1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
/*!
Lower level primitive types that are useful in a variety of circumstances.
# Overview
This list represents the principle types in this module and briefly describes
when you might want to use them.
* [`PatternID`] - A type that represents the identifier of a regex pattern.
This is probably the most widely used type in this module (which is why it's
also re-exported in the crate root).
* [`StateID`] - A type the represents the identifier of a finite automaton
state. This is used for both NFAs and DFAs, with the notable exception of
the hybrid NFA/DFA. (The hybrid NFA/DFA uses a special purpose "lazy" state
identifier.)
* [`SmallIndex`] - The internal representation of both a `PatternID` and a
`StateID`. Its purpose is to serve as a type that can index memory without
being as big as a `usize` on 64-bit targets. The main idea behind this type
is that there are many things in regex engines that will, in practice, never
overflow a 32-bit integer. (For example, like the number of patterns in a regex
or the number of states in an NFA.) Thus, a `SmallIndex` can be used to index
memory without peppering `as` casts everywhere. Moreover, it forces callers
to handle errors in the case where, somehow, the value would otherwise overflow
either a 32-bit integer or a `usize` (e.g., on 16-bit targets).
*/
// The macro we use to define some types below adds methods that we don't
// use on some of the types. There isn't much, so we just squash the warning.
#![allow(dead_code)]
use alloc::vec::Vec;
use crate::util::int::{Usize, U16, U32, U64};
/// A type that represents a "small" index.
///
/// The main idea of this type is to provide something that can index memory,
/// but uses less memory than `usize` on 64-bit systems. Specifically, its
/// representation is always a `u32` and has `repr(transparent)` enabled. (So
/// it is safe to transmute between a `u32` and a `SmallIndex`.)
///
/// A small index is typically useful in cases where there is no practical way
/// that the index will overflow a 32-bit integer. A good example of this is
/// an NFA state. If you could somehow build an NFA with `2^30` states, its
/// memory usage would be exorbitant and its runtime execution would be so
/// slow as to be completely worthless. Therefore, this crate generally deems
/// it acceptable to return an error if it would otherwise build an NFA that
/// requires a slice longer than what a 32-bit integer can index. In exchange,
/// we can use 32-bit indices instead of 64-bit indices in various places.
///
/// This type ensures this by providing a constructor that will return an error
/// if its argument cannot fit into the type. This makes it much easier to
/// handle these sorts of boundary cases that are otherwise extremely subtle.
///
/// On all targets, this type guarantees that its value will fit in a `u32`,
/// `i32`, `usize` and an `isize`. This means that on 16-bit targets, for
/// example, this type's maximum value will never overflow an `isize`,
/// which means it will never overflow a `i16` even though its internal
/// representation is still a `u32`.
///
/// The purpose for making the type fit into even signed integer types like
/// `isize` is to guarantee that the difference between any two small indices
/// is itself also a small index. This is useful in certain contexts, e.g.,
/// for delta encoding.
///
/// # Other types
///
/// The following types wrap `SmallIndex` to provide a more focused use case:
///
/// * [`PatternID`] is for representing the identifiers of patterns.
/// * [`StateID`] is for representing the identifiers of states in finite
/// automata. It is used for both NFAs and DFAs.
///
/// # Representation
///
/// This type is always represented internally by a `u32` and is marked as
/// `repr(transparent)`. Thus, this type always has the same representation as
/// a `u32`. It is thus safe to transmute between a `u32` and a `SmallIndex`.
///
/// # Indexing
///
/// For convenience, callers may use a `SmallIndex` to index slices.
///
/// # Safety
///
/// While a `SmallIndex` is meant to guarantee that its value fits into `usize`
/// without using as much space as a `usize` on all targets, callers must
/// not rely on this property for safety. Callers may choose to rely on this
/// property for correctness however. For example, creating a `SmallIndex` with
/// an invalid value can be done in entirely safe code. This may in turn result
/// in panics or silent logical errors.
#[derive(
Clone, Copy, Debug, Default, Eq, Hash, PartialEq, PartialOrd, Ord,
)]
#[repr(transparent)]
pub(crate) struct SmallIndex(u32);
impl SmallIndex {
/// The maximum index value.
#[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
pub const MAX: SmallIndex =
// FIXME: Use as_usize() once const functions in traits are stable.
SmallIndex::new_unchecked(core::i32::MAX as usize - 1);
/// The maximum index value.
#[cfg(target_pointer_width = "16")]
pub const MAX: SmallIndex =
SmallIndex::new_unchecked(core::isize::MAX - 1);
/// The total number of values that can be represented as a small index.
pub const LIMIT: usize = SmallIndex::MAX.as_usize() + 1;
/// The zero index value.
pub const ZERO: SmallIndex = SmallIndex::new_unchecked(0);
/// The number of bytes that a single small index uses in memory.
pub const SIZE: usize = core::mem::size_of::<SmallIndex>();
/// Create a new small index.
///
/// If the given index exceeds [`SmallIndex::MAX`], then this returns
/// an error.
#[inline]
pub fn new(index: usize) -> Result<SmallIndex, SmallIndexError> {
SmallIndex::try_from(index)
}
/// Create a new small index without checking whether the given value
/// exceeds [`SmallIndex::MAX`].
///
/// Using this routine with an invalid index value will result in
/// unspecified behavior, but *not* undefined behavior. In particular, an
/// invalid index value is likely to cause panics or possibly even silent
/// logical errors.
///
/// Callers must never rely on a `SmallIndex` to be within a certain range
/// for memory safety.
#[inline]
pub const fn new_unchecked(index: usize) -> SmallIndex {
// FIXME: Use as_u32() once const functions in traits are stable.
SmallIndex::from_u32_unchecked(index as u32)
}
/// Create a new small index from a `u32` without checking whether the
/// given value exceeds [`SmallIndex::MAX`].
///
/// Using this routine with an invalid index value will result in
/// unspecified behavior, but *not* undefined behavior. In particular, an
/// invalid index value is likely to cause panics or possibly even silent
/// logical errors.
///
/// Callers must never rely on a `SmallIndex` to be within a certain range
/// for memory safety.
#[inline]
pub const fn from_u32_unchecked(index: u32) -> SmallIndex {
SmallIndex(index)
}
/// Like [`SmallIndex::new`], but panics if the given index is not valid.
#[inline]
pub fn must(index: usize) -> SmallIndex {
SmallIndex::new(index).expect("invalid small index")
}
/// Return this small index as a `usize`. This is guaranteed to never
/// overflow `usize`.
#[inline]
pub const fn as_usize(&self) -> usize {
// FIXME: Use as_usize() once const functions in traits are stable.
self.0 as usize
}
/// Return this small index as a `u64`. This is guaranteed to never
/// overflow.
#[inline]
pub const fn as_u64(&self) -> u64 {
// FIXME: Use u64::from() once const functions in traits are stable.
self.0 as u64
}
/// Return the internal `u32` of this small index. This is guaranteed to
/// never overflow `u32`.
#[inline]
pub const fn as_u32(&self) -> u32 {
self.0
}
/// Return the internal `u32` of this small index represented as an `i32`.
/// This is guaranteed to never overflow an `i32`.
#[inline]
pub const fn as_i32(&self) -> i32 {
// This is OK because we guarantee that our max value is <= i32::MAX.
self.0 as i32
}
/// Returns one more than this small index as a usize.
///
/// Since a small index has constraints on its maximum value, adding `1` to
/// it will always fit in a `usize`, `isize`, `u32` and a `i32`.
#[inline]
pub fn one_more(&self) -> usize {
self.as_usize() + 1
}
/// Decode this small index from the bytes given using the native endian
/// byte order for the current target.
///
/// If the decoded integer is not representable as a small index for the
/// current target, then this returns an error.
#[inline]
pub fn from_ne_bytes(
bytes: [u8; 4],
) -> Result<SmallIndex, SmallIndexError> {
let id = u32::from_ne_bytes(bytes);
if id > SmallIndex::MAX.as_u32() {
return Err(SmallIndexError { attempted: u64::from(id) });
}
Ok(SmallIndex::new_unchecked(id.as_usize()))
}
/// Decode this small index from the bytes given using the native endian
/// byte order for the current target.
///
/// This is analogous to [`SmallIndex::new_unchecked`] in that is does not
/// check whether the decoded integer is representable as a small index.
#[inline]
pub fn from_ne_bytes_unchecked(bytes: [u8; 4]) -> SmallIndex {
SmallIndex::new_unchecked(u32::from_ne_bytes(bytes).as_usize())
}
/// Return the underlying small index integer as raw bytes in native endian
/// format.
#[inline]
pub fn to_ne_bytes(&self) -> [u8; 4] {
self.0.to_ne_bytes()
}
}
impl<T> core::ops::Index<SmallIndex> for [T] {
type Output = T;
#[inline]
fn index(&self, index: SmallIndex) -> &T {
&self[index.as_usize()]
}
}
impl<T> core::ops::IndexMut<SmallIndex> for [T] {
#[inline]
fn index_mut(&mut self, index: SmallIndex) -> &mut T {
&mut self[index.as_usize()]
}
}
impl<T> core::ops::Index<SmallIndex> for Vec<T> {
type Output = T;
#[inline]
fn index(&self, index: SmallIndex) -> &T {
&self[index.as_usize()]
}
}
impl<T> core::ops::IndexMut<SmallIndex> for Vec<T> {
#[inline]
fn index_mut(&mut self, index: SmallIndex) -> &mut T {
&mut self[index.as_usize()]
}
}
impl From<StateID> for SmallIndex {
fn from(sid: StateID) -> SmallIndex {
sid.0
}
}
impl From<PatternID> for SmallIndex {
fn from(pid: PatternID) -> SmallIndex {
pid.0
}
}
impl From<u8> for SmallIndex {
fn from(index: u8) -> SmallIndex {
SmallIndex::new_unchecked(usize::from(index))
}
}
impl TryFrom<u16> for SmallIndex {
type Error = SmallIndexError;
fn try_from(index: u16) -> Result<SmallIndex, SmallIndexError> {
if u32::from(index) > SmallIndex::MAX.as_u32() {
return Err(SmallIndexError { attempted: u64::from(index) });
}
Ok(SmallIndex::new_unchecked(index.as_usize()))
}
}
impl TryFrom<u32> for SmallIndex {
type Error = SmallIndexError;
fn try_from(index: u32) -> Result<SmallIndex, SmallIndexError> {
if index > SmallIndex::MAX.as_u32() {
return Err(SmallIndexError { attempted: u64::from(index) });
}
Ok(SmallIndex::new_unchecked(index.as_usize()))
}
}
impl TryFrom<u64> for SmallIndex {
type Error = SmallIndexError;
fn try_from(index: u64) -> Result<SmallIndex, SmallIndexError> {
if index > SmallIndex::MAX.as_u64() {
return Err(SmallIndexError { attempted: index });
}
Ok(SmallIndex::new_unchecked(index.as_usize()))
}
}
impl TryFrom<usize> for SmallIndex {
type Error = SmallIndexError;
fn try_from(index: usize) -> Result<SmallIndex, SmallIndexError> {
if index > SmallIndex::MAX.as_usize() {
return Err(SmallIndexError { attempted: index.as_u64() });
}
Ok(SmallIndex::new_unchecked(index))
}
}
/// This error occurs when a small index could not be constructed.
///
/// This occurs when given an integer exceeding the maximum small index value.
///
/// When the `std` feature is enabled, this implements the `Error` trait.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct SmallIndexError {
attempted: u64,
}
impl SmallIndexError {
/// Returns the value that could not be converted to a small index.
pub fn attempted(&self) -> u64 {
self.attempted
}
}
#[cfg(feature = "std")]
impl std::error::Error for SmallIndexError {}
impl core::fmt::Display for SmallIndexError {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(
f,
"failed to create small index from {:?}, which exceeds {:?}",
self.attempted(),
SmallIndex::MAX,
)
}
}
#[derive(Clone, Debug)]
pub(crate) struct SmallIndexIter {
rng: core::ops::Range<usize>,
}
impl Iterator for SmallIndexIter {
type Item = SmallIndex;
fn next(&mut self) -> Option<SmallIndex> {
if self.rng.start >= self.rng.end {
return None;
}
let next_id = self.rng.start + 1;
let id = core::mem::replace(&mut self.rng.start, next_id);
// new_unchecked is OK since we asserted that the number of
// elements in this iterator will fit in an ID at construction.
Some(SmallIndex::new_unchecked(id))
}
}
macro_rules! index_type_impls {
($name:ident, $err:ident, $iter:ident, $withiter:ident) => {
impl $name {
/// The maximum value.
pub const MAX: $name = $name(SmallIndex::MAX);
/// The total number of values that can be represented.
pub const LIMIT: usize = SmallIndex::LIMIT;
/// The zero value.
pub const ZERO: $name = $name(SmallIndex::ZERO);
/// The number of bytes that a single value uses in memory.
pub const SIZE: usize = SmallIndex::SIZE;
/// Create a new value that is represented by a "small index."
///
/// If the given index exceeds the maximum allowed value, then this
/// returns an error.
#[inline]
pub fn new(value: usize) -> Result<$name, $err> {
SmallIndex::new(value).map($name).map_err($err)
}
/// Create a new value without checking whether the given argument
/// exceeds the maximum.
///
/// Using this routine with an invalid value will result in
/// unspecified behavior, but *not* undefined behavior. In
/// particular, an invalid ID value is likely to cause panics or
/// possibly even silent logical errors.
///
/// Callers must never rely on this type to be within a certain
/// range for memory safety.
#[inline]
pub const fn new_unchecked(value: usize) -> $name {
$name(SmallIndex::new_unchecked(value))
}
/// Create a new value from a `u32` without checking whether the
/// given value exceeds the maximum.
///
/// Using this routine with an invalid value will result in
/// unspecified behavior, but *not* undefined behavior. In
/// particular, an invalid ID value is likely to cause panics or
/// possibly even silent logical errors.
///
/// Callers must never rely on this type to be within a certain
/// range for memory safety.
#[inline]
pub const fn from_u32_unchecked(index: u32) -> $name {
$name(SmallIndex::from_u32_unchecked(index))
}
/// Like `new`, but panics if the given value is not valid.
#[inline]
pub fn must(value: usize) -> $name {
$name::new(value).expect(concat!(
"invalid ",
stringify!($name),
" value"
))
}
/// Return the internal value as a `usize`. This is guaranteed to
/// never overflow `usize`.
#[inline]
pub const fn as_usize(&self) -> usize {
self.0.as_usize()
}
/// Return the internal value as a `u64`. This is guaranteed to
/// never overflow.
#[inline]
pub const fn as_u64(&self) -> u64 {
self.0.as_u64()
}
/// Return the internal value as a `u32`. This is guaranteed to
/// never overflow `u32`.
#[inline]
pub const fn as_u32(&self) -> u32 {
self.0.as_u32()
}
/// Return the internal value as a `i32`. This is guaranteed to
/// never overflow an `i32`.
#[inline]
pub const fn as_i32(&self) -> i32 {
self.0.as_i32()
}
/// Returns one more than this value as a usize.
///
/// Since values represented by a "small index" have constraints
/// on their maximum value, adding `1` to it will always fit in a
/// `usize`, `u32` and a `i32`.
#[inline]
pub fn one_more(&self) -> usize {
self.0.one_more()
}
/// Decode this value from the bytes given using the native endian
/// byte order for the current target.
///
/// If the decoded integer is not representable as a small index
/// for the current target, then this returns an error.
#[inline]
pub fn from_ne_bytes(bytes: [u8; 4]) -> Result<$name, $err> {
SmallIndex::from_ne_bytes(bytes).map($name).map_err($err)
}
/// Decode this value from the bytes given using the native endian
/// byte order for the current target.
///
/// This is analogous to `new_unchecked` in that is does not check
/// whether the decoded integer is representable as a small index.
#[inline]
pub fn from_ne_bytes_unchecked(bytes: [u8; 4]) -> $name {
$name(SmallIndex::from_ne_bytes_unchecked(bytes))
}
/// Return the underlying integer as raw bytes in native endian
/// format.
#[inline]
pub fn to_ne_bytes(&self) -> [u8; 4] {
self.0.to_ne_bytes()
}
/// Returns an iterator over all values from 0 up to and not
/// including the given length.
///
/// If the given length exceeds this type's limit, then this
/// panics.
pub(crate) fn iter(len: usize) -> $iter {
$iter::new(len)
}
}
// We write our own Debug impl so that we get things like PatternID(5)
// instead of PatternID(SmallIndex(5)).
impl core::fmt::Debug for $name {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
f.debug_tuple(stringify!($name)).field(&self.as_u32()).finish()
}
}
impl<T> core::ops::Index<$name> for [T] {
type Output = T;
#[inline]
fn index(&self, index: $name) -> &T {
&self[index.as_usize()]
}
}
impl<T> core::ops::IndexMut<$name> for [T] {
#[inline]
fn index_mut(&mut self, index: $name) -> &mut T {
&mut self[index.as_usize()]
}
}
impl<T> core::ops::Index<$name> for Vec<T> {
type Output = T;
#[inline]
fn index(&self, index: $name) -> &T {
&self[index.as_usize()]
}
}
impl<T> core::ops::IndexMut<$name> for Vec<T> {
#[inline]
fn index_mut(&mut self, index: $name) -> &mut T {
&mut self[index.as_usize()]
}
}
impl From<SmallIndex> for $name {
fn from(index: SmallIndex) -> $name {
$name(index)
}
}
impl From<u8> for $name {
fn from(value: u8) -> $name {
$name(SmallIndex::from(value))
}
}
impl TryFrom<u16> for $name {
type Error = $err;
fn try_from(value: u16) -> Result<$name, $err> {
SmallIndex::try_from(value).map($name).map_err($err)
}
}
impl TryFrom<u32> for $name {
type Error = $err;
fn try_from(value: u32) -> Result<$name, $err> {
SmallIndex::try_from(value).map($name).map_err($err)
}
}
impl TryFrom<u64> for $name {
type Error = $err;
fn try_from(value: u64) -> Result<$name, $err> {
SmallIndex::try_from(value).map($name).map_err($err)
}
}
impl TryFrom<usize> for $name {
type Error = $err;
fn try_from(value: usize) -> Result<$name, $err> {
SmallIndex::try_from(value).map($name).map_err($err)
}
}
/// This error occurs when an ID could not be constructed.
///
/// This occurs when given an integer exceeding the maximum allowed
/// value.
///
/// When the `std` feature is enabled, this implements the `Error`
/// trait.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct $err(SmallIndexError);
impl $err {
/// Returns the value that could not be converted to an ID.
pub fn attempted(&self) -> u64 {
self.0.attempted()
}
}
#[cfg(feature = "std")]
impl std::error::Error for $err {}
impl core::fmt::Display for $err {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(
f,
"failed to create {} from {:?}, which exceeds {:?}",
stringify!($name),
self.attempted(),
$name::MAX,
)
}
}
#[derive(Clone, Debug)]
pub(crate) struct $iter(SmallIndexIter);
impl $iter {
fn new(len: usize) -> $iter {
assert!(
len <= $name::LIMIT,
"cannot create iterator for {} when number of \
elements exceed {:?}",
stringify!($name),
$name::LIMIT,
);
$iter(SmallIndexIter { rng: 0..len })
}
}
impl Iterator for $iter {
type Item = $name;
fn next(&mut self) -> Option<$name> {
self.0.next().map($name)
}
}
/// An iterator adapter that is like std::iter::Enumerate, but attaches
/// small index values instead. It requires `ExactSizeIterator`. At
/// construction, it ensures that the index of each element in the
/// iterator is representable in the corresponding small index type.
#[derive(Clone, Debug)]
pub(crate) struct $withiter<I> {
it: I,
ids: $iter,
}
impl<I: Iterator + ExactSizeIterator> $withiter<I> {
fn new(it: I) -> $withiter<I> {
let ids = $name::iter(it.len());
$withiter { it, ids }
}
}
impl<I: Iterator + ExactSizeIterator> Iterator for $withiter<I> {
type Item = ($name, I::Item);
fn next(&mut self) -> Option<($name, I::Item)> {
let item = self.it.next()?;
// Number of elements in this iterator must match, according
// to contract of ExactSizeIterator.
let id = self.ids.next().unwrap();
Some((id, item))
}
}
};
}
/// The identifier of a pattern in an Aho-Corasick automaton.
///
/// It is represented by a `u32` even on 64-bit systems in order to conserve
/// space. Namely, on all targets, this type guarantees that its value will
/// fit in a `u32`, `i32`, `usize` and an `isize`. This means that on 16-bit
/// targets, for example, this type's maximum value will never overflow an
/// `isize`, which means it will never overflow a `i16` even though its
/// internal representation is still a `u32`.
///
/// # Safety
///
/// While a `PatternID` is meant to guarantee that its value fits into `usize`
/// without using as much space as a `usize` on all targets, callers must
/// not rely on this property for safety. Callers may choose to rely on this
/// property for correctness however. For example, creating a `StateID` with an
/// invalid value can be done in entirely safe code. This may in turn result in
/// panics or silent logical errors.
#[derive(Clone, Copy, Default, Eq, Hash, PartialEq, PartialOrd, Ord)]
#[repr(transparent)]
pub struct PatternID(SmallIndex);
/// The identifier of a finite automaton state.
///
/// It is represented by a `u32` even on 64-bit systems in order to conserve
/// space. Namely, on all targets, this type guarantees that its value will
/// fit in a `u32`, `i32`, `usize` and an `isize`. This means that on 16-bit
/// targets, for example, this type's maximum value will never overflow an
/// `isize`, which means it will never overflow a `i16` even though its
/// internal representation is still a `u32`.
///
/// # Safety
///
/// While a `StateID` is meant to guarantee that its value fits into `usize`
/// without using as much space as a `usize` on all targets, callers must
/// not rely on this property for safety. Callers may choose to rely on this
/// property for correctness however. For example, creating a `StateID` with an
/// invalid value can be done in entirely safe code. This may in turn result in
/// panics or silent logical errors.
#[derive(Clone, Copy, Default, Eq, Hash, PartialEq, PartialOrd, Ord)]
#[repr(transparent)]
pub struct StateID(SmallIndex);
index_type_impls!(PatternID, PatternIDError, PatternIDIter, WithPatternIDIter);
index_type_impls!(StateID, StateIDError, StateIDIter, WithStateIDIter);
/// A utility trait that defines a couple of adapters for making it convenient
/// to access indices as "small index" types. We require ExactSizeIterator so
/// that iterator construction can do a single check to make sure the index of
/// each element is representable by its small index type.
pub(crate) trait IteratorIndexExt: Iterator {
fn with_pattern_ids(self) -> WithPatternIDIter<Self>
where
Self: Sized + ExactSizeIterator,
{
WithPatternIDIter::new(self)
}
fn with_state_ids(self) -> WithStateIDIter<Self>
where
Self: Sized + ExactSizeIterator,
{
WithStateIDIter::new(self)
}
}
impl<I: Iterator> IteratorIndexExt for I {}