hyper/proto/h1/
io.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
use std::cmp;
use std::fmt;
#[cfg(all(feature = "server", feature = "runtime"))]
use std::future::Future;
use std::io::{self, IoSlice};
use std::marker::Unpin;
use std::mem::MaybeUninit;
use std::pin::Pin;
use std::task::{Context, Poll};
#[cfg(all(feature = "server", feature = "runtime"))]
use std::time::Duration;

use bytes::{Buf, BufMut, Bytes, BytesMut};
use tokio::io::{AsyncRead, AsyncWrite, ReadBuf};
#[cfg(all(feature = "server", feature = "runtime"))]
use tokio::time::Instant;
use tracing::{debug, trace};

use super::{Http1Transaction, ParseContext, ParsedMessage};
use crate::common::buf::BufList;

/// The initial buffer size allocated before trying to read from IO.
pub(crate) const INIT_BUFFER_SIZE: usize = 8192;

/// The minimum value that can be set to max buffer size.
pub(crate) const MINIMUM_MAX_BUFFER_SIZE: usize = INIT_BUFFER_SIZE;

/// The default maximum read buffer size. If the buffer gets this big and
/// a message is still not complete, a `TooLarge` error is triggered.
// Note: if this changes, update server::conn::Http::max_buf_size docs.
pub(crate) const DEFAULT_MAX_BUFFER_SIZE: usize = 8192 + 4096 * 100;

/// The maximum number of distinct `Buf`s to hold in a list before requiring
/// a flush. Only affects when the buffer strategy is to queue buffers.
///
/// Note that a flush can happen before reaching the maximum. This simply
/// forces a flush if the queue gets this big.
const MAX_BUF_LIST_BUFFERS: usize = 16;

pub(crate) struct Buffered<T, B> {
    flush_pipeline: bool,
    io: T,
    partial_len: Option<usize>,
    read_blocked: bool,
    read_buf: BytesMut,
    read_buf_strategy: ReadStrategy,
    write_buf: WriteBuf<B>,
}

impl<T, B> fmt::Debug for Buffered<T, B>
where
    B: Buf,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Buffered")
            .field("read_buf", &self.read_buf)
            .field("write_buf", &self.write_buf)
            .finish()
    }
}

impl<T, B> Buffered<T, B>
where
    T: AsyncRead + AsyncWrite + Unpin,
    B: Buf,
{
    pub(crate) fn new(io: T) -> Buffered<T, B> {
        let strategy = if io.is_write_vectored() {
            WriteStrategy::Queue
        } else {
            WriteStrategy::Flatten
        };
        let write_buf = WriteBuf::new(strategy);
        Buffered {
            flush_pipeline: false,
            io,
            partial_len: None,
            read_blocked: false,
            read_buf: BytesMut::with_capacity(0),
            read_buf_strategy: ReadStrategy::default(),
            write_buf,
        }
    }

    #[cfg(feature = "server")]
    pub(crate) fn set_flush_pipeline(&mut self, enabled: bool) {
        debug_assert!(!self.write_buf.has_remaining());
        self.flush_pipeline = enabled;
        if enabled {
            self.set_write_strategy_flatten();
        }
    }

    pub(crate) fn set_max_buf_size(&mut self, max: usize) {
        assert!(
            max >= MINIMUM_MAX_BUFFER_SIZE,
            "The max_buf_size cannot be smaller than {}.",
            MINIMUM_MAX_BUFFER_SIZE,
        );
        self.read_buf_strategy = ReadStrategy::with_max(max);
        self.write_buf.max_buf_size = max;
    }

    #[cfg(feature = "client")]
    pub(crate) fn set_read_buf_exact_size(&mut self, sz: usize) {
        self.read_buf_strategy = ReadStrategy::Exact(sz);
    }

    pub(crate) fn set_write_strategy_flatten(&mut self) {
        // this should always be called only at construction time,
        // so this assert is here to catch myself
        debug_assert!(self.write_buf.queue.bufs_cnt() == 0);
        self.write_buf.set_strategy(WriteStrategy::Flatten);
    }

    pub(crate) fn set_write_strategy_queue(&mut self) {
        // this should always be called only at construction time,
        // so this assert is here to catch myself
        debug_assert!(self.write_buf.queue.bufs_cnt() == 0);
        self.write_buf.set_strategy(WriteStrategy::Queue);
    }

    pub(crate) fn read_buf(&self) -> &[u8] {
        self.read_buf.as_ref()
    }

    #[cfg(test)]
    #[cfg(feature = "nightly")]
    pub(super) fn read_buf_mut(&mut self) -> &mut BytesMut {
        &mut self.read_buf
    }

    /// Return the "allocated" available space, not the potential space
    /// that could be allocated in the future.
    fn read_buf_remaining_mut(&self) -> usize {
        self.read_buf.capacity() - self.read_buf.len()
    }

    /// Return whether we can append to the headers buffer.
    ///
    /// Reasons we can't:
    /// - The write buf is in queue mode, and some of the past body is still
    ///   needing to be flushed.
    pub(crate) fn can_headers_buf(&self) -> bool {
        !self.write_buf.queue.has_remaining()
    }

    pub(crate) fn headers_buf(&mut self) -> &mut Vec<u8> {
        let buf = self.write_buf.headers_mut();
        &mut buf.bytes
    }

    pub(super) fn write_buf(&mut self) -> &mut WriteBuf<B> {
        &mut self.write_buf
    }

    pub(crate) fn buffer<BB: Buf + Into<B>>(&mut self, buf: BB) {
        self.write_buf.buffer(buf)
    }

    pub(crate) fn can_buffer(&self) -> bool {
        self.flush_pipeline || self.write_buf.can_buffer()
    }

    pub(crate) fn consume_leading_lines(&mut self) {
        if !self.read_buf.is_empty() {
            let mut i = 0;
            while i < self.read_buf.len() {
                match self.read_buf[i] {
                    b'\r' | b'\n' => i += 1,
                    _ => break,
                }
            }
            self.read_buf.advance(i);
        }
    }

    pub(super) fn parse<S>(
        &mut self,
        cx: &mut Context<'_>,
        parse_ctx: ParseContext<'_>,
    ) -> Poll<crate::Result<ParsedMessage<S::Incoming>>>
    where
        S: Http1Transaction,
    {
        loop {
            match super::role::parse_headers::<S>(
                &mut self.read_buf,
                self.partial_len,
                ParseContext {
                    cached_headers: parse_ctx.cached_headers,
                    req_method: parse_ctx.req_method,
                    h1_parser_config: parse_ctx.h1_parser_config.clone(),
                    #[cfg(all(feature = "server", feature = "runtime"))]
                    h1_header_read_timeout: parse_ctx.h1_header_read_timeout,
                    #[cfg(all(feature = "server", feature = "runtime"))]
                    h1_header_read_timeout_fut: parse_ctx.h1_header_read_timeout_fut,
                    #[cfg(all(feature = "server", feature = "runtime"))]
                    h1_header_read_timeout_running: parse_ctx.h1_header_read_timeout_running,
                    preserve_header_case: parse_ctx.preserve_header_case,
                    #[cfg(feature = "ffi")]
                    preserve_header_order: parse_ctx.preserve_header_order,
                    h09_responses: parse_ctx.h09_responses,
                    #[cfg(feature = "ffi")]
                    on_informational: parse_ctx.on_informational,
                    #[cfg(feature = "ffi")]
                    raw_headers: parse_ctx.raw_headers,
                },
            )? {
                Some(msg) => {
                    debug!("parsed {} headers", msg.head.headers.len());

                    #[cfg(all(feature = "server", feature = "runtime"))]
                    {
                        *parse_ctx.h1_header_read_timeout_running = false;

                        if let Some(h1_header_read_timeout_fut) =
                            parse_ctx.h1_header_read_timeout_fut
                        {
                            // Reset the timer in order to avoid woken up when the timeout finishes
                            h1_header_read_timeout_fut
                                .as_mut()
                                .reset(Instant::now() + Duration::from_secs(30 * 24 * 60 * 60));
                        }
                    }
                    self.partial_len = None;
                    return Poll::Ready(Ok(msg));
                }
                None => {
                    let max = self.read_buf_strategy.max();
                    let curr_len = self.read_buf.len();
                    if curr_len >= max {
                        debug!("max_buf_size ({}) reached, closing", max);
                        return Poll::Ready(Err(crate::Error::new_too_large()));
                    }

                    #[cfg(all(feature = "server", feature = "runtime"))]
                    if *parse_ctx.h1_header_read_timeout_running {
                        if let Some(h1_header_read_timeout_fut) =
                            parse_ctx.h1_header_read_timeout_fut
                        {
                            if Pin::new(h1_header_read_timeout_fut).poll(cx).is_ready() {
                                *parse_ctx.h1_header_read_timeout_running = false;

                                tracing::warn!("read header from client timeout");
                                return Poll::Ready(Err(crate::Error::new_header_timeout()));
                            }
                        }
                    }
                    if curr_len > 0 {
                        self.partial_len = Some(curr_len);
                    }
                }
            }
            if ready!(self.poll_read_from_io(cx)).map_err(crate::Error::new_io)? == 0 {
                trace!("parse eof");
                return Poll::Ready(Err(crate::Error::new_incomplete()));
            }
        }
    }

    pub(crate) fn poll_read_from_io(&mut self, cx: &mut Context<'_>) -> Poll<io::Result<usize>> {
        self.read_blocked = false;
        let next = self.read_buf_strategy.next();
        if self.read_buf_remaining_mut() < next {
            self.read_buf.reserve(next);
        }

        let dst = self.read_buf.chunk_mut();
        let dst = unsafe { &mut *(dst as *mut _ as *mut [MaybeUninit<u8>]) };
        let mut buf = ReadBuf::uninit(dst);
        match Pin::new(&mut self.io).poll_read(cx, &mut buf) {
            Poll::Ready(Ok(_)) => {
                let n = buf.filled().len();
                trace!("received {} bytes", n);
                unsafe {
                    // Safety: we just read that many bytes into the
                    // uninitialized part of the buffer, so this is okay.
                    // @tokio pls give me back `poll_read_buf` thanks
                    self.read_buf.advance_mut(n);
                }
                self.read_buf_strategy.record(n);
                Poll::Ready(Ok(n))
            }
            Poll::Pending => {
                self.read_blocked = true;
                Poll::Pending
            }
            Poll::Ready(Err(e)) => Poll::Ready(Err(e)),
        }
    }

    pub(crate) fn into_inner(self) -> (T, Bytes) {
        (self.io, self.read_buf.freeze())
    }

    pub(crate) fn io_mut(&mut self) -> &mut T {
        &mut self.io
    }

    pub(crate) fn is_read_blocked(&self) -> bool {
        self.read_blocked
    }

    pub(crate) fn poll_flush(&mut self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        if self.flush_pipeline && !self.read_buf.is_empty() {
            Poll::Ready(Ok(()))
        } else if self.write_buf.remaining() == 0 {
            Pin::new(&mut self.io).poll_flush(cx)
        } else {
            if let WriteStrategy::Flatten = self.write_buf.strategy {
                return self.poll_flush_flattened(cx);
            }

            const MAX_WRITEV_BUFS: usize = 64;
            loop {
                let n = {
                    let mut iovs = [IoSlice::new(&[]); MAX_WRITEV_BUFS];
                    let len = self.write_buf.chunks_vectored(&mut iovs);
                    ready!(Pin::new(&mut self.io).poll_write_vectored(cx, &iovs[..len]))?
                };
                // TODO(eliza): we have to do this manually because
                // `poll_write_buf` doesn't exist in Tokio 0.3 yet...when
                // `poll_write_buf` comes back, the manual advance will need to leave!
                self.write_buf.advance(n);
                debug!("flushed {} bytes", n);
                if self.write_buf.remaining() == 0 {
                    break;
                } else if n == 0 {
                    trace!(
                        "write returned zero, but {} bytes remaining",
                        self.write_buf.remaining()
                    );
                    return Poll::Ready(Err(io::ErrorKind::WriteZero.into()));
                }
            }
            Pin::new(&mut self.io).poll_flush(cx)
        }
    }

    /// Specialized version of `flush` when strategy is Flatten.
    ///
    /// Since all buffered bytes are flattened into the single headers buffer,
    /// that skips some bookkeeping around using multiple buffers.
    fn poll_flush_flattened(&mut self, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
        loop {
            let n = ready!(Pin::new(&mut self.io).poll_write(cx, self.write_buf.headers.chunk()))?;
            debug!("flushed {} bytes", n);
            self.write_buf.headers.advance(n);
            if self.write_buf.headers.remaining() == 0 {
                self.write_buf.headers.reset();
                break;
            } else if n == 0 {
                trace!(
                    "write returned zero, but {} bytes remaining",
                    self.write_buf.remaining()
                );
                return Poll::Ready(Err(io::ErrorKind::WriteZero.into()));
            }
        }
        Pin::new(&mut self.io).poll_flush(cx)
    }

    #[cfg(test)]
    fn flush<'a>(&'a mut self) -> impl std::future::Future<Output = io::Result<()>> + 'a {
        futures_util::future::poll_fn(move |cx| self.poll_flush(cx))
    }
}

// The `B` is a `Buf`, we never project a pin to it
impl<T: Unpin, B> Unpin for Buffered<T, B> {}

// TODO: This trait is old... at least rename to PollBytes or something...
pub(crate) trait MemRead {
    fn read_mem(&mut self, cx: &mut Context<'_>, len: usize) -> Poll<io::Result<Bytes>>;
}

impl<T, B> MemRead for Buffered<T, B>
where
    T: AsyncRead + AsyncWrite + Unpin,
    B: Buf,
{
    fn read_mem(&mut self, cx: &mut Context<'_>, len: usize) -> Poll<io::Result<Bytes>> {
        if !self.read_buf.is_empty() {
            let n = std::cmp::min(len, self.read_buf.len());
            Poll::Ready(Ok(self.read_buf.split_to(n).freeze()))
        } else {
            let n = ready!(self.poll_read_from_io(cx))?;
            Poll::Ready(Ok(self.read_buf.split_to(::std::cmp::min(len, n)).freeze()))
        }
    }
}

#[derive(Clone, Copy, Debug)]
enum ReadStrategy {
    Adaptive {
        decrease_now: bool,
        next: usize,
        max: usize,
    },
    #[cfg(feature = "client")]
    Exact(usize),
}

impl ReadStrategy {
    fn with_max(max: usize) -> ReadStrategy {
        ReadStrategy::Adaptive {
            decrease_now: false,
            next: INIT_BUFFER_SIZE,
            max,
        }
    }

    fn next(&self) -> usize {
        match *self {
            ReadStrategy::Adaptive { next, .. } => next,
            #[cfg(feature = "client")]
            ReadStrategy::Exact(exact) => exact,
        }
    }

    fn max(&self) -> usize {
        match *self {
            ReadStrategy::Adaptive { max, .. } => max,
            #[cfg(feature = "client")]
            ReadStrategy::Exact(exact) => exact,
        }
    }

    fn record(&mut self, bytes_read: usize) {
        match *self {
            ReadStrategy::Adaptive {
                ref mut decrease_now,
                ref mut next,
                max,
                ..
            } => {
                if bytes_read >= *next {
                    *next = cmp::min(incr_power_of_two(*next), max);
                    *decrease_now = false;
                } else {
                    let decr_to = prev_power_of_two(*next);
                    if bytes_read < decr_to {
                        if *decrease_now {
                            *next = cmp::max(decr_to, INIT_BUFFER_SIZE);
                            *decrease_now = false;
                        } else {
                            // Decreasing is a two "record" process.
                            *decrease_now = true;
                        }
                    } else {
                        // A read within the current range should cancel
                        // a potential decrease, since we just saw proof
                        // that we still need this size.
                        *decrease_now = false;
                    }
                }
            }
            #[cfg(feature = "client")]
            ReadStrategy::Exact(_) => (),
        }
    }
}

fn incr_power_of_two(n: usize) -> usize {
    n.saturating_mul(2)
}

fn prev_power_of_two(n: usize) -> usize {
    // Only way this shift can underflow is if n is less than 4.
    // (Which would means `usize::MAX >> 64` and underflowed!)
    debug_assert!(n >= 4);
    (::std::usize::MAX >> (n.leading_zeros() + 2)) + 1
}

impl Default for ReadStrategy {
    fn default() -> ReadStrategy {
        ReadStrategy::with_max(DEFAULT_MAX_BUFFER_SIZE)
    }
}

#[derive(Clone)]
pub(crate) struct Cursor<T> {
    bytes: T,
    pos: usize,
}

impl<T: AsRef<[u8]>> Cursor<T> {
    #[inline]
    pub(crate) fn new(bytes: T) -> Cursor<T> {
        Cursor { bytes, pos: 0 }
    }
}

impl Cursor<Vec<u8>> {
    /// If we've advanced the position a bit in this cursor, and wish to
    /// extend the underlying vector, we may wish to unshift the "read" bytes
    /// off, and move everything else over.
    fn maybe_unshift(&mut self, additional: usize) {
        if self.pos == 0 {
            // nothing to do
            return;
        }

        if self.bytes.capacity() - self.bytes.len() >= additional {
            // there's room!
            return;
        }

        self.bytes.drain(0..self.pos);
        self.pos = 0;
    }

    fn reset(&mut self) {
        self.pos = 0;
        self.bytes.clear();
    }
}

impl<T: AsRef<[u8]>> fmt::Debug for Cursor<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Cursor")
            .field("pos", &self.pos)
            .field("len", &self.bytes.as_ref().len())
            .finish()
    }
}

impl<T: AsRef<[u8]>> Buf for Cursor<T> {
    #[inline]
    fn remaining(&self) -> usize {
        self.bytes.as_ref().len() - self.pos
    }

    #[inline]
    fn chunk(&self) -> &[u8] {
        &self.bytes.as_ref()[self.pos..]
    }

    #[inline]
    fn advance(&mut self, cnt: usize) {
        debug_assert!(self.pos + cnt <= self.bytes.as_ref().len());
        self.pos += cnt;
    }
}

// an internal buffer to collect writes before flushes
pub(super) struct WriteBuf<B> {
    /// Re-usable buffer that holds message headers
    headers: Cursor<Vec<u8>>,
    max_buf_size: usize,
    /// Deque of user buffers if strategy is Queue
    queue: BufList<B>,
    strategy: WriteStrategy,
}

impl<B: Buf> WriteBuf<B> {
    fn new(strategy: WriteStrategy) -> WriteBuf<B> {
        WriteBuf {
            headers: Cursor::new(Vec::with_capacity(INIT_BUFFER_SIZE)),
            max_buf_size: DEFAULT_MAX_BUFFER_SIZE,
            queue: BufList::new(),
            strategy,
        }
    }
}

impl<B> WriteBuf<B>
where
    B: Buf,
{
    fn set_strategy(&mut self, strategy: WriteStrategy) {
        self.strategy = strategy;
    }

    pub(super) fn buffer<BB: Buf + Into<B>>(&mut self, mut buf: BB) {
        debug_assert!(buf.has_remaining());
        match self.strategy {
            WriteStrategy::Flatten => {
                let head = self.headers_mut();

                head.maybe_unshift(buf.remaining());
                trace!(
                    self.len = head.remaining(),
                    buf.len = buf.remaining(),
                    "buffer.flatten"
                );
                //perf: This is a little faster than <Vec as BufMut>>::put,
                //but accomplishes the same result.
                loop {
                    let adv = {
                        let slice = buf.chunk();
                        if slice.is_empty() {
                            return;
                        }
                        head.bytes.extend_from_slice(slice);
                        slice.len()
                    };
                    buf.advance(adv);
                }
            }
            WriteStrategy::Queue => {
                trace!(
                    self.len = self.remaining(),
                    buf.len = buf.remaining(),
                    "buffer.queue"
                );
                self.queue.push(buf.into());
            }
        }
    }

    fn can_buffer(&self) -> bool {
        match self.strategy {
            WriteStrategy::Flatten => self.remaining() < self.max_buf_size,
            WriteStrategy::Queue => {
                self.queue.bufs_cnt() < MAX_BUF_LIST_BUFFERS && self.remaining() < self.max_buf_size
            }
        }
    }

    fn headers_mut(&mut self) -> &mut Cursor<Vec<u8>> {
        debug_assert!(!self.queue.has_remaining());
        &mut self.headers
    }
}

impl<B: Buf> fmt::Debug for WriteBuf<B> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("WriteBuf")
            .field("remaining", &self.remaining())
            .field("strategy", &self.strategy)
            .finish()
    }
}

impl<B: Buf> Buf for WriteBuf<B> {
    #[inline]
    fn remaining(&self) -> usize {
        self.headers.remaining() + self.queue.remaining()
    }

    #[inline]
    fn chunk(&self) -> &[u8] {
        let headers = self.headers.chunk();
        if !headers.is_empty() {
            headers
        } else {
            self.queue.chunk()
        }
    }

    #[inline]
    fn advance(&mut self, cnt: usize) {
        let hrem = self.headers.remaining();

        match hrem.cmp(&cnt) {
            cmp::Ordering::Equal => self.headers.reset(),
            cmp::Ordering::Greater => self.headers.advance(cnt),
            cmp::Ordering::Less => {
                let qcnt = cnt - hrem;
                self.headers.reset();
                self.queue.advance(qcnt);
            }
        }
    }

    #[inline]
    fn chunks_vectored<'t>(&'t self, dst: &mut [IoSlice<'t>]) -> usize {
        let n = self.headers.chunks_vectored(dst);
        self.queue.chunks_vectored(&mut dst[n..]) + n
    }
}

#[derive(Debug)]
enum WriteStrategy {
    Flatten,
    Queue,
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::time::Duration;

    use tokio_test::io::Builder as Mock;

    // #[cfg(feature = "nightly")]
    // use test::Bencher;

    /*
    impl<T: Read> MemRead for AsyncIo<T> {
        fn read_mem(&mut self, len: usize) -> Poll<Bytes, io::Error> {
            let mut v = vec![0; len];
            let n = try_nb!(self.read(v.as_mut_slice()));
            Ok(Async::Ready(BytesMut::from(&v[..n]).freeze()))
        }
    }
    */

    #[tokio::test]
    #[ignore]
    async fn iobuf_write_empty_slice() {
        // TODO(eliza): can i have writev back pls T_T
        // // First, let's just check that the Mock would normally return an
        // // error on an unexpected write, even if the buffer is empty...
        // let mut mock = Mock::new().build();
        // futures_util::future::poll_fn(|cx| {
        //     Pin::new(&mut mock).poll_write_buf(cx, &mut Cursor::new(&[]))
        // })
        // .await
        // .expect_err("should be a broken pipe");

        // // underlying io will return the logic error upon write,
        // // so we are testing that the io_buf does not trigger a write
        // // when there is nothing to flush
        // let mock = Mock::new().build();
        // let mut io_buf = Buffered::<_, Cursor<Vec<u8>>>::new(mock);
        // io_buf.flush().await.expect("should short-circuit flush");
    }

    #[tokio::test]
    async fn parse_reads_until_blocked() {
        use crate::proto::h1::ClientTransaction;

        let _ = pretty_env_logger::try_init();
        let mock = Mock::new()
            // Split over multiple reads will read all of it
            .read(b"HTTP/1.1 200 OK\r\n")
            .read(b"Server: hyper\r\n")
            // missing last line ending
            .wait(Duration::from_secs(1))
            .build();

        let mut buffered = Buffered::<_, Cursor<Vec<u8>>>::new(mock);

        // We expect a `parse` to be not ready, and so can't await it directly.
        // Rather, this `poll_fn` will wrap the `Poll` result.
        futures_util::future::poll_fn(|cx| {
            let parse_ctx = ParseContext {
                cached_headers: &mut None,
                req_method: &mut None,
                h1_parser_config: Default::default(),
                #[cfg(feature = "runtime")]
                h1_header_read_timeout: None,
                #[cfg(feature = "runtime")]
                h1_header_read_timeout_fut: &mut None,
                #[cfg(feature = "runtime")]
                h1_header_read_timeout_running: &mut false,
                preserve_header_case: false,
                #[cfg(feature = "ffi")]
                preserve_header_order: false,
                h09_responses: false,
                #[cfg(feature = "ffi")]
                on_informational: &mut None,
                #[cfg(feature = "ffi")]
                raw_headers: false,
            };
            assert!(buffered
                .parse::<ClientTransaction>(cx, parse_ctx)
                .is_pending());
            Poll::Ready(())
        })
        .await;

        assert_eq!(
            buffered.read_buf,
            b"HTTP/1.1 200 OK\r\nServer: hyper\r\n"[..]
        );
    }

    #[test]
    fn read_strategy_adaptive_increments() {
        let mut strategy = ReadStrategy::default();
        assert_eq!(strategy.next(), 8192);

        // Grows if record == next
        strategy.record(8192);
        assert_eq!(strategy.next(), 16384);

        strategy.record(16384);
        assert_eq!(strategy.next(), 32768);

        // Enormous records still increment at same rate
        strategy.record(::std::usize::MAX);
        assert_eq!(strategy.next(), 65536);

        let max = strategy.max();
        while strategy.next() < max {
            strategy.record(max);
        }

        assert_eq!(strategy.next(), max, "never goes over max");
        strategy.record(max + 1);
        assert_eq!(strategy.next(), max, "never goes over max");
    }

    #[test]
    fn read_strategy_adaptive_decrements() {
        let mut strategy = ReadStrategy::default();
        strategy.record(8192);
        assert_eq!(strategy.next(), 16384);

        strategy.record(1);
        assert_eq!(
            strategy.next(),
            16384,
            "first smaller record doesn't decrement yet"
        );
        strategy.record(8192);
        assert_eq!(strategy.next(), 16384, "record was with range");

        strategy.record(1);
        assert_eq!(
            strategy.next(),
            16384,
            "in-range record should make this the 'first' again"
        );

        strategy.record(1);
        assert_eq!(strategy.next(), 8192, "second smaller record decrements");

        strategy.record(1);
        assert_eq!(strategy.next(), 8192, "first doesn't decrement");
        strategy.record(1);
        assert_eq!(strategy.next(), 8192, "doesn't decrement under minimum");
    }

    #[test]
    fn read_strategy_adaptive_stays_the_same() {
        let mut strategy = ReadStrategy::default();
        strategy.record(8192);
        assert_eq!(strategy.next(), 16384);

        strategy.record(8193);
        assert_eq!(
            strategy.next(),
            16384,
            "first smaller record doesn't decrement yet"
        );

        strategy.record(8193);
        assert_eq!(
            strategy.next(),
            16384,
            "with current step does not decrement"
        );
    }

    #[test]
    fn read_strategy_adaptive_max_fuzz() {
        fn fuzz(max: usize) {
            let mut strategy = ReadStrategy::with_max(max);
            while strategy.next() < max {
                strategy.record(::std::usize::MAX);
            }
            let mut next = strategy.next();
            while next > 8192 {
                strategy.record(1);
                strategy.record(1);
                next = strategy.next();
                assert!(
                    next.is_power_of_two(),
                    "decrement should be powers of two: {} (max = {})",
                    next,
                    max,
                );
            }
        }

        let mut max = 8192;
        while max < std::usize::MAX {
            fuzz(max);
            max = (max / 2).saturating_mul(3);
        }
        fuzz(::std::usize::MAX);
    }

    #[test]
    #[should_panic]
    #[cfg(debug_assertions)] // needs to trigger a debug_assert
    fn write_buf_requires_non_empty_bufs() {
        let mock = Mock::new().build();
        let mut buffered = Buffered::<_, Cursor<Vec<u8>>>::new(mock);

        buffered.buffer(Cursor::new(Vec::new()));
    }

    /*
    TODO: needs tokio_test::io to allow configure write_buf calls
    #[test]
    fn write_buf_queue() {
        let _ = pretty_env_logger::try_init();

        let mock = AsyncIo::new_buf(vec![], 1024);
        let mut buffered = Buffered::<_, Cursor<Vec<u8>>>::new(mock);


        buffered.headers_buf().extend(b"hello ");
        buffered.buffer(Cursor::new(b"world, ".to_vec()));
        buffered.buffer(Cursor::new(b"it's ".to_vec()));
        buffered.buffer(Cursor::new(b"hyper!".to_vec()));
        assert_eq!(buffered.write_buf.queue.bufs_cnt(), 3);
        buffered.flush().unwrap();

        assert_eq!(buffered.io, b"hello world, it's hyper!");
        assert_eq!(buffered.io.num_writes(), 1);
        assert_eq!(buffered.write_buf.queue.bufs_cnt(), 0);
    }
    */

    #[tokio::test]
    async fn write_buf_flatten() {
        let _ = pretty_env_logger::try_init();

        let mock = Mock::new().write(b"hello world, it's hyper!").build();

        let mut buffered = Buffered::<_, Cursor<Vec<u8>>>::new(mock);
        buffered.write_buf.set_strategy(WriteStrategy::Flatten);

        buffered.headers_buf().extend(b"hello ");
        buffered.buffer(Cursor::new(b"world, ".to_vec()));
        buffered.buffer(Cursor::new(b"it's ".to_vec()));
        buffered.buffer(Cursor::new(b"hyper!".to_vec()));
        assert_eq!(buffered.write_buf.queue.bufs_cnt(), 0);

        buffered.flush().await.expect("flush");
    }

    #[test]
    fn write_buf_flatten_partially_flushed() {
        let _ = pretty_env_logger::try_init();

        let b = |s: &str| Cursor::new(s.as_bytes().to_vec());

        let mut write_buf = WriteBuf::<Cursor<Vec<u8>>>::new(WriteStrategy::Flatten);

        write_buf.buffer(b("hello "));
        write_buf.buffer(b("world, "));

        assert_eq!(write_buf.chunk(), b"hello world, ");

        // advance most of the way, but not all
        write_buf.advance(11);

        assert_eq!(write_buf.chunk(), b", ");
        assert_eq!(write_buf.headers.pos, 11);
        assert_eq!(write_buf.headers.bytes.capacity(), INIT_BUFFER_SIZE);

        // there's still room in the headers buffer, so just push on the end
        write_buf.buffer(b("it's hyper!"));

        assert_eq!(write_buf.chunk(), b", it's hyper!");
        assert_eq!(write_buf.headers.pos, 11);

        let rem1 = write_buf.remaining();
        let cap = write_buf.headers.bytes.capacity();

        // but when this would go over capacity, don't copy the old bytes
        write_buf.buffer(Cursor::new(vec![b'X'; cap]));
        assert_eq!(write_buf.remaining(), cap + rem1);
        assert_eq!(write_buf.headers.pos, 0);
    }

    #[tokio::test]
    async fn write_buf_queue_disable_auto() {
        let _ = pretty_env_logger::try_init();

        let mock = Mock::new()
            .write(b"hello ")
            .write(b"world, ")
            .write(b"it's ")
            .write(b"hyper!")
            .build();

        let mut buffered = Buffered::<_, Cursor<Vec<u8>>>::new(mock);
        buffered.write_buf.set_strategy(WriteStrategy::Queue);

        // we have 4 buffers, and vec IO disabled, but explicitly said
        // don't try to auto detect (via setting strategy above)

        buffered.headers_buf().extend(b"hello ");
        buffered.buffer(Cursor::new(b"world, ".to_vec()));
        buffered.buffer(Cursor::new(b"it's ".to_vec()));
        buffered.buffer(Cursor::new(b"hyper!".to_vec()));
        assert_eq!(buffered.write_buf.queue.bufs_cnt(), 3);

        buffered.flush().await.expect("flush");

        assert_eq!(buffered.write_buf.queue.bufs_cnt(), 0);
    }

    // #[cfg(feature = "nightly")]
    // #[bench]
    // fn bench_write_buf_flatten_buffer_chunk(b: &mut Bencher) {
    //     let s = "Hello, World!";
    //     b.bytes = s.len() as u64;

    //     let mut write_buf = WriteBuf::<bytes::Bytes>::new();
    //     write_buf.set_strategy(WriteStrategy::Flatten);
    //     b.iter(|| {
    //         let chunk = bytes::Bytes::from(s);
    //         write_buf.buffer(chunk);
    //         ::test::black_box(&write_buf);
    //         write_buf.headers.bytes.clear();
    //     })
    // }
}