futures_util/stream/futures_unordered/
task.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
use alloc::sync::{Arc, Weak};
use core::cell::UnsafeCell;
use core::sync::atomic::Ordering::{self, Relaxed, SeqCst};
use core::sync::atomic::{AtomicBool, AtomicPtr};

use super::abort::abort;
use super::ReadyToRunQueue;
use crate::task::ArcWake;

pub(super) struct Task<Fut> {
    // The future
    pub(super) future: UnsafeCell<Option<Fut>>,

    // Next pointer for linked list tracking all active tasks (use
    // `spin_next_all` to read when access is shared across threads)
    pub(super) next_all: AtomicPtr<Task<Fut>>,

    // Previous task in linked list tracking all active tasks
    pub(super) prev_all: UnsafeCell<*const Task<Fut>>,

    // Length of the linked list tracking all active tasks when this node was
    // inserted (use `spin_next_all` to synchronize before reading when access
    // is shared across threads)
    pub(super) len_all: UnsafeCell<usize>,

    // Next pointer in ready to run queue
    pub(super) next_ready_to_run: AtomicPtr<Task<Fut>>,

    // Queue that we'll be enqueued to when woken
    pub(super) ready_to_run_queue: Weak<ReadyToRunQueue<Fut>>,

    // Whether or not this task is currently in the ready to run queue
    pub(super) queued: AtomicBool,

    // Whether the future was awoken during polling
    // It is possible for this flag to be set to true after the polling,
    // but it will be ignored.
    pub(super) woken: AtomicBool,
}

// `Task` can be sent across threads safely because it ensures that
// the underlying `Fut` type isn't touched from any of its methods.
//
// The parent (`super`) module is trusted not to access `future`
// across different threads.
unsafe impl<Fut> Send for Task<Fut> {}
unsafe impl<Fut> Sync for Task<Fut> {}

impl<Fut> ArcWake for Task<Fut> {
    fn wake_by_ref(arc_self: &Arc<Self>) {
        let inner = match arc_self.ready_to_run_queue.upgrade() {
            Some(inner) => inner,
            None => return,
        };

        arc_self.woken.store(true, Relaxed);

        // It's our job to enqueue this task it into the ready to run queue. To
        // do this we set the `queued` flag, and if successful we then do the
        // actual queueing operation, ensuring that we're only queued once.
        //
        // Once the task is inserted call `wake` to notify the parent task,
        // as it'll want to come along and run our task later.
        //
        // Note that we don't change the reference count of the task here,
        // we merely enqueue the raw pointer. The `FuturesUnordered`
        // implementation guarantees that if we set the `queued` flag that
        // there's a reference count held by the main `FuturesUnordered` queue
        // still.
        let prev = arc_self.queued.swap(true, SeqCst);
        if !prev {
            inner.enqueue(Arc::as_ptr(arc_self));
            inner.waker.wake();
        }
    }
}

impl<Fut> Task<Fut> {
    /// Returns a waker reference for this task without cloning the Arc.
    pub(super) unsafe fn waker_ref(this: &Arc<Self>) -> waker_ref::WakerRef<'_> {
        unsafe { waker_ref::waker_ref(this) }
    }

    /// Spins until `next_all` is no longer set to `pending_next_all`.
    ///
    /// The temporary `pending_next_all` value is typically overwritten fairly
    /// quickly after a node is inserted into the list of all futures, so this
    /// should rarely spin much.
    ///
    /// When it returns, the correct `next_all` value is returned.
    ///
    /// `Relaxed` or `Acquire` ordering can be used. `Acquire` ordering must be
    /// used before `len_all` can be safely read.
    #[inline]
    pub(super) fn spin_next_all(
        &self,
        pending_next_all: *mut Self,
        ordering: Ordering,
    ) -> *const Self {
        loop {
            let next = self.next_all.load(ordering);
            if next != pending_next_all {
                return next;
            }
        }
    }
}

impl<Fut> Drop for Task<Fut> {
    fn drop(&mut self) {
        // Since `Task<Fut>` is sent across all threads for any lifetime,
        // regardless of `Fut`, we, to guarantee memory safety, can't actually
        // touch `Fut` at any time except when we have a reference to the
        // `FuturesUnordered` itself .
        //
        // Consequently it *should* be the case that we always drop futures from
        // the `FuturesUnordered` instance. This is a bomb, just in case there's
        // a bug in that logic.
        unsafe {
            if (*self.future.get()).is_some() {
                abort("future still here when dropping");
            }
        }
    }
}

mod waker_ref {
    use alloc::sync::Arc;
    use core::marker::PhantomData;
    use core::mem;
    use core::mem::ManuallyDrop;
    use core::ops::Deref;
    use core::task::{RawWaker, RawWakerVTable, Waker};
    use futures_task::ArcWake;

    pub(crate) struct WakerRef<'a> {
        waker: ManuallyDrop<Waker>,
        _marker: PhantomData<&'a ()>,
    }

    impl WakerRef<'_> {
        #[inline]
        fn new_unowned(waker: ManuallyDrop<Waker>) -> Self {
            Self { waker, _marker: PhantomData }
        }
    }

    impl Deref for WakerRef<'_> {
        type Target = Waker;

        #[inline]
        fn deref(&self) -> &Waker {
            &self.waker
        }
    }

    /// Copy of `future_task::waker_ref` without `W: 'static` bound.
    ///
    /// # Safety
    ///
    /// The caller must guarantee that use-after-free will not occur.
    #[inline]
    pub(crate) unsafe fn waker_ref<W>(wake: &Arc<W>) -> WakerRef<'_>
    where
        W: ArcWake,
    {
        // simply copy the pointer instead of using Arc::into_raw,
        // as we don't actually keep a refcount by using ManuallyDrop.<
        let ptr = Arc::as_ptr(wake).cast::<()>();

        let waker =
            ManuallyDrop::new(unsafe { Waker::from_raw(RawWaker::new(ptr, waker_vtable::<W>())) });
        WakerRef::new_unowned(waker)
    }

    fn waker_vtable<W: ArcWake>() -> &'static RawWakerVTable {
        &RawWakerVTable::new(
            clone_arc_raw::<W>,
            wake_arc_raw::<W>,
            wake_by_ref_arc_raw::<W>,
            drop_arc_raw::<W>,
        )
    }

    // FIXME: panics on Arc::clone / refcount changes could wreak havoc on the
    // code here. We should guard against this by aborting.

    unsafe fn increase_refcount<T: ArcWake>(data: *const ()) {
        // Retain Arc, but don't touch refcount by wrapping in ManuallyDrop
        let arc = mem::ManuallyDrop::new(unsafe { Arc::<T>::from_raw(data.cast::<T>()) });
        // Now increase refcount, but don't drop new refcount either
        let _arc_clone: mem::ManuallyDrop<_> = arc.clone();
    }

    unsafe fn clone_arc_raw<T: ArcWake>(data: *const ()) -> RawWaker {
        unsafe { increase_refcount::<T>(data) }
        RawWaker::new(data, waker_vtable::<T>())
    }

    unsafe fn wake_arc_raw<T: ArcWake>(data: *const ()) {
        let arc: Arc<T> = unsafe { Arc::from_raw(data.cast::<T>()) };
        ArcWake::wake(arc);
    }

    unsafe fn wake_by_ref_arc_raw<T: ArcWake>(data: *const ()) {
        // Retain Arc, but don't touch refcount by wrapping in ManuallyDrop
        let arc = mem::ManuallyDrop::new(unsafe { Arc::<T>::from_raw(data.cast::<T>()) });
        ArcWake::wake_by_ref(&arc);
    }

    unsafe fn drop_arc_raw<T: ArcWake>(data: *const ()) {
        drop(unsafe { Arc::<T>::from_raw(data.cast::<T>()) })
    }
}