Sized
    /// The actual pointer, extracted from the Arc.
    ptr: AtomicPtr<T::Base>,

    /// We are basically an Arc in disguise. Inherit parameters from Arc by pretending to contain
    /// it.
    _phantom_arc: PhantomData<T>,

    /// Strategy to protect the data.
    strategy: S,
}

impl<T: RefCnt, S: Default + Strategy<T>> From<T> for ArcSwapAny<T, S> {
    fn from(val: T) -> Self {
        Self::with_strategy(val, S::default())
    }
}

impl<T: RefCnt, S: Strategy<T>> Drop for ArcSwapAny<T, S> {
    fn drop(&mut self) {
        let ptr = *self.ptr.get_mut();
        unsafe {
            // To pay any possible debts
            self.strategy.wait_for_readers(ptr, &self.ptr);
            // We are getting rid of the one stored ref count
            T::dec(ptr);
        }
    }
}

impl<T, S: Strategy<T>> Debug for ArcSwapAny<T, S>
where
    T: Debug + RefCnt,
{
    fn fmt(&self, formatter: &mut Formatter) -> FmtResult {
        formatter
            .debug_tuple("ArcSwapAny")
            .field(&self.load())
            .finish()
    }
}

impl<T, S: Strategy<T>> Display for ArcSwapAny<T, S>
where
    T: Display + RefCnt,
{
    fn fmt(&self, formatter: &mut Formatter) -> FmtResult {
        self.load().fmt(formatter)
    }
}

impl<T: RefCnt + Default, S: Default + Strategy<T>> Default for ArcSwapAny<T, S> {
    fn default() -> Self {
        Self::new(T::default())
    }
}

impl<T: RefCnt, S: Strategy<T>> ArcSwapAny<T, S> {
    /// Constructs a new storage.
    pub fn new(val: T) -> Self
    where
        S: Default,
    {
        Self::from(val)
    }

    /// Constructs a new storage while customizing the protection strategy.
    pub fn with_strategy(val: T, strategy: S) -> Self {
        // The AtomicPtr requires *mut in its interface. We are more like *const, so we cast it.
        // However, we always go back to *const right away when we get the pointer on the other
        // side, so it should be fine.
        let ptr = T::into_ptr(val);
        Self {
            ptr: AtomicPtr::new(ptr),
            _phantom_arc: PhantomData,
            strategy,
        }
    }

    /// Extracts the value inside.
    pub fn into_inner(mut self) -> T {
        let ptr = *self.ptr.get_mut();
        // To pay all the debts
        unsafe { self.strategy.wait_for_readers(ptr, &self.ptr) };
        mem::forget(self);
        unsafe { T::from_ptr(ptr) }
    }

    /// Loads the value.
    ///
    /// This makes another copy of the held pointer and returns it, atomically (it is
    /// safe even when other thread stores into the same instance at the same time).
    ///
    /// The method is lock-free and wait-free, but usually more expensive than
    /// [`load`](#method.load).
    pub fn load_full(&self) -> T {
        Guard::into_inner(self.load())
    }

    /// Provides a temporary borrow of the object inside.
    ///
    /// This returns a proxy object allowing access to the thing held inside. However, there's
    /// only limited amount of possible cheap proxies in existence for each thread ‒ if more are
    /// created, it falls back to equivalent of [`load_full`](#method.load_full) internally.
    ///
    /// This is therefore a good choice to use for eg. searching a data structure or juggling the
    /// pointers around a bit, but not as something to store in larger amounts. The rule of thumb
    /// is this is suited for local variables on stack, but not in long-living data structures.
    ///
    /// # Consistency
    ///
    /// In case multiple related operations are to be done on the loaded value, it is generally
    /// recommended to call `load` just once and keep the result over calling it multiple times.
    /// First, keeping it is usually faster. But more importantly, the value can change between the
    /// calls to load, returning different objects, which could lead to logical inconsistency.
    /// Keeping the result makes sure the same object is used.
    ///
    /// ```rust
    /// # use arc_swap::ArcSwap;
    /// struct Point {
    ///     x: usize,
    ///     y: usize,
    /// }
    ///
    /// fn print_broken(p: &ArcSwap<Point>) {
    ///     // This is broken, because the x and y may come from different points,
    ///     // combining into an invalid point that never existed.
    ///     println!("X: {}", p.load().x);
    ///     // If someone changes the content now, between these two loads, we
    ///     // have a problem
    ///     println!("Y: {}", p.load().y);
    /// }
    ///
    /// fn print_correct(p: &ArcSwap<Point>) {
    ///     // Here we take a snapshot of one specific point so both x and y come
    ///     // from the same one.
    ///     let point = p.load();
    ///     println!("X: {}", point.x);
    ///     println!("Y: {}", point.y);
    /// }
    /// # let p = ArcSwap::from_pointee(Point { x: 10, y: 20 });
    /// # print_correct(&p);
    /// # print_broken(&p);
    /// ```
    #[inline]
    pub fn load(&self) -> Guard<T, S> {
        let protected = unsafe { self.strategy.load(&self.ptr) };
        Guard { inner: protected }
    }

    /// Replaces the value inside this instance.
    ///
    /// Further loads will yield the new value. Uses [`swap`](#method.swap) internally.
    pub fn store(&self, val: T) {
        drop(self.swap(val));
    }

    /// Exchanges the value inside this instance.
    pub fn swap(&self, new: T) -> T {
        let new = T::into_ptr(new);
        // AcqRel needed to publish the target of the new pointer and get the target of the old
        // one.
        //
        // SeqCst to synchronize the time lines with the group counters.
        let old = self.ptr.swap(new, Ordering::SeqCst);
        unsafe {
            self.strategy.wait_for_readers(old, &self.ptr);
            T::from_ptr(old)
        }
    }

    /// Swaps the stored Arc if it equals to `current`.
    ///
    /// If the current value of the `ArcSwapAny` equals to `current`, the `new` is stored inside.
    /// If not, nothing happens.
    ///
    /// The previous value (no matter if the swap happened or not) is returned. Therefore, if the
    /// returned value is equal to `current`, the swap happened. You want to do a pointer-based
    /// comparison to determine it.
    ///
    /// In other words, if the caller „guesses“ the value of current correctly, it acts like
    /// [`swap`](#method.swap), otherwise it acts like [`load_full`](#method.load_full) (including
    /// the limitations).
    ///
    /// The `current` can be specified as `&Arc`, [`Guard`](struct.Guard.html),
    /// [`&Guards`](struct.Guards.html) or as a raw pointer (but _not_ owned `Arc`). See the
    /// [`AsRaw`] trait.
    pub fn compare_and_swap<C>(&self, current: C, new: T) -> Guard<T, S>
    where
        C: AsRaw<T::Base>,
        S: CaS<T>,
    {
        let protected = unsafe { self.strategy.compare_and_swap(&self.ptr, current, new) };
        Guard { inner: protected }
    }

    /// Read-Copy-Update of the pointer inside.
    ///
    /// This is useful in read-heavy situations with several threads that sometimes update the data
    /// pointed to. The readers can just repeatedly use [`load`](#method.load) without any locking.
    /// The writer uses this method to perform the update.
    ///
    /// In case there's only one thread that does updates or in case the next version is
    /// independent of the previous one, simple [`swap`](#method.swap) or [`store`](#method.store)
    /// is enough. Otherwise, it may be needed to retry the update operation if some other thread
    /// made an update in between. This is what this method does.
    ///
    /// # Examples
    ///
    /// This will *not* work as expected, because between loading and storing, some other thread
    /// might have updated the value.
    ///
    /// ```rust
    /// # use std::sync::Arc;
    /// #
    /// # use arc_swap::ArcSwap;
    /// # use crossbeam_utils::thread;
    /// #
    /// let cnt = ArcSwap::from_pointee(0);
    /// thread::scope(|scope| {
    ///     for _ in 0..10 {
    ///         scope.spawn(|_| {
    ///            let inner = cnt.load_full();
    ///             // Another thread might have stored some other number than what we have
    ///             // between the load and store.
    ///             cnt.store(Arc::new(*inner + 1));
    ///         });
    ///     }
    /// }).unwrap();
    /// // This will likely fail:
    /// // assert_eq!(10, *cnt.load_full());
    /// ```
    ///
    /// This will, but it can call the closure multiple times to retry:
    ///
    /// ```rust
    /// # use arc_swap::ArcSwap;
    /// # use crossbeam_utils::thread;
    /// #
    /// let cnt = ArcSwap::from_pointee(0);
    /// thread::scope(|scope| {
    ///     for _ in 0..10 {
    ///         scope.spawn(|_| cnt.rcu(|inner| **inner + 1));
    ///     }
    /// }).unwrap();
    /// assert_eq!(10, *cnt.load_full());
    /// ```
    ///
    /// Due to the retries, you might want to perform all the expensive operations *before* the
    /// rcu. As an example, if there's a cache of some computations as a map, and the map is cheap
    /// to clone but the computations are not, you could do something like this:
    ///
    /// ```rust
    /// # use std::collections::HashMap;
    /// #
    /// # use arc_swap::ArcSwap;
    /// # use once_cell::sync::Lazy;
    /// #
    /// fn expensive_computation(x: usize) -> usize {
    ///     x * 2 // Let's pretend multiplication is *really expensive expensive*
    /// }
    ///
    /// type Cache = HashMap<usize, usize>;
    ///
    /// static CACHE: Lazy<ArcSwap<Cache>> = Lazy::new(|| ArcSwap::default());
    ///
    /// fn cached_computation(x: usize) -> usize {
    ///     let cache = CACHE.load();
    ///     if let Some(result) = cache.get(&x) {
    ///         return *result;
    ///     }
    ///     // Not in cache. Compute and store.
    ///     // The expensive computation goes outside, so it is not retried.
    ///     let result = expensive_computation(x);
    ///     CACHE.rcu(|cache| {
    ///         // The cheaper clone of the cache can be retried if need be.
    ///         let mut cache = HashMap::clone(&cache);
    ///         cache.insert(x, result);
    ///         cache
    ///     });
    ///     result
    /// }
    ///
    /// assert_eq!(42, cached_computation(21));
    /// assert_eq!(42, cached_computation(21));
    /// ```
    ///
    /// # The cost of cloning
    ///
    /// Depending on the size of cache above, the cloning might not be as cheap. You can however
    /// use persistent data structures ‒ each modification creates a new data structure, but it
    /// shares most of the data with the old one (which is usually accomplished by using `Arc`s
    /// inside to share the unchanged values). Something like
    /// [`rpds`](https://crates.io/crates/rpds) or [`im`](https://crates.io/crates/im) might do
    /// what you need.
    pub fn rcu<R, F>(&self, mut f: F) -> T
    where
        F: FnMut(&T) -> R,
        R: Into<T>,
        S: CaS<T>,
    {
        let mut cur = self.load();
        loop {
            let new = f(&cur).into();
            let prev = self.compare_and_swap(&*cur, new);
            let swapped = ptr_eq(&*cur, &*prev);
            if swapped {
                return Guard::into_inner(prev);
            } else {
                cur = prev;
            }
        }
    }

    /// Provides an access to an up to date projection of the carried data.
    ///
    /// # Motivation
    ///
    /// Sometimes, an application consists of components. Each component has its own configuration
    /// structure. The whole configuration contains all the smaller config parts.
    ///
    /// For the sake of separation and abstraction, it is not desirable to pass the whole
    /// configuration to each of the components. This allows the component to take only access to
    /// its own part.
    ///
    /// # Lifetimes & flexibility
    ///
    /// This method is not the most flexible way, as the returned type borrows into the `ArcSwap`.
    /// To provide access into eg. `Arc<ArcSwap<T>>`, you can create the [`Map`] type directly. See
    /// the [`access`] module.
    ///
    /// # Performance
    ///
    /// As the provided function is called on each load from the shared storage, it should
    /// generally be cheap. It is expected this will usually be just referencing of a field inside
    /// the structure.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use std::sync::Arc;
    ///
    /// use arc_swap::ArcSwap;
    /// use arc_swap::access::Access;
    ///
    /// struct Cfg {
    ///     value: usize,
    /// }
    ///
    /// fn print_many_times<V: Access<usize>>(value: V) {
    ///     for _ in 0..25 {
    ///         let value = value.load();
    ///         println!("{}", *value);
    ///     }
    /// }
    ///
    /// let shared = ArcSwap::from_pointee(Cfg { value: 0 });
    /// let mapped = shared.map(|c: &Cfg| &c.value);
    /// crossbeam_utils::thread::scope(|s| {
    ///     // Will print some zeroes and some twos
    ///     s.spawn(|_| print_many_times(mapped));
    ///     s.spawn(|_| shared.store(Arc::new(Cfg { value: 2 })));
    /// }).expect("Something panicked in a thread");
    /// ```
    pub fn map<I, R, F>(&self, f: F) -> Map<&Self, I, F>
    where
        F: Fn(&I) -> &R + Clone,
        Self: Access<I>,
    {
        Map::new(self, f)
    }
}

/// An atomic storage for `Arc`.
///
/// This is a type alias only. Most of its methods are described on
/// [`ArcSwapAny`](struct.ArcSwapAny.html).
pub type ArcSwap<T> = ArcSwapAny<Arc<T>>;

impl<T, S: Strategy<Arc<T>>> ArcSwapAny<Arc<T>, S> {
    /// A convenience constructor directly from the pointed-to value.
    ///
    /// Direct equivalent for `ArcSwap::new(Arc::new(val))`.
    pub fn from_pointee(val: T) -> Self
    where
        S: Default,
    {
        Self::from(Arc::new(val))
    }
}

/// An atomic storage for `Option<Arc>`.
///
/// This is very similar to [`ArcSwap`](type.ArcSwap.html), but allows storing NULL values, which
/// is useful in some situations.
///
/// This is a type alias only. Most of the methods are described on
/// [`ArcSwapAny`](struct.ArcSwapAny.html). Even though the examples there often use `ArcSwap`,
/// they are applicable to `ArcSwapOption` with appropriate changes.
///
/// # Examples
///
/// ```
/// use std::sync::Arc;
/// use arc_swap::ArcSwapOption;
///
/// let shared = ArcSwapOption::from(None);
/// assert!(shared.load_full().is_none());
/// assert!(shared.swap(Some(Arc::new(42))).is_none());
/// assert_eq!(42, **shared.load_full().as_ref().unwrap());
/// ```
pub type ArcSwapOption<T> = ArcSwapAny<Option<Arc<T>>>;

impl<T, S: Strategy<Option<Arc<T>>>> ArcSwapAny<Option<Arc<T>>, S> {
    /// A convenience constructor directly from a pointed-to value.
    ///
    /// This just allocates the `Arc` under the hood.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use arc_swap::ArcSwapOption;
    ///
    /// let empty: ArcSwapOption<usize> = ArcSwapOption::from_pointee(None);
    /// assert!(empty.load().is_none());
    /// let non_empty: ArcSwapOption<usize> = ArcSwapOption::from_pointee(42);
    /// assert_eq!(42, **non_empty.load().as_ref().unwrap());
    /// ```
    pub fn from_pointee<V: Into<Option<T>>>(val: V) -> Self
    where
        S: Default,
    {
        Self::new(val.into().map(Arc::new))
    }

    /// A convenience constructor for an empty value.
    ///
    /// This is equivalent to `ArcSwapOption::new(None)`.
    pub fn empty() -> Self
    where
        S: Default,
    {
        Self::new(None)
    }
}

impl<T> ArcSwapOption<T> {
    /// A const-fn equivalent of [empty].
    ///
    /// Just like [empty], this creates an `None`-holding `ArcSwapOption`. The [empty] is, however,
    /// more general ‒ this is available only for the default strategy, while [empty] is for any
    /// [Default]-constructible strategy (current or future one).
    ///
    /// [empty]: ArcSwapAny::empty
    ///
    /// # Examples
    ///
    /// ```rust
    /// # use std::sync::Arc;
    /// # use arc_swap::ArcSwapOption;
    /// static GLOBAL_DATA: ArcSwapOption<usize> = ArcSwapOption::const_empty();
    ///
    /// assert!(GLOBAL_DATA.load().is_none());
    /// GLOBAL_DATA.store(Some(Arc::new(42)));
    /// assert_eq!(42, **GLOBAL_DATA.load().as_ref().unwrap());
    /// ```
    pub const fn const_empty() -> Self {
        Self {
            ptr: AtomicPtr::new(ptr::null_mut()),
            _phantom_arc: PhantomData,
            strategy: HybridStrategy {
                _config: DefaultConfig,
            },
        }
    }
}

/// An atomic storage that doesn't share the internal generation locks with others.
///
/// This makes it bigger and it also might suffer contention (on the HW level) if used from many
/// threads at once. On the other hand, it can't block writes in other instances.
///
/// See the [`IndependentStrategy`] for further details.
// Being phased out. Will deprecate once we verify in production that the new strategy works fine.
#[doc(hidden)]
pub type IndependentArcSwap<T> = ArcSwapAny<Arc<T>, IndependentStrategy>;

/// Arc swap for the [Weak] pointer.
///
/// This is similar to [ArcSwap], but it doesn't store [Arc], it stores [Weak]. It doesn't keep the
/// data alive when pointed to.
///
/// This is a type alias only. Most of the methods are described on the
/// [`ArcSwapAny`](struct.ArcSwapAny.html).
///
/// Needs the `weak` feature turned on.
///
/// [Weak]: std::sync::Weak
#[cfg(feature = "weak")]
pub type ArcSwapWeak<T> = ArcSwapAny<alloc::sync::Weak<T>>;

macro_rules! t {
    ($name: ident, $strategy: ty) => {
        #[cfg(test)]
        mod $name {
            use alloc::borrow::ToOwned;
            use alloc::string::String;
            use alloc::vec::Vec;
            use core::sync::atomic::{self, AtomicUsize};

            use adaptive_barrier::{Barrier, PanicMode};
            use crossbeam_utils::thread;

            use super::*;

            const ITERATIONS: usize = 10;

            #[allow(deprecated)] // We use "deprecated" testing strategies in here.
            type As<T> = ArcSwapAny<Arc<T>, $strategy>;
            #[allow(deprecated)] // We use "deprecated" testing strategies in here.
            type Aso<T> = ArcSwapAny<Option<Arc<T>>, $strategy>;

            /// Similar to the one in doc tests of the lib, but more times and more intensive (we
            /// want to torture it a bit).
            #[test]
            #[cfg_attr(miri, ignore)] // Takes like 1 or 2 infinities to run under miri
            fn publish() {
                const READERS: usize = 2;
                for _ in 0..ITERATIONS {
                    let config = As::<String>::default();
                    let ended = AtomicUsize::new(0);
                    thread::scope(|scope| {
                        for _ in 0..READERS {
                            scope.spawn(|_| loop {
                                let cfg = config.load_full();
                                if !cfg.is_empty() {
                                    assert_eq!(*cfg, "New configuration");
                                    ended.fetch_add(1, Ordering::Relaxed);
                                    return;
                                }
                                atomic::spin_loop_hint();
                            });
                        }
                        scope.spawn(|_| {
                            let new_conf = Arc::new("New configuration".to_owned());
                            config.store(new_conf);
                        });
                    })
                    .unwrap();
                    assert_eq!(READERS, ended.load(Ordering::Relaxed));
                    let arc = config.load_full();
                    assert_eq!(2, Arc::strong_count(&arc));
                    assert_eq!(0, Arc::weak_count(&arc));
                }
            }

            /// Similar to the doc tests of ArcSwap, but happens more times.
            #[test]
            fn swap_load() {
                for _ in 0..100 {
                    let arc = Arc::new(42);
                    let arc_swap = As::from(Arc::clone(&arc));
                    assert_eq!(42, **arc_swap.load());
                    // It can be read multiple times
                    assert_eq!(42, **arc_swap.load());

                    // Put a new one in there
                    let new_arc = Arc::new(0);
                    assert_eq!(42, *arc_swap.swap(Arc::clone(&new_arc)));
                    assert_eq!(0, **arc_swap.load());
                    // One loaded here, one in the arc_swap, one in new_arc
                    let loaded = arc_swap.load_full();
                    assert_eq!(3, Arc::strong_count(&loaded));
                    assert_eq!(0, Arc::weak_count(&loaded));
                    // The original got released from the arc_swap
                    assert_eq!(1, Arc::strong_count(&arc));
                    assert_eq!(0, Arc::weak_count(&arc));
                }
            }

            /// Two different writers publish two series of values. The readers check that it is
            /// always increasing in each serie.
            ///
            /// For performance, we try to reuse the threads here.
            #[test]
            fn multi_writers() {
                let first_value = Arc::new((0, 0));
                let shared = As::from(Arc::clone(&first_value));
                const WRITER_CNT: usize = 2;
                const READER_CNT: usize = 3;
                #[cfg(miri)]
                const ITERATIONS: usize = 5;
                #[cfg(not(miri))]
                const ITERATIONS: usize = 100;
                const SEQ: usize = 50;
                let barrier = Barrier::new(PanicMode::Poison);
                thread::scope(|scope| {
                    for w in 0..WRITER_CNT {
                        // We need to move w into the closure. But we want to just reference the
                        // other things.
                        let mut barrier = barrier.clone();
                        let shared = &shared;
                        let first_value = &first_value;
                        scope.spawn(move |_| {
                            for _ in 0..ITERATIONS {
                                barrier.wait();
                                shared.store(Arc::clone(&first_value));
                                barrier.wait();
                                for i in 0..SEQ {
                                    shared.store(Arc::new((w, i + 1)));
                                }
                            }
                        });
                    }
                    for _ in 0..READER_CNT {
                        let mut barrier = barrier.clone();
                        let shared = &shared;
                        let first_value = &first_value;
                        scope.spawn(move |_| {
                            for _ in 0..ITERATIONS {
                                barrier.wait();
                                barrier.wait();
                                let mut previous = [0; WRITER_CNT];
                                let mut last = Arc::clone(&first_value);
                                loop {
                                    let cur = shared.load();
                                    if Arc::ptr_eq(&last, &cur) {
                                        atomic::spin_loop_hint();
                                        continue;
                                    }
                                    let (w, s) = **cur;
                                    assert!(previous[w] < s, "{:?} vs {:?}", previous, cur);
                                    previous[w] = s;
                                    last = Guard::into_inner(cur);
                                    if s == SEQ {
                                        break;
                                    }
                                }
                            }
                        });
                    }

                    drop(barrier);
                })
                .unwrap();
            }

            #[test]
            fn load_null() {
                let shared = Aso::<usize>::default();
                let guard = shared.load();
                assert!(guard.is_none());
                shared.store(Some(Arc::new(42)));
                assert_eq!(42, **shared.load().as_ref().unwrap());
            }

            #[test]
            fn from_into() {
                let a = Arc::new(42);
                let shared = As::new(a);
                let guard = shared.load();
                let a = shared.into_inner();
                assert_eq!(42, *a);
                assert_eq!(2, Arc::strong_count(&a));
                drop(guard);
                assert_eq!(1, Arc::strong_count(&a));
            }

            // Note on the Relaxed order here. This should be enough, because there's that
            // barrier.wait in between that should do the synchronization of happens-before for us.
            // And using SeqCst would probably not help either, as there's nothing else with SeqCst
            // here in this test to relate it to.
            #[derive(Default)]
            struct ReportDrop(Arc<AtomicUsize>);
            impl Drop for ReportDrop {
                fn drop(&mut self) {
                    self.0.fetch_add(1, Ordering::Relaxed);
                }
            }

            /// Interaction of two threads about a guard and dropping it.
            ///
            /// We make sure everything works in timely manner (eg. dropping of stuff) even if multiple
            /// threads interact.
            ///
            /// The idea is:
            /// * Thread 1 loads a value.
            /// * Thread 2 replaces the shared value. The original value is not destroyed.
            /// * Thread 1 drops the guard. The value is destroyed and this is observable in both threads.
            #[test]
            fn guard_drop_in_thread() {
                for _ in 0..ITERATIONS {
                    let cnt = Arc::new(AtomicUsize::new(0));

                    let shared = As::from_pointee(ReportDrop(cnt.clone()));
                    assert_eq!(cnt.load(Ordering::Relaxed), 0, "Dropped prematurely");
                    // We need the threads to wait for each other at places.
                    let sync = Barrier::new(PanicMode::Poison);

                    thread::scope(|scope| {
                        scope.spawn({
                            let sync = sync.clone();
                            |_| {
                                let mut sync = sync; // Move into the closure
                                let guard = shared.load();
                                sync.wait();
                                // Thread 2 replaces the shared value. We wait for it to confirm.
                                sync.wait();
                                drop(guard);
                                assert_eq!(cnt.load(Ordering::Relaxed), 1, "Value not dropped");
                                // Let thread 2 know we already dropped it.
                                sync.wait();
                            }
                        });

                        scope.spawn(|_| {
                            let mut sync = sync;
                            // Thread 1 loads, we wait for that
                            sync.wait();
                            shared.store(Default::default());
                            assert_eq!(
                                cnt.load(Ordering::Relaxed),
                                0,
                                "Dropped while still in use"
                            );
                            // Let thread 2 know we replaced it
                            sync.wait();
                            // Thread 1 drops its guard. We wait for it to confirm.
                            sync.wait();
                            assert_eq!(cnt.load(Ordering::Relaxed), 1, "Value not dropped");
                        });
                    })
                    .unwrap();
                }
            }

            /// Check dropping a lease in a different thread than it was created doesn't cause any
            /// problems.
            #[test]
            fn guard_drop_in_another_thread() {
                for _ in 0..ITERATIONS {
                    let cnt = Arc::new(AtomicUsize::new(0));
                    let shared = As::from_pointee(ReportDrop(cnt.clone()));
                    assert_eq!(cnt.load(Ordering::Relaxed), 0, "Dropped prematurely");
                    let guard = shared.load();

                    drop(shared);
                    assert_eq!(cnt.load(Ordering::Relaxed), 0, "Dropped prematurely");

                    thread::scope(|scope| {
                        scope.spawn(|_| {
                            drop(guard);
                        });
                    })
                    .unwrap();

                    assert_eq!(cnt.load(Ordering::Relaxed), 1, "Not dropped");
                }
            }

            #[test]
            fn load_option() {
                let shared = Aso::from_pointee(42);
                // The type here is not needed in real code, it's just addition test the type matches.
                let opt: Option<_> = Guard::into_inner(shared.load());
                assert_eq!(42, *opt.unwrap());

                shared.store(None);
                assert!(shared.load().is_none());
            }

            // Check stuff can get formatted
            #[test]
            fn debug_impl() {
                let shared = As::from_pointee(42);
                assert_eq!("ArcSwapAny(42)", &format!("{:?}", shared));
                assert_eq!("42", &format!("{:?}", shared.load()));
            }

            #[test]
            fn display_impl() {
                let shared = As::from_pointee(42);
                assert_eq!("42", &format!("{}", shared));
                assert_eq!("42", &format!("{}", shared.load()));
            }

            // The following "tests" are not run, only compiled. They check that things that should be
            // Send/Sync actually are.
            fn _check_stuff_is_send_sync() {
                let shared = As::from_pointee(42);
                let moved = As::from_pointee(42);
                let shared_ref = &shared;
                let lease = shared.load();
                let lease_ref = &lease;
                let lease = shared.load();
                thread::scope(|s| {
                    s.spawn(move |_| {
                        let _ = lease;
                        let _ = lease_ref;
                        let _ = shared_ref;
                        let _ = moved;
                    });
                })
                .unwrap();
            }

            /// We have a callback in RCU. Check what happens if we access the value from within.
            #[test]
            fn recursive() {
                let shared = ArcSwap::from(Arc::new(0));

                shared.rcu(|i| {
                    if **i < 10 {
                        shared.rcu(|i| **i + 1);
                    }
                    **i
                });
                assert_eq!(10, **shared.load());
                assert_eq!(2, Arc::strong_count(&shared.load_full()));
            }

            /// A panic from within the rcu callback should not change anything.
            #[test]
            #[cfg(not(feature = "experimental-thread-local"))]
            fn rcu_panic() {
                use std::panic;
                let shared = ArcSwap::from(Arc::new(0));
                assert!(panic::catch_unwind(|| shared.rcu(|_| -> usize { panic!() })).is_err());
                assert_eq!(1, Arc::strong_count(&shared.swap(Arc::new(42))));
            }

            /// Handling null/none values
            #[test]
            fn nulls() {
                let shared = ArcSwapOption::from(Some(Arc::new(0)));
                let orig = shared.swap(None);
                assert_eq!(1, Arc::strong_count(&orig.unwrap()));
                let null = shared.load();
                assert!(null.is_none());
                let a = Arc::new(42);
                let orig = shared.compare_and_swap(ptr::null(), Some(Arc::clone(&a)));
                assert!(orig.is_none());
                assert_eq!(2, Arc::strong_count(&a));
                let orig = Guard::into_inner(shared.compare_and_swap(&None::<Arc<_>>, None));
                assert_eq!(3, Arc::strong_count(&a));
                assert!(ptr_eq(&a, &orig));
            }

            #[test]
            /// Multiple RCUs interacting.
            fn rcu() {
                const ITERATIONS: usize = 50;
                const THREADS: usize = 10;
                let shared = ArcSwap::from(Arc::new(0));
                thread::scope(|scope| {
                    for _ in 0..THREADS {
                        scope.spawn(|_| {
                            for _ in 0..ITERATIONS {
                                shared.rcu(|old| **old + 1);
                            }
                        });
                    }
                })
                .unwrap();
                assert_eq!(THREADS * ITERATIONS, **shared.load());
            }

            #[test]
            /// Make sure the reference count and compare_and_swap works as expected.
            fn cas_ref_cnt() {
                #[cfg(miri)]
                const ITERATIONS: usize = 10;
                #[cfg(not(miri))]
                const ITERATIONS: usize = 50;
                let shared = ArcSwap::from(Arc::new(0));
                for i in 0..ITERATIONS {
                    let orig = shared.load_full();
                    assert_eq!(i, *orig);
                    if i % 2 == 1 {
                        // One for orig, one for shared
                        assert_eq!(2, Arc::strong_count(&orig));
                    }
                    let n1 = Arc::new(i + 1);
                    // Fill up the slots sometimes
                    let fillup = || {
                        if i % 2 == 0 {
                            Some((0..ITERATIONS).map(|_| shared.load()).collect::<Vec<_>>())
                        } else {
                            None
                        }
                    };
                    let guards = fillup();
                    // Success
                    let prev = shared.compare_and_swap(&orig, Arc::clone(&n1));
                    assert!(ptr_eq(&orig, &prev));
                    drop(guards);
                    // One for orig, one for prev
                    assert_eq!(2, Arc::strong_count(&orig));
                    // One for n1, one for shared
                    assert_eq!(2, Arc::strong_count(&n1));
                    assert_eq!(i + 1, **shared.load());
                    let n2 = Arc::new(i);
                    drop(prev);
                    let guards = fillup();
                    // Failure
                    let prev = Guard::into_inner(shared.compare_and_swap(&orig, Arc::clone(&n2)));
                    drop(guards);
                    assert!(ptr_eq(&n1, &prev));
                    // One for orig
                    assert_eq!(1, Arc::strong_count(&orig));
                    // One for n1, one for shared, one for prev
                    assert_eq!(3, Arc::strong_count(&n1));
                    // n2 didn't get increased
                    assert_eq!(1, Arc::strong_count(&n2));
                    assert_eq!(i + 1, **shared.load());
                }

                let a = shared.load_full();
                // One inside shared, one for a
                assert_eq!(2, Arc::strong_count(&a));
                drop(shared);
                // Only a now
                assert_eq!(1, Arc::strong_count(&a));
            }
        }
    };
}

t!(tests_default, DefaultStrategy);
#[cfg(all(feature = "internal-test-strategies", test))]
#[allow(deprecated)]
mod internal_strategies {
    use super::*;
    t!(
        tests_full_slots,
        crate::strategy::test_strategies::FillFastSlots
    );
}

/// These tests assume details about the used strategy.
#[cfg(test)]
mod tests {
    use super::*;

    use alloc::vec::Vec;

    /// Accessing the value inside ArcSwap with Guards (and checks for the reference
    /// counts).
    #[test]
    fn load_cnt() {
        let a = Arc::new(0);
        let shared = ArcSwap::from(Arc::clone(&a));
        // One in shared, one in a
        assert_eq!(2, Arc::strong_count(&a));
        let guard = shared.load();
        assert_eq!(0, **guard);
        // The guard doesn't have its own ref count now
        assert_eq!(2, Arc::strong_count(&a));
        let guard_2 = shared.load();
        // Unlike with guard, this does not deadlock
        shared.store(Arc::new(1));
        // But now, each guard got a full Arc inside it
        assert_eq!(3, Arc::strong_count(&a));
        // And when we get rid of them, they disappear
        drop(guard_2);
        assert_eq!(2, Arc::strong_count(&a));
        let _b = Arc::clone(&guard);
        assert_eq!(3, Arc::strong_count(&a));
        // We can drop the guard it came from
        drop(guard);
        assert_eq!(2, Arc::strong_count(&a));
        let guard = shared.load();
        assert_eq!(1, **guard);
        drop(shared);
        // We can still use the guard after the shared disappears
        assert_eq!(1, **guard);
        let ptr = Arc::clone(&guard);
        // One in shared, one in guard
        assert_eq!(2, Arc::strong_count(&ptr));
        drop(guard);
        assert_eq!(1, Arc::strong_count(&ptr));
    }

    /// There can be only limited amount of leases on one thread. Following ones are
    /// created, but contain full Arcs.
    #[test]
    fn lease_overflow() {
        #[cfg(miri)]
        const GUARD_COUNT: usize = 100;
        #[cfg(not(miri))]
        const GUARD_COUNT: usize = 1000;
        let a = Arc::new(0);
        let shared = ArcSwap::from(Arc::clone(&a));
        assert_eq!(2, Arc::strong_count(&a));
        let mut guards = (0..GUARD_COUNT).map(|_| shared.load()).collect::<Vec<_>>();
        let count = Arc::strong_count(&a);
        assert!(count > 2);
        let guard = shared.load();
        assert_eq!(count + 1, Arc::strong_count(&a));
        drop(guard);
        assert_eq!(count, Arc::strong_count(&a));
        // When we delete the first one, it didn't have an Arc in it, so the ref count
        // doesn't drop
        guards.swap_remove(0);
        assert_eq!(count, Arc::strong_count(&a));
        // But new one reuses now vacant the slot and doesn't create a new Arc
        let _guard = shared.load();
        assert_eq!(count, Arc::strong_count(&a));
    }
}