ring/rsa/padding.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
// Copyright 2015-2016 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
use super::PUBLIC_KEY_PUBLIC_MODULUS_MAX_LEN;
use crate::{bits, digest, error, io::der};
#[cfg(feature = "alloc")]
use crate::rand;
/// Common features of both RSA padding encoding and RSA padding verification.
pub trait Padding: 'static + Sync + crate::sealed::Sealed + core::fmt::Debug {
// The digest algorithm used for digesting the message (and maybe for
// other things).
fn digest_alg(&self) -> &'static digest::Algorithm;
}
/// An RSA signature encoding as described in [RFC 3447 Section 8].
///
/// [RFC 3447 Section 8]: https://tools.ietf.org/html/rfc3447#section-8
#[cfg(feature = "alloc")]
pub trait RsaEncoding: Padding {
#[doc(hidden)]
fn encode(
&self,
m_hash: &digest::Digest,
m_out: &mut [u8],
mod_bits: bits::BitLength,
rng: &dyn rand::SecureRandom,
) -> Result<(), error::Unspecified>;
}
/// Verification of an RSA signature encoding as described in
/// [RFC 3447 Section 8].
///
/// [RFC 3447 Section 8]: https://tools.ietf.org/html/rfc3447#section-8
pub trait Verification: Padding {
fn verify(
&self,
m_hash: &digest::Digest,
m: &mut untrusted::Reader,
mod_bits: bits::BitLength,
) -> Result<(), error::Unspecified>;
}
/// PKCS#1 1.5 padding as described in [RFC 3447 Section 8.2].
///
/// See "`RSA_PSS_*` Details\" in `ring::signature`'s module-level
/// documentation for more details.
///
/// [RFC 3447 Section 8.2]: https://tools.ietf.org/html/rfc3447#section-8.2
#[derive(Debug)]
pub struct PKCS1 {
digest_alg: &'static digest::Algorithm,
digestinfo_prefix: &'static [u8],
}
impl crate::sealed::Sealed for PKCS1 {}
impl Padding for PKCS1 {
fn digest_alg(&self) -> &'static digest::Algorithm {
self.digest_alg
}
}
#[cfg(feature = "alloc")]
impl RsaEncoding for PKCS1 {
fn encode(
&self,
m_hash: &digest::Digest,
m_out: &mut [u8],
_mod_bits: bits::BitLength,
_rng: &dyn rand::SecureRandom,
) -> Result<(), error::Unspecified> {
pkcs1_encode(&self, m_hash, m_out);
Ok(())
}
}
impl Verification for PKCS1 {
fn verify(
&self,
m_hash: &digest::Digest,
m: &mut untrusted::Reader,
mod_bits: bits::BitLength,
) -> Result<(), error::Unspecified> {
// `mod_bits.as_usize_bytes_rounded_up() <=
// PUBLIC_KEY_PUBLIC_MODULUS_MAX_LEN` is ensured by `verify_rsa_()`.
let mut calculated = [0u8; PUBLIC_KEY_PUBLIC_MODULUS_MAX_LEN];
let calculated = &mut calculated[..mod_bits.as_usize_bytes_rounded_up()];
pkcs1_encode(&self, m_hash, calculated);
if m.read_bytes_to_end() != *calculated {
return Err(error::Unspecified);
}
Ok(())
}
}
// Implement padding procedure per EMSA-PKCS1-v1_5,
// https://tools.ietf.org/html/rfc3447#section-9.2. This is used by both
// verification and signing so it needs to be able to handle moduli of the
// minimum and maximum sizes for both operations.
fn pkcs1_encode(pkcs1: &PKCS1, m_hash: &digest::Digest, m_out: &mut [u8]) {
let em = m_out;
let digest_len = pkcs1.digestinfo_prefix.len() + pkcs1.digest_alg.output_len;
// The specification requires at least 8 bytes of padding. Since we
// disallow keys smaller than 1024 bits, this should always be true.
assert!(em.len() >= digest_len + 11);
let pad_len = em.len() - digest_len - 3;
em[0] = 0;
em[1] = 1;
for i in 0..pad_len {
em[2 + i] = 0xff;
}
em[2 + pad_len] = 0;
let (digest_prefix, digest_dst) = em[3 + pad_len..].split_at_mut(pkcs1.digestinfo_prefix.len());
digest_prefix.copy_from_slice(pkcs1.digestinfo_prefix);
digest_dst.copy_from_slice(m_hash.as_ref());
}
macro_rules! rsa_pkcs1_padding {
( $PADDING_ALGORITHM:ident, $digest_alg:expr, $digestinfo_prefix:expr,
$doc_str:expr ) => {
#[doc=$doc_str]
pub static $PADDING_ALGORITHM: PKCS1 = PKCS1 {
digest_alg: $digest_alg,
digestinfo_prefix: $digestinfo_prefix,
};
};
}
rsa_pkcs1_padding!(
RSA_PKCS1_SHA1_FOR_LEGACY_USE_ONLY,
&digest::SHA1_FOR_LEGACY_USE_ONLY,
&SHA1_PKCS1_DIGESTINFO_PREFIX,
"PKCS#1 1.5 padding using SHA-1 for RSA signatures."
);
rsa_pkcs1_padding!(
RSA_PKCS1_SHA256,
&digest::SHA256,
&SHA256_PKCS1_DIGESTINFO_PREFIX,
"PKCS#1 1.5 padding using SHA-256 for RSA signatures."
);
rsa_pkcs1_padding!(
RSA_PKCS1_SHA384,
&digest::SHA384,
&SHA384_PKCS1_DIGESTINFO_PREFIX,
"PKCS#1 1.5 padding using SHA-384 for RSA signatures."
);
rsa_pkcs1_padding!(
RSA_PKCS1_SHA512,
&digest::SHA512,
&SHA512_PKCS1_DIGESTINFO_PREFIX,
"PKCS#1 1.5 padding using SHA-512 for RSA signatures."
);
macro_rules! pkcs1_digestinfo_prefix {
( $name:ident, $digest_len:expr, $digest_oid_len:expr,
[ $( $digest_oid:expr ),* ] ) => {
static $name: [u8; 2 + 8 + $digest_oid_len] = [
der::Tag::Sequence as u8, 8 + $digest_oid_len + $digest_len,
der::Tag::Sequence as u8, 2 + $digest_oid_len + 2,
der::Tag::OID as u8, $digest_oid_len, $( $digest_oid ),*,
der::Tag::Null as u8, 0,
der::Tag::OctetString as u8, $digest_len,
];
}
}
pkcs1_digestinfo_prefix!(
SHA1_PKCS1_DIGESTINFO_PREFIX,
20,
5,
[0x2b, 0x0e, 0x03, 0x02, 0x1a]
);
pkcs1_digestinfo_prefix!(
SHA256_PKCS1_DIGESTINFO_PREFIX,
32,
9,
[0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01]
);
pkcs1_digestinfo_prefix!(
SHA384_PKCS1_DIGESTINFO_PREFIX,
48,
9,
[0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02]
);
pkcs1_digestinfo_prefix!(
SHA512_PKCS1_DIGESTINFO_PREFIX,
64,
9,
[0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03]
);
/// RSA PSS padding as described in [RFC 3447 Section 8.1].
///
/// See "`RSA_PSS_*` Details\" in `ring::signature`'s module-level
/// documentation for more details.
///
/// [RFC 3447 Section 8.1]: https://tools.ietf.org/html/rfc3447#section-8.1
#[derive(Debug)]
pub struct PSS {
digest_alg: &'static digest::Algorithm,
}
impl crate::sealed::Sealed for PSS {}
// Maximum supported length of the salt in bytes.
// In practice, this is constrained by the maximum digest length.
const MAX_SALT_LEN: usize = digest::MAX_OUTPUT_LEN;
impl Padding for PSS {
fn digest_alg(&self) -> &'static digest::Algorithm {
self.digest_alg
}
}
impl RsaEncoding for PSS {
// Implement padding procedure per EMSA-PSS,
// https://tools.ietf.org/html/rfc3447#section-9.1.
fn encode(
&self,
m_hash: &digest::Digest,
m_out: &mut [u8],
mod_bits: bits::BitLength,
rng: &dyn rand::SecureRandom,
) -> Result<(), error::Unspecified> {
let metrics = PSSMetrics::new(self.digest_alg, mod_bits)?;
// The `m_out` this function fills is the big-endian-encoded value of `m`
// from the specification, padded to `k` bytes, where `k` is the length
// in bytes of the public modulus. The spec says "Note that emLen will
// be one less than k if modBits - 1 is divisible by 8 and equal to k
// otherwise." In other words we might need to prefix `em` with a
// leading zero byte to form a correct value of `m`.
let em = if metrics.top_byte_mask == 0xff {
m_out[0] = 0;
&mut m_out[1..]
} else {
m_out
};
assert_eq!(em.len(), metrics.em_len);
// Steps 1 and 2 are done by the caller to produce `m_hash`.
// Step 3 is done by `PSSMetrics::new()` above.
// Step 4.
let mut salt = [0u8; MAX_SALT_LEN];
let salt = &mut salt[..metrics.s_len];
rng.fill(salt)?;
// Step 5 and 6.
let h_hash = pss_digest(self.digest_alg, m_hash, salt);
// Re-order steps 7, 8, 9 and 10 so that we first output the db mask
// into `em`, and then XOR the value of db.
// Step 9. First output the mask into the out buffer.
let (mut masked_db, digest_terminator) = em.split_at_mut(metrics.db_len);
mgf1(self.digest_alg, h_hash.as_ref(), &mut masked_db)?;
{
// Steps 7.
let masked_db = masked_db.iter_mut();
// `PS` is all zero bytes, so skipping `ps_len` bytes is equivalent
// to XORing `PS` onto `db`.
let mut masked_db = masked_db.skip(metrics.ps_len);
// Step 8.
*(masked_db.next().ok_or(error::Unspecified)?) ^= 0x01;
// Step 10.
for (masked_db_b, salt_b) in masked_db.zip(salt) {
*masked_db_b ^= *salt_b;
}
}
// Step 11.
masked_db[0] &= metrics.top_byte_mask;
// Step 12.
digest_terminator[..metrics.h_len].copy_from_slice(h_hash.as_ref());
digest_terminator[metrics.h_len] = 0xbc;
Ok(())
}
}
impl Verification for PSS {
// RSASSA-PSS-VERIFY from https://tools.ietf.org/html/rfc3447#section-8.1.2
// where steps 1, 2(a), and 2(b) have been done for us.
fn verify(
&self,
m_hash: &digest::Digest,
m: &mut untrusted::Reader,
mod_bits: bits::BitLength,
) -> Result<(), error::Unspecified> {
let metrics = PSSMetrics::new(self.digest_alg, mod_bits)?;
// RSASSA-PSS-VERIFY Step 2(c). The `m` this function is given is the
// big-endian-encoded value of `m` from the specification, padded to
// `k` bytes, where `k` is the length in bytes of the public modulus.
// The spec. says "Note that emLen will be one less than k if
// modBits - 1 is divisible by 8 and equal to k otherwise," where `k`
// is the length in octets of the RSA public modulus `n`. In other
// words, `em` might have an extra leading zero byte that we need to
// strip before we start the PSS decoding steps which is an artifact of
// the `Verification` interface.
if metrics.top_byte_mask == 0xff {
if m.read_byte()? != 0 {
return Err(error::Unspecified);
}
};
let em = m;
// The rest of this function is EMSA-PSS-VERIFY from
// https://tools.ietf.org/html/rfc3447#section-9.1.2.
// Steps 1 and 2 are done by the caller to produce `m_hash`.
// Step 3 is done by `PSSMetrics::new()` above.
// Step 5, out of order.
let masked_db = em.read_bytes(metrics.db_len)?;
let h_hash = em.read_bytes(metrics.h_len)?;
// Step 4.
if em.read_byte()? != 0xbc {
return Err(error::Unspecified);
}
// Step 7.
let mut db = [0u8; PUBLIC_KEY_PUBLIC_MODULUS_MAX_LEN];
let db = &mut db[..metrics.db_len];
mgf1(self.digest_alg, h_hash.as_slice_less_safe(), db)?;
masked_db.read_all(error::Unspecified, |masked_bytes| {
// Step 6. Check the top bits of first byte are zero.
let b = masked_bytes.read_byte()?;
if b & !metrics.top_byte_mask != 0 {
return Err(error::Unspecified);
}
db[0] ^= b;
// Step 8.
for i in 1..db.len() {
db[i] ^= masked_bytes.read_byte()?;
}
Ok(())
})?;
// Step 9.
db[0] &= metrics.top_byte_mask;
// Step 10.
let ps_len = metrics.ps_len;
for i in 0..ps_len {
if db[i] != 0 {
return Err(error::Unspecified);
}
}
if db[metrics.ps_len] != 1 {
return Err(error::Unspecified);
}
// Step 11.
let salt = &db[(db.len() - metrics.s_len)..];
// Step 12 and 13.
let h_prime = pss_digest(self.digest_alg, m_hash, salt);
// Step 14.
if h_hash != *h_prime.as_ref() {
return Err(error::Unspecified);
}
Ok(())
}
}
struct PSSMetrics {
#[cfg_attr(not(feature = "alloc"), allow(dead_code))]
em_len: usize,
db_len: usize,
ps_len: usize,
s_len: usize,
h_len: usize,
top_byte_mask: u8,
}
impl PSSMetrics {
fn new(
digest_alg: &'static digest::Algorithm,
mod_bits: bits::BitLength,
) -> Result<PSSMetrics, error::Unspecified> {
let em_bits = mod_bits.try_sub_1()?;
let em_len = em_bits.as_usize_bytes_rounded_up();
let leading_zero_bits = (8 * em_len) - em_bits.as_usize_bits();
debug_assert!(leading_zero_bits < 8);
let top_byte_mask = 0xffu8 >> leading_zero_bits;
let h_len = digest_alg.output_len;
// We require the salt length to be equal to the digest length.
let s_len = h_len;
// Step 3 of both `EMSA-PSS-ENCODE` is `EMSA-PSS-VERIFY` requires that
// we reject inputs where "emLen < hLen + sLen + 2". The definition of
// `emBits` in RFC 3447 Sections 9.1.1 and 9.1.2 says `emBits` must be
// "at least 8hLen + 8sLen + 9". Since 9 bits requires two bytes, these
// two conditions are equivalent. 9 bits are required as the 0x01
// before the salt requires 1 bit and the 0xbc after the digest
// requires 8 bits.
let db_len = em_len.checked_sub(1 + s_len).ok_or(error::Unspecified)?;
let ps_len = db_len.checked_sub(h_len + 1).ok_or(error::Unspecified)?;
debug_assert!(em_bits.as_usize_bits() >= (8 * h_len) + (8 * s_len) + 9);
Ok(PSSMetrics {
em_len,
db_len,
ps_len,
s_len,
h_len,
top_byte_mask,
})
}
}
// Mask-generating function MGF1 as described in
// https://tools.ietf.org/html/rfc3447#appendix-B.2.1.
fn mgf1(
digest_alg: &'static digest::Algorithm,
seed: &[u8],
mask: &mut [u8],
) -> Result<(), error::Unspecified> {
let digest_len = digest_alg.output_len;
// Maximum counter value is the value of (mask_len / digest_len) rounded up.
let ctr_max = (mask.len() - 1) / digest_len;
assert!(ctr_max <= u32::max_value() as usize);
for (i, mask_chunk) in mask.chunks_mut(digest_len).enumerate() {
let mut ctx = digest::Context::new(digest_alg);
ctx.update(seed);
ctx.update(&u32::to_be_bytes(i as u32));
let digest = ctx.finish();
let mask_chunk_len = mask_chunk.len();
mask_chunk.copy_from_slice(&digest.as_ref()[..mask_chunk_len]);
}
Ok(())
}
fn pss_digest(
digest_alg: &'static digest::Algorithm,
m_hash: &digest::Digest,
salt: &[u8],
) -> digest::Digest {
// Fixed prefix.
const PREFIX_ZEROS: [u8; 8] = [0u8; 8];
// Encoding step 5 and 6, Verification step 12 and 13.
let mut ctx = digest::Context::new(digest_alg);
ctx.update(&PREFIX_ZEROS);
ctx.update(m_hash.as_ref());
ctx.update(salt);
ctx.finish()
}
macro_rules! rsa_pss_padding {
( $PADDING_ALGORITHM:ident, $digest_alg:expr, $doc_str:expr ) => {
#[doc=$doc_str]
pub static $PADDING_ALGORITHM: PSS = PSS {
digest_alg: $digest_alg,
};
};
}
rsa_pss_padding!(
RSA_PSS_SHA256,
&digest::SHA256,
"RSA PSS padding using SHA-256 for RSA signatures.\n\nSee
\"`RSA_PSS_*` Details\" in `ring::signature`'s module-level
documentation for more details."
);
rsa_pss_padding!(
RSA_PSS_SHA384,
&digest::SHA384,
"RSA PSS padding using SHA-384 for RSA signatures.\n\nSee
\"`RSA_PSS_*` Details\" in `ring::signature`'s module-level
documentation for more details."
);
rsa_pss_padding!(
RSA_PSS_SHA512,
&digest::SHA512,
"RSA PSS padding using SHA-512 for RSA signatures.\n\nSee
\"`RSA_PSS_*` Details\" in `ring::signature`'s module-level
documentation for more details."
);
#[cfg(test)]
mod test {
use super::*;
use crate::{digest, error, test};
use alloc::vec;
#[test]
fn test_pss_padding_verify() {
test::run(
test_file!("rsa_pss_padding_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
let digest_name = test_case.consume_string("Digest");
let alg = match digest_name.as_ref() {
"SHA256" => &RSA_PSS_SHA256,
"SHA384" => &RSA_PSS_SHA384,
"SHA512" => &RSA_PSS_SHA512,
_ => panic!("Unsupported digest: {}", digest_name),
};
let msg = test_case.consume_bytes("Msg");
let msg = untrusted::Input::from(&msg);
let m_hash = digest::digest(alg.digest_alg(), msg.as_slice_less_safe());
let encoded = test_case.consume_bytes("EM");
let encoded = untrusted::Input::from(&encoded);
// Salt is recomputed in verification algorithm.
let _ = test_case.consume_bytes("Salt");
let bit_len = test_case.consume_usize_bits("Len");
let is_valid = test_case.consume_string("Result") == "P";
let actual_result =
encoded.read_all(error::Unspecified, |m| alg.verify(&m_hash, m, bit_len));
assert_eq!(actual_result.is_ok(), is_valid);
Ok(())
},
);
}
// Tests PSS encoding for various public modulus lengths.
#[cfg(feature = "alloc")]
#[test]
fn test_pss_padding_encode() {
test::run(
test_file!("rsa_pss_padding_tests.txt"),
|section, test_case| {
assert_eq!(section, "");
let digest_name = test_case.consume_string("Digest");
let alg = match digest_name.as_ref() {
"SHA256" => &RSA_PSS_SHA256,
"SHA384" => &RSA_PSS_SHA384,
"SHA512" => &RSA_PSS_SHA512,
_ => panic!("Unsupported digest: {}", digest_name),
};
let msg = test_case.consume_bytes("Msg");
let salt = test_case.consume_bytes("Salt");
let encoded = test_case.consume_bytes("EM");
let bit_len = test_case.consume_usize_bits("Len");
let expected_result = test_case.consume_string("Result");
// Only test the valid outputs
if expected_result != "P" {
return Ok(());
}
let rng = test::rand::FixedSliceRandom { bytes: &salt };
let mut m_out = vec![0u8; bit_len.as_usize_bytes_rounded_up()];
let digest = digest::digest(alg.digest_alg(), &msg);
alg.encode(&digest, &mut m_out, bit_len, &rng).unwrap();
assert_eq!(m_out, encoded);
Ok(())
},
);
}
}