1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
use core::ops::{Range, RangeBounds};
use crate::util::primitives::PatternID;
/// The configuration and the haystack to use for an Aho-Corasick search.
///
/// When executing a search, there are a few parameters one might want to
/// configure:
///
/// * The haystack to search, provided to the [`Input::new`] constructor. This
/// is the only required parameter.
/// * The span _within_ the haystack to limit a search to. (The default
/// is the entire haystack.) This is configured via [`Input::span`] or
/// [`Input::range`].
/// * Whether to run an unanchored (matches can occur anywhere after the
/// start of the search) or anchored (matches can only occur beginning at
/// the start of the search) search. Unanchored search is the default. This is
/// configured via [`Input::anchored`].
/// * Whether to quit the search as soon as a match has been found, regardless
/// of the [`MatchKind`] that the searcher was built with. This is configured
/// via [`Input::earliest`].
///
/// For most cases, the defaults for all optional parameters are appropriate.
/// The utility of this type is that it keeps the default or common case simple
/// while permitting tweaking parameters in more niche use cases while reusing
/// the same search APIs.
///
/// # Valid bounds and search termination
///
/// An `Input` permits setting the bounds of a search via either
/// [`Input::span`] or [`Input::range`]. The bounds set must be valid, or
/// else a panic will occur. Bounds are valid if and only if:
///
/// * The bounds represent a valid range into the input's haystack.
/// * **or** the end bound is a valid ending bound for the haystack *and*
/// the start bound is exactly one greater than the end bound.
///
/// In the latter case, [`Input::is_done`] will return true and indicates any
/// search receiving such an input should immediately return with no match.
///
/// Other than representing "search is complete," the `Input::span` and
/// `Input::range` APIs are never necessary. Instead, callers can slice the
/// haystack instead, e.g., with `&haystack[start..end]`. With that said, they
/// can be more convenient than slicing because the match positions reported
/// when using `Input::span` or `Input::range` are in terms of the original
/// haystack. If you instead use `&haystack[start..end]`, then you'll need to
/// add `start` to any match position returned in order for it to be a correct
/// index into `haystack`.
///
/// # Example: `&str` and `&[u8]` automatically convert to an `Input`
///
/// There is a `From<&T> for Input` implementation for all `T: AsRef<[u8]>`.
/// Additionally, the [`AhoCorasick`](crate::AhoCorasick) search APIs accept
/// a `Into<Input>`. These two things combined together mean you can provide
/// things like `&str` and `&[u8]` to search APIs when the defaults are
/// suitable, but also an `Input` when they're not. For example:
///
/// ```
/// use aho_corasick::{AhoCorasick, Anchored, Input, Match, StartKind};
///
/// // Build a searcher that supports both unanchored and anchored modes.
/// let ac = AhoCorasick::builder()
/// .start_kind(StartKind::Both)
/// .build(&["abcd", "b"])
/// .unwrap();
/// let haystack = "abcd";
///
/// // A search using default parameters is unanchored. With standard
/// // semantics, this finds `b` first.
/// assert_eq!(
/// Some(Match::must(1, 1..2)),
/// ac.find(haystack),
/// );
/// // Using the same 'find' routine, we can provide an 'Input' explicitly
/// // that is configured to do an anchored search. Since 'b' doesn't start
/// // at the beginning of the search, it is not reported as a match.
/// assert_eq!(
/// Some(Match::must(0, 0..4)),
/// ac.find(Input::new(haystack).anchored(Anchored::Yes)),
/// );
/// ```
#[derive(Clone)]
pub struct Input<'h> {
haystack: &'h [u8],
span: Span,
anchored: Anchored,
earliest: bool,
}
impl<'h> Input<'h> {
/// Create a new search configuration for the given haystack.
#[inline]
pub fn new<H: ?Sized + AsRef<[u8]>>(haystack: &'h H) -> Input<'h> {
Input {
haystack: haystack.as_ref(),
span: Span { start: 0, end: haystack.as_ref().len() },
anchored: Anchored::No,
earliest: false,
}
}
/// Set the span for this search.
///
/// This routine is generic over how a span is provided. While
/// a [`Span`] may be given directly, one may also provide a
/// `std::ops::Range<usize>`. To provide anything supported by range
/// syntax, use the [`Input::range`] method.
///
/// The default span is the entire haystack.
///
/// Note that [`Input::range`] overrides this method and vice versa.
///
/// # Panics
///
/// This panics if the given span does not correspond to valid bounds in
/// the haystack or the termination of a search.
///
/// # Example
///
/// This example shows how the span of the search can impact whether a
/// match is reported or not.
///
/// ```
/// use aho_corasick::{AhoCorasick, Input, MatchKind};
///
/// let patterns = &["b", "abcd", "abc"];
/// let haystack = "abcd";
///
/// let ac = AhoCorasick::builder()
/// .match_kind(MatchKind::LeftmostFirst)
/// .build(patterns)
/// .unwrap();
/// let input = Input::new(haystack).span(0..3);
/// let mat = ac.try_find(input)?.expect("should have a match");
/// // Without the span stopping the search early, 'abcd' would be reported
/// // because it is the correct leftmost-first match.
/// assert_eq!("abc", &haystack[mat.span()]);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn span<S: Into<Span>>(mut self, span: S) -> Input<'h> {
self.set_span(span);
self
}
/// Like `Input::span`, but accepts any range instead.
///
/// The default range is the entire haystack.
///
/// Note that [`Input::span`] overrides this method and vice versa.
///
/// # Panics
///
/// This routine will panic if the given range could not be converted
/// to a valid [`Range`]. For example, this would panic when given
/// `0..=usize::MAX` since it cannot be represented using a half-open
/// interval in terms of `usize`.
///
/// This routine also panics if the given range does not correspond to
/// valid bounds in the haystack or the termination of a search.
///
/// # Example
///
/// ```
/// use aho_corasick::Input;
///
/// let input = Input::new("foobar");
/// assert_eq!(0..6, input.get_range());
///
/// let input = Input::new("foobar").range(2..=4);
/// assert_eq!(2..5, input.get_range());
/// ```
#[inline]
pub fn range<R: RangeBounds<usize>>(mut self, range: R) -> Input<'h> {
self.set_range(range);
self
}
/// Sets the anchor mode of a search.
///
/// When a search is anchored (via [`Anchored::Yes`]), a match must begin
/// at the start of a search. When a search is not anchored (that's
/// [`Anchored::No`]), searchers will look for a match anywhere in the
/// haystack.
///
/// By default, the anchored mode is [`Anchored::No`].
///
/// # Support for anchored searches
///
/// Anchored or unanchored searches might not always be available,
/// depending on the type of searcher used and its configuration:
///
/// * [`noncontiguous::NFA`](crate::nfa::noncontiguous::NFA) always
/// supports both unanchored and anchored searches.
/// * [`contiguous::NFA`](crate::nfa::contiguous::NFA) always supports both
/// unanchored and anchored searches.
/// * [`dfa::DFA`](crate::dfa::DFA) supports only unanchored
/// searches by default.
/// [`dfa::Builder::start_kind`](crate::dfa::Builder::start_kind) can
/// be used to change the default to supporting both kinds of searches
/// or even just anchored searches.
/// * [`AhoCorasick`](crate::AhoCorasick) inherits the same setup as a
/// `DFA`. Namely, it only supports unanchored searches by default, but
/// [`AhoCorasickBuilder::start_kind`](crate::AhoCorasickBuilder::start_kind)
/// can change this.
///
/// If you try to execute a search using a `try_` ("fallible") method with
/// an unsupported anchor mode, then an error will be returned. For calls
/// to infallible search methods, a panic will result.
///
/// # Example
///
/// This demonstrates the differences between an anchored search and
/// an unanchored search. Notice that we build our `AhoCorasick` searcher
/// with [`StartKind::Both`] so that it supports both unanchored and
/// anchored searches simultaneously.
///
/// ```
/// use aho_corasick::{
/// AhoCorasick, Anchored, Input, MatchKind, StartKind,
/// };
///
/// let patterns = &["bcd"];
/// let haystack = "abcd";
///
/// let ac = AhoCorasick::builder()
/// .start_kind(StartKind::Both)
/// .build(patterns)
/// .unwrap();
///
/// // Note that 'Anchored::No' is the default, so it doesn't need to
/// // be explicitly specified here.
/// let input = Input::new(haystack);
/// let mat = ac.try_find(input)?.expect("should have a match");
/// assert_eq!("bcd", &haystack[mat.span()]);
///
/// // While 'bcd' occurs in the haystack, it does not begin where our
/// // search begins, so no match is found.
/// let input = Input::new(haystack).anchored(Anchored::Yes);
/// assert_eq!(None, ac.try_find(input)?);
///
/// // However, if we start our search where 'bcd' starts, then we will
/// // find a match.
/// let input = Input::new(haystack).range(1..).anchored(Anchored::Yes);
/// let mat = ac.try_find(input)?.expect("should have a match");
/// assert_eq!("bcd", &haystack[mat.span()]);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn anchored(mut self, mode: Anchored) -> Input<'h> {
self.set_anchored(mode);
self
}
/// Whether to execute an "earliest" search or not.
///
/// When running a non-overlapping search, an "earliest" search will
/// return the match location as early as possible. For example, given
/// the patterns `abc` and `b`, and a haystack of `abc`, a normal
/// leftmost-first search will return `abc` as a match. But an "earliest"
/// search will return as soon as it is known that a match occurs, which
/// happens once `b` is seen.
///
/// Note that when using [`MatchKind::Standard`], the "earliest" option
/// has no effect since standard semantics are already "earliest." Note
/// also that this has no effect in overlapping searches, since overlapping
/// searches also use standard semantics and report all possible matches.
///
/// This is disabled by default.
///
/// # Example
///
/// This example shows the difference between "earliest" searching and
/// normal leftmost searching.
///
/// ```
/// use aho_corasick::{AhoCorasick, Anchored, Input, MatchKind, StartKind};
///
/// let patterns = &["abc", "b"];
/// let haystack = "abc";
///
/// let ac = AhoCorasick::builder()
/// .match_kind(MatchKind::LeftmostFirst)
/// .build(patterns)
/// .unwrap();
///
/// // The normal leftmost-first match.
/// let input = Input::new(haystack);
/// let mat = ac.try_find(input)?.expect("should have a match");
/// assert_eq!("abc", &haystack[mat.span()]);
///
/// // The "earliest" possible match, even if it isn't leftmost-first.
/// let input = Input::new(haystack).earliest(true);
/// let mat = ac.try_find(input)?.expect("should have a match");
/// assert_eq!("b", &haystack[mat.span()]);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn earliest(mut self, yes: bool) -> Input<'h> {
self.set_earliest(yes);
self
}
/// Set the span for this search configuration.
///
/// This is like the [`Input::span`] method, except this mutates the
/// span in place.
///
/// This routine is generic over how a span is provided. While
/// a [`Span`] may be given directly, one may also provide a
/// `std::ops::Range<usize>`.
///
/// # Panics
///
/// This panics if the given span does not correspond to valid bounds in
/// the haystack or the termination of a search.
///
/// # Example
///
/// ```
/// use aho_corasick::Input;
///
/// let mut input = Input::new("foobar");
/// assert_eq!(0..6, input.get_range());
/// input.set_span(2..4);
/// assert_eq!(2..4, input.get_range());
/// ```
#[inline]
pub fn set_span<S: Into<Span>>(&mut self, span: S) {
let span = span.into();
assert!(
span.end <= self.haystack.len()
&& span.start <= span.end.wrapping_add(1),
"invalid span {:?} for haystack of length {}",
span,
self.haystack.len(),
);
self.span = span;
}
/// Set the span for this search configuration given any range.
///
/// This is like the [`Input::range`] method, except this mutates the
/// span in place.
///
/// # Panics
///
/// This routine will panic if the given range could not be converted
/// to a valid [`Range`]. For example, this would panic when given
/// `0..=usize::MAX` since it cannot be represented using a half-open
/// interval in terms of `usize`.
///
/// This routine also panics if the given range does not correspond to
/// valid bounds in the haystack or the termination of a search.
///
/// # Example
///
/// ```
/// use aho_corasick::Input;
///
/// let mut input = Input::new("foobar");
/// assert_eq!(0..6, input.get_range());
/// input.set_range(2..=4);
/// assert_eq!(2..5, input.get_range());
/// ```
#[inline]
pub fn set_range<R: RangeBounds<usize>>(&mut self, range: R) {
use core::ops::Bound;
// It's a little weird to convert ranges into spans, and then spans
// back into ranges when we actually slice the haystack. Because
// of that process, we always represent everything as a half-open
// internal. Therefore, handling things like m..=n is a little awkward.
let start = match range.start_bound() {
Bound::Included(&i) => i,
// Can this case ever happen? Range syntax doesn't support it...
Bound::Excluded(&i) => i.checked_add(1).unwrap(),
Bound::Unbounded => 0,
};
let end = match range.end_bound() {
Bound::Included(&i) => i.checked_add(1).unwrap(),
Bound::Excluded(&i) => i,
Bound::Unbounded => self.haystack().len(),
};
self.set_span(Span { start, end });
}
/// Set the starting offset for the span for this search configuration.
///
/// This is a convenience routine for only mutating the start of a span
/// without having to set the entire span.
///
/// # Panics
///
/// This panics if the given span does not correspond to valid bounds in
/// the haystack or the termination of a search.
///
/// # Example
///
/// ```
/// use aho_corasick::Input;
///
/// let mut input = Input::new("foobar");
/// assert_eq!(0..6, input.get_range());
/// input.set_start(5);
/// assert_eq!(5..6, input.get_range());
/// ```
#[inline]
pub fn set_start(&mut self, start: usize) {
self.set_span(Span { start, ..self.get_span() });
}
/// Set the ending offset for the span for this search configuration.
///
/// This is a convenience routine for only mutating the end of a span
/// without having to set the entire span.
///
/// # Panics
///
/// This panics if the given span does not correspond to valid bounds in
/// the haystack or the termination of a search.
///
/// # Example
///
/// ```
/// use aho_corasick::Input;
///
/// let mut input = Input::new("foobar");
/// assert_eq!(0..6, input.get_range());
/// input.set_end(5);
/// assert_eq!(0..5, input.get_range());
/// ```
#[inline]
pub fn set_end(&mut self, end: usize) {
self.set_span(Span { end, ..self.get_span() });
}
/// Set the anchor mode of a search.
///
/// This is like [`Input::anchored`], except it mutates the search
/// configuration in place.
///
/// # Example
///
/// ```
/// use aho_corasick::{Anchored, Input};
///
/// let mut input = Input::new("foobar");
/// assert_eq!(Anchored::No, input.get_anchored());
///
/// input.set_anchored(Anchored::Yes);
/// assert_eq!(Anchored::Yes, input.get_anchored());
/// ```
#[inline]
pub fn set_anchored(&mut self, mode: Anchored) {
self.anchored = mode;
}
/// Set whether the search should execute in "earliest" mode or not.
///
/// This is like [`Input::earliest`], except it mutates the search
/// configuration in place.
///
/// # Example
///
/// ```
/// use aho_corasick::Input;
///
/// let mut input = Input::new("foobar");
/// assert!(!input.get_earliest());
/// input.set_earliest(true);
/// assert!(input.get_earliest());
/// ```
#[inline]
pub fn set_earliest(&mut self, yes: bool) {
self.earliest = yes;
}
/// Return a borrow of the underlying haystack as a slice of bytes.
///
/// # Example
///
/// ```
/// use aho_corasick::Input;
///
/// let input = Input::new("foobar");
/// assert_eq!(b"foobar", input.haystack());
/// ```
#[inline]
pub fn haystack(&self) -> &[u8] {
self.haystack
}
/// Return the start position of this search.
///
/// This is a convenience routine for `search.get_span().start()`.
///
/// # Example
///
/// ```
/// use aho_corasick::Input;
///
/// let input = Input::new("foobar");
/// assert_eq!(0, input.start());
///
/// let input = Input::new("foobar").span(2..4);
/// assert_eq!(2, input.start());
/// ```
#[inline]
pub fn start(&self) -> usize {
self.get_span().start
}
/// Return the end position of this search.
///
/// This is a convenience routine for `search.get_span().end()`.
///
/// # Example
///
/// ```
/// use aho_corasick::Input;
///
/// let input = Input::new("foobar");
/// assert_eq!(6, input.end());
///
/// let input = Input::new("foobar").span(2..4);
/// assert_eq!(4, input.end());
/// ```
#[inline]
pub fn end(&self) -> usize {
self.get_span().end
}
/// Return the span for this search configuration.
///
/// If one was not explicitly set, then the span corresponds to the entire
/// range of the haystack.
///
/// # Example
///
/// ```
/// use aho_corasick::{Input, Span};
///
/// let input = Input::new("foobar");
/// assert_eq!(Span { start: 0, end: 6 }, input.get_span());
/// ```
#[inline]
pub fn get_span(&self) -> Span {
self.span
}
/// Return the span as a range for this search configuration.
///
/// If one was not explicitly set, then the span corresponds to the entire
/// range of the haystack.
///
/// # Example
///
/// ```
/// use aho_corasick::Input;
///
/// let input = Input::new("foobar");
/// assert_eq!(0..6, input.get_range());
/// ```
#[inline]
pub fn get_range(&self) -> Range<usize> {
self.get_span().range()
}
/// Return the anchored mode for this search configuration.
///
/// If no anchored mode was set, then it defaults to [`Anchored::No`].
///
/// # Example
///
/// ```
/// use aho_corasick::{Anchored, Input};
///
/// let mut input = Input::new("foobar");
/// assert_eq!(Anchored::No, input.get_anchored());
///
/// input.set_anchored(Anchored::Yes);
/// assert_eq!(Anchored::Yes, input.get_anchored());
/// ```
#[inline]
pub fn get_anchored(&self) -> Anchored {
self.anchored
}
/// Return whether this search should execute in "earliest" mode.
///
/// # Example
///
/// ```
/// use aho_corasick::Input;
///
/// let input = Input::new("foobar");
/// assert!(!input.get_earliest());
/// ```
#[inline]
pub fn get_earliest(&self) -> bool {
self.earliest
}
/// Return true if this input has been exhausted, which in turn means all
/// subsequent searches will return no matches.
///
/// This occurs precisely when the start position of this search is greater
/// than the end position of the search.
///
/// # Example
///
/// ```
/// use aho_corasick::Input;
///
/// let mut input = Input::new("foobar");
/// assert!(!input.is_done());
/// input.set_start(6);
/// assert!(!input.is_done());
/// input.set_start(7);
/// assert!(input.is_done());
/// ```
#[inline]
pub fn is_done(&self) -> bool {
self.get_span().start > self.get_span().end
}
}
impl<'h> core::fmt::Debug for Input<'h> {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
let mut fmter = f.debug_struct("Input");
match core::str::from_utf8(self.haystack()) {
Ok(nice) => fmter.field("haystack", &nice),
Err(_) => fmter.field("haystack", &self.haystack()),
}
.field("span", &self.span)
.field("anchored", &self.anchored)
.field("earliest", &self.earliest)
.finish()
}
}
impl<'h, H: ?Sized + AsRef<[u8]>> From<&'h H> for Input<'h> {
#[inline]
fn from(haystack: &'h H) -> Input<'h> {
Input::new(haystack)
}
}
/// A representation of a range in a haystack.
///
/// A span corresponds to the starting and ending _byte offsets_ of a
/// contiguous region of bytes. The starting offset is inclusive while the
/// ending offset is exclusive. That is, a span is a half-open interval.
///
/// A span is used to report the offsets of a match, but it is also used to
/// convey which region of a haystack should be searched via routines like
/// [`Input::span`].
///
/// This is basically equivalent to a `std::ops::Range<usize>`, except this
/// type implements `Copy` which makes it more ergonomic to use in the context
/// of this crate. Indeed, `Span` exists only because `Range<usize>` does
/// not implement `Copy`. Like a range, this implements `Index` for `[u8]`
/// and `str`, and `IndexMut` for `[u8]`. For convenience, this also impls
/// `From<Range>`, which means things like `Span::from(5..10)` work.
///
/// There are no constraints on the values of a span. It is, for example, legal
/// to create a span where `start > end`.
#[derive(Clone, Copy, Eq, Hash, PartialEq)]
pub struct Span {
/// The start offset of the span, inclusive.
pub start: usize,
/// The end offset of the span, exclusive.
pub end: usize,
}
impl Span {
/// Returns this span as a range.
#[inline]
pub fn range(&self) -> Range<usize> {
Range::from(*self)
}
/// Returns true when this span is empty. That is, when `start >= end`.
#[inline]
pub fn is_empty(&self) -> bool {
self.start >= self.end
}
/// Returns the length of this span.
///
/// This returns `0` in precisely the cases that `is_empty` returns `true`.
#[inline]
pub fn len(&self) -> usize {
self.end.saturating_sub(self.start)
}
/// Returns true when the given offset is contained within this span.
///
/// Note that an empty span contains no offsets and will always return
/// false.
#[inline]
pub fn contains(&self, offset: usize) -> bool {
!self.is_empty() && self.start <= offset && offset <= self.end
}
/// Returns a new span with `offset` added to this span's `start` and `end`
/// values.
#[inline]
pub fn offset(&self, offset: usize) -> Span {
Span { start: self.start + offset, end: self.end + offset }
}
}
impl core::fmt::Debug for Span {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "{}..{}", self.start, self.end)
}
}
impl core::ops::Index<Span> for [u8] {
type Output = [u8];
#[inline]
fn index(&self, index: Span) -> &[u8] {
&self[index.range()]
}
}
impl core::ops::IndexMut<Span> for [u8] {
#[inline]
fn index_mut(&mut self, index: Span) -> &mut [u8] {
&mut self[index.range()]
}
}
impl core::ops::Index<Span> for str {
type Output = str;
#[inline]
fn index(&self, index: Span) -> &str {
&self[index.range()]
}
}
impl From<Range<usize>> for Span {
#[inline]
fn from(range: Range<usize>) -> Span {
Span { start: range.start, end: range.end }
}
}
impl From<Span> for Range<usize> {
#[inline]
fn from(span: Span) -> Range<usize> {
Range { start: span.start, end: span.end }
}
}
impl PartialEq<Range<usize>> for Span {
#[inline]
fn eq(&self, range: &Range<usize>) -> bool {
self.start == range.start && self.end == range.end
}
}
impl PartialEq<Span> for Range<usize> {
#[inline]
fn eq(&self, span: &Span) -> bool {
self.start == span.start && self.end == span.end
}
}
/// The type of anchored search to perform.
///
/// If an Aho-Corasick searcher does not support the anchored mode selected,
/// then the search will return an error or panic, depending on whether a
/// fallible or an infallible routine was called.
#[non_exhaustive]
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Anchored {
/// Run an unanchored search. This means a match may occur anywhere at or
/// after the start position of the search up until the end position of the
/// search.
No,
/// Run an anchored search. This means that a match must begin at the start
/// position of the search and end before the end position of the search.
Yes,
}
impl Anchored {
/// Returns true if and only if this anchor mode corresponds to an anchored
/// search.
///
/// # Example
///
/// ```
/// use aho_corasick::Anchored;
///
/// assert!(!Anchored::No.is_anchored());
/// assert!(Anchored::Yes.is_anchored());
/// ```
#[inline]
pub fn is_anchored(&self) -> bool {
matches!(*self, Anchored::Yes)
}
}
/// A representation of a match reported by an Aho-Corasick searcher.
///
/// A match has two essential pieces of information: the [`PatternID`] that
/// matches, and the [`Span`] of the match in a haystack.
///
/// The pattern is identified by an ID, which corresponds to its position
/// (starting from `0`) relative to other patterns used to construct the
/// corresponding searcher. If only a single pattern is provided, then all
/// matches are guaranteed to have a pattern ID of `0`.
///
/// Every match reported by a searcher guarantees that its span has its start
/// offset as less than or equal to its end offset.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub struct Match {
/// The pattern ID.
pattern: PatternID,
/// The underlying match span.
span: Span,
}
impl Match {
/// Create a new match from a pattern ID and a span.
///
/// This constructor is generic over how a span is provided. While
/// a [`Span`] may be given directly, one may also provide a
/// `std::ops::Range<usize>`.
///
/// # Panics
///
/// This panics if `end < start`.
///
/// # Example
///
/// This shows how to create a match for the first pattern in an
/// Aho-Corasick searcher using convenient range syntax.
///
/// ```
/// use aho_corasick::{Match, PatternID};
///
/// let m = Match::new(PatternID::ZERO, 5..10);
/// assert_eq!(0, m.pattern().as_usize());
/// assert_eq!(5, m.start());
/// assert_eq!(10, m.end());
/// ```
#[inline]
pub fn new<S: Into<Span>>(pattern: PatternID, span: S) -> Match {
let span = span.into();
assert!(span.start <= span.end, "invalid match span");
Match { pattern, span }
}
/// Create a new match from a pattern ID and a byte offset span.
///
/// This constructor is generic over how a span is provided. While
/// a [`Span`] may be given directly, one may also provide a
/// `std::ops::Range<usize>`.
///
/// This is like [`Match::new`], but accepts a `usize` instead of a
/// [`PatternID`]. This panics if the given `usize` is not representable
/// as a `PatternID`.
///
/// # Panics
///
/// This panics if `end < start` or if `pattern > PatternID::MAX`.
///
/// # Example
///
/// This shows how to create a match for the third pattern in an
/// Aho-Corasick searcher using convenient range syntax.
///
/// ```
/// use aho_corasick::Match;
///
/// let m = Match::must(3, 5..10);
/// assert_eq!(3, m.pattern().as_usize());
/// assert_eq!(5, m.start());
/// assert_eq!(10, m.end());
/// ```
#[inline]
pub fn must<S: Into<Span>>(pattern: usize, span: S) -> Match {
Match::new(PatternID::must(pattern), span)
}
/// Returns the ID of the pattern that matched.
///
/// The ID of a pattern is derived from the position in which it was
/// originally inserted into the corresponding searcher. The first pattern
/// has identifier `0`, and each subsequent pattern is `1`, `2` and so on.
#[inline]
pub fn pattern(&self) -> PatternID {
self.pattern
}
/// The starting position of the match.
///
/// This is a convenience routine for `Match::span().start`.
#[inline]
pub fn start(&self) -> usize {
self.span().start
}
/// The ending position of the match.
///
/// This is a convenience routine for `Match::span().end`.
#[inline]
pub fn end(&self) -> usize {
self.span().end
}
/// Returns the match span as a range.
///
/// This is a convenience routine for `Match::span().range()`.
#[inline]
pub fn range(&self) -> core::ops::Range<usize> {
self.span().range()
}
/// Returns the span for this match.
#[inline]
pub fn span(&self) -> Span {
self.span
}
/// Returns true when the span in this match is empty.
///
/// An empty match can only be returned when empty pattern is in the
/// Aho-Corasick searcher.
#[inline]
pub fn is_empty(&self) -> bool {
self.span().is_empty()
}
/// Returns the length of this match.
///
/// This returns `0` in precisely the cases that `is_empty` returns `true`.
#[inline]
pub fn len(&self) -> usize {
self.span().len()
}
/// Returns a new match with `offset` added to its span's `start` and `end`
/// values.
#[inline]
pub fn offset(&self, offset: usize) -> Match {
Match {
pattern: self.pattern,
span: Span {
start: self.start() + offset,
end: self.end() + offset,
},
}
}
}
/// A knob for controlling the match semantics of an Aho-Corasick automaton.
///
/// There are two generally different ways that Aho-Corasick automatons can
/// report matches. The first way is the "standard" approach that results from
/// implementing most textbook explanations of Aho-Corasick. The second way is
/// to report only the leftmost non-overlapping matches. The leftmost approach
/// is in turn split into two different ways of resolving ambiguous matches:
/// leftmost-first and leftmost-longest.
///
/// The `Standard` match kind is the default and is the only one that supports
/// overlapping matches and stream searching. (Trying to find overlapping or
/// streaming matches using leftmost match semantics will result in an error in
/// fallible APIs and a panic when using infallibe APIs.) The `Standard` match
/// kind will report matches as they are seen. When searching for overlapping
/// matches, then all possible matches are reported. When searching for
/// non-overlapping matches, the first match seen is reported. For example, for
/// non-overlapping matches, given the patterns `abcd` and `b` and the haystack
/// `abcdef`, only a match for `b` is reported since it is detected first. The
/// `abcd` match is never reported since it overlaps with the `b` match.
///
/// In contrast, the leftmost match kind always prefers the leftmost match
/// among all possible matches. Given the same example as above with `abcd` and
/// `b` as patterns and `abcdef` as the haystack, the leftmost match is `abcd`
/// since it begins before the `b` match, even though the `b` match is detected
/// before the `abcd` match. In this case, the `b` match is not reported at all
/// since it overlaps with the `abcd` match.
///
/// The difference between leftmost-first and leftmost-longest is in how they
/// resolve ambiguous matches when there are multiple leftmost matches to
/// choose from. Leftmost-first always chooses the pattern that was provided
/// earliest, where as leftmost-longest always chooses the longest matching
/// pattern. For example, given the patterns `a` and `ab` and the subject
/// string `ab`, the leftmost-first match is `a` but the leftmost-longest match
/// is `ab`. Conversely, if the patterns were given in reverse order, i.e.,
/// `ab` and `a`, then both the leftmost-first and leftmost-longest matches
/// would be `ab`. Stated differently, the leftmost-first match depends on the
/// order in which the patterns were given to the Aho-Corasick automaton.
/// Because of that, when leftmost-first matching is used, if a pattern `A`
/// that appears before a pattern `B` is a prefix of `B`, then it is impossible
/// to ever observe a match of `B`.
///
/// If you're not sure which match kind to pick, then stick with the standard
/// kind, which is the default. In particular, if you need overlapping or
/// streaming matches, then you _must_ use the standard kind. The leftmost
/// kinds are useful in specific circumstances. For example, leftmost-first can
/// be very useful as a way to implement match priority based on the order of
/// patterns given and leftmost-longest can be useful for dictionary searching
/// such that only the longest matching words are reported.
///
/// # Relationship with regular expression alternations
///
/// Understanding match semantics can be a little tricky, and one easy way
/// to conceptualize non-overlapping matches from an Aho-Corasick automaton
/// is to think about them as a simple alternation of literals in a regular
/// expression. For example, let's say we wanted to match the strings
/// `Sam` and `Samwise`, which would turn into the regex `Sam|Samwise`. It
/// turns out that regular expression engines have two different ways of
/// matching this alternation. The first way, leftmost-longest, is commonly
/// found in POSIX compatible implementations of regular expressions (such as
/// `grep`). The second way, leftmost-first, is commonly found in backtracking
/// implementations such as Perl. (Some regex engines, such as RE2 and Rust's
/// regex engine do not use backtracking, but still implement leftmost-first
/// semantics in an effort to match the behavior of dominant backtracking
/// regex engines such as those found in Perl, Ruby, Python, Javascript and
/// PHP.)
///
/// That is, when matching `Sam|Samwise` against `Samwise`, a POSIX regex
/// will match `Samwise` because it is the longest possible match, but a
/// Perl-like regex will match `Sam` since it appears earlier in the
/// alternation. Indeed, the regex `Sam|Samwise` in a Perl-like regex engine
/// will never match `Samwise` since `Sam` will always have higher priority.
/// Conversely, matching the regex `Samwise|Sam` against `Samwise` will lead to
/// a match of `Samwise` in both POSIX and Perl-like regexes since `Samwise` is
/// still longest match, but it also appears earlier than `Sam`.
///
/// The "standard" match semantics of Aho-Corasick generally don't correspond
/// to the match semantics of any large group of regex implementations, so
/// there's no direct analogy that can be made here. Standard match semantics
/// are generally useful for overlapping matches, or if you just want to see
/// matches as they are detected.
///
/// The main conclusion to draw from this section is that the match semantics
/// can be tweaked to precisely match either Perl-like regex alternations or
/// POSIX regex alternations.
#[non_exhaustive]
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum MatchKind {
/// Use standard match semantics, which support overlapping matches. When
/// used with non-overlapping matches, matches are reported as they are
/// seen.
Standard,
/// Use leftmost-first match semantics, which reports leftmost matches.
/// When there are multiple possible leftmost matches, the match
/// corresponding to the pattern that appeared earlier when constructing
/// the automaton is reported.
///
/// This does **not** support overlapping matches or stream searching. If
/// this match kind is used, attempting to find overlapping matches or
/// stream matches will fail.
LeftmostFirst,
/// Use leftmost-longest match semantics, which reports leftmost matches.
/// When there are multiple possible leftmost matches, the longest match
/// is chosen.
///
/// This does **not** support overlapping matches or stream searching. If
/// this match kind is used, attempting to find overlapping matches or
/// stream matches will fail.
LeftmostLongest,
}
/// The default match kind is `MatchKind::Standard`.
impl Default for MatchKind {
fn default() -> MatchKind {
MatchKind::Standard
}
}
impl MatchKind {
#[inline]
pub(crate) fn is_standard(&self) -> bool {
matches!(*self, MatchKind::Standard)
}
#[inline]
pub(crate) fn is_leftmost(&self) -> bool {
matches!(*self, MatchKind::LeftmostFirst | MatchKind::LeftmostLongest)
}
#[inline]
pub(crate) fn is_leftmost_first(&self) -> bool {
matches!(*self, MatchKind::LeftmostFirst)
}
/// Convert this match kind into a packed match kind. If this match kind
/// corresponds to standard semantics, then this returns None, since
/// packed searching does not support standard semantics.
#[inline]
pub(crate) fn as_packed(&self) -> Option<crate::packed::MatchKind> {
match *self {
MatchKind::Standard => None,
MatchKind::LeftmostFirst => {
Some(crate::packed::MatchKind::LeftmostFirst)
}
MatchKind::LeftmostLongest => {
Some(crate::packed::MatchKind::LeftmostLongest)
}
}
}
}
/// The kind of anchored starting configurations to support in an Aho-Corasick
/// searcher.
///
/// Depending on which searcher is used internally by
/// [`AhoCorasick`](crate::AhoCorasick), supporting both unanchored
/// and anchored searches can be quite costly. For this reason,
/// [`AhoCorasickBuilder::start_kind`](crate::AhoCorasickBuilder::start_kind)
/// can be used to configure whether your searcher supports unanchored,
/// anchored or both kinds of searches.
///
/// This searcher configuration knob works in concert with the search time
/// configuration [`Input::anchored`]. Namely, if one requests an unsupported
/// anchored mode, then the search will either panic or return an error,
/// depending on whether you're using infallible or fallibe APIs, respectively.
///
/// `AhoCorasick` by default only supports unanchored searches.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum StartKind {
/// Support both anchored and unanchored searches.
Both,
/// Support only unanchored searches. Requesting an anchored search will
/// return an error in fallible APIs and panic in infallible APIs.
Unanchored,
/// Support only anchored searches. Requesting an unanchored search will
/// return an error in fallible APIs and panic in infallible APIs.
Anchored,
}
impl Default for StartKind {
fn default() -> StartKind {
StartKind::Unanchored
}
}