png/encoder.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
use borrow::Cow;
use io::{Read, Write};
use ops::{Deref, DerefMut};
use std::{borrow, error, fmt, io, mem, ops, result};
use crc32fast::Hasher as Crc32;
use flate2::write::ZlibEncoder;
use crate::chunk::{self, ChunkType};
use crate::common::{
AnimationControl, BitDepth, BlendOp, BytesPerPixel, ColorType, Compression, DisposeOp,
FrameControl, Info, ParameterError, ParameterErrorKind, PixelDimensions, ScaledFloat,
};
use crate::filter::{filter, AdaptiveFilterType, FilterType};
use crate::text_metadata::{
EncodableTextChunk, ITXtChunk, TEXtChunk, TextEncodingError, ZTXtChunk,
};
use crate::traits::WriteBytesExt;
pub type Result<T> = result::Result<T, EncodingError>;
#[derive(Debug)]
pub enum EncodingError {
IoError(io::Error),
Format(FormatError),
Parameter(ParameterError),
LimitsExceeded,
}
#[derive(Debug)]
pub struct FormatError {
inner: FormatErrorKind,
}
#[derive(Debug)]
enum FormatErrorKind {
ZeroWidth,
ZeroHeight,
InvalidColorCombination(BitDepth, ColorType),
NoPalette,
// TODO: wait, what?
WrittenTooMuch(usize),
NotAnimated,
OutOfBounds,
EndReached,
ZeroFrames,
MissingFrames,
MissingData(usize),
Unrecoverable,
BadTextEncoding(TextEncodingError),
}
impl error::Error for EncodingError {
fn cause(&self) -> Option<&(dyn error::Error + 'static)> {
match self {
EncodingError::IoError(err) => Some(err),
_ => None,
}
}
}
impl fmt::Display for EncodingError {
fn fmt(&self, fmt: &mut fmt::Formatter) -> result::Result<(), fmt::Error> {
use self::EncodingError::*;
match self {
IoError(err) => write!(fmt, "{}", err),
Format(desc) => write!(fmt, "{}", desc),
Parameter(desc) => write!(fmt, "{}", desc),
LimitsExceeded => write!(fmt, "Limits are exceeded."),
}
}
}
impl fmt::Display for FormatError {
fn fmt(&self, fmt: &mut fmt::Formatter) -> result::Result<(), fmt::Error> {
use FormatErrorKind::*;
match self.inner {
ZeroWidth => write!(fmt, "Zero width not allowed"),
ZeroHeight => write!(fmt, "Zero height not allowed"),
ZeroFrames => write!(fmt, "Zero frames not allowed"),
InvalidColorCombination(depth, color) => write!(
fmt,
"Invalid combination of bit-depth '{:?}' and color-type '{:?}'",
depth, color
),
NoPalette => write!(fmt, "can't write indexed image without palette"),
WrittenTooMuch(index) => write!(fmt, "wrong data size, got {} bytes too many", index),
NotAnimated => write!(fmt, "not an animation"),
OutOfBounds => write!(
fmt,
"the dimension and position go over the frame boundaries"
),
EndReached => write!(fmt, "all the frames have been already written"),
MissingFrames => write!(fmt, "there are still frames to be written"),
MissingData(n) => write!(fmt, "there are still {} bytes to be written", n),
Unrecoverable => write!(
fmt,
"a previous error put the writer into an unrecoverable state"
),
BadTextEncoding(tee) => match tee {
TextEncodingError::Unrepresentable => write!(
fmt,
"The text metadata cannot be encoded into valid ISO 8859-1"
),
TextEncodingError::InvalidKeywordSize => write!(fmt, "Invalid keyword size"),
TextEncodingError::CompressionError => {
write!(fmt, "Unable to compress text metadata")
}
},
}
}
}
impl From<io::Error> for EncodingError {
fn from(err: io::Error) -> EncodingError {
EncodingError::IoError(err)
}
}
impl From<EncodingError> for io::Error {
fn from(err: EncodingError) -> io::Error {
io::Error::new(io::ErrorKind::Other, err.to_string())
}
}
// Private impl.
impl From<FormatErrorKind> for FormatError {
fn from(kind: FormatErrorKind) -> Self {
FormatError { inner: kind }
}
}
impl From<TextEncodingError> for EncodingError {
fn from(tee: TextEncodingError) -> Self {
EncodingError::Format(FormatError {
inner: FormatErrorKind::BadTextEncoding(tee),
})
}
}
/// PNG Encoder.
///
/// This configures the PNG format options such as animation chunks, palette use, color types,
/// auxiliary chunks etc.
///
/// FIXME: Configuring APNG might be easier (less individual errors) if we had an _adapter_ which
/// borrows this mutably but guarantees that `info.frame_control` is not `None`.
pub struct Encoder<'a, W: Write> {
w: W,
info: Info<'a>,
options: Options,
}
/// Decoding options, internal type, forwarded to the Writer.
#[derive(Default)]
struct Options {
filter: FilterType,
adaptive_filter: AdaptiveFilterType,
sep_def_img: bool,
validate_sequence: bool,
}
impl<'a, W: Write> Encoder<'a, W> {
pub fn new(w: W, width: u32, height: u32) -> Encoder<'static, W> {
Encoder {
w,
info: Info::with_size(width, height),
options: Options::default(),
}
}
pub fn with_info(w: W, info: Info<'a>) -> Result<Encoder<'a, W>> {
if info.animation_control.is_some() != info.frame_control.is_some() {
return Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()));
}
if let Some(actl) = info.animation_control {
if actl.num_frames == 0 {
return Err(EncodingError::Format(FormatErrorKind::ZeroFrames.into()));
}
}
Ok(Encoder {
w,
info,
options: Options::default(),
})
}
/// Specify that the image is animated.
///
/// `num_frames` controls how many frames the animation has, while
/// `num_plays` controls how many times the animation should be
/// repeated until it stops, if it's zero then it will repeat
/// infinitely.
///
/// When this method is returns successfully then the images written will be encoded as fdAT
/// chunks, except for the first image that is still encoded as `IDAT`. You can control if the
/// first frame should be treated as an animation frame with [`Encoder::set_sep_def_img()`].
///
/// This method returns an error if `num_frames` is 0.
pub fn set_animated(&mut self, num_frames: u32, num_plays: u32) -> Result<()> {
if num_frames == 0 {
return Err(EncodingError::Format(FormatErrorKind::ZeroFrames.into()));
}
let actl = AnimationControl {
num_frames,
num_plays,
};
let fctl = FrameControl {
sequence_number: 0,
width: self.info.width,
height: self.info.height,
..Default::default()
};
self.info.animation_control = Some(actl);
self.info.frame_control = Some(fctl);
Ok(())
}
/// Mark the first animated frame as a 'separate default image'.
///
/// In APNG each animated frame is preceded by a special control chunk, `fcTL`. It's up to the
/// encoder to decide if the first image, the standard `IDAT` data, should be part of the
/// animation by emitting this chunk or by not doing so. A default image that is _not_ part of
/// the animation is often interpreted as a thumbnail.
///
/// This method will return an error when animation control was not configured
/// (which is done by calling [`Encoder::set_animated`]).
pub fn set_sep_def_img(&mut self, sep_def_img: bool) -> Result<()> {
if self.info.animation_control.is_some() {
self.options.sep_def_img = sep_def_img;
Ok(())
} else {
Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
}
}
/// Sets the raw byte contents of the PLTE chunk. This method accepts
/// both borrowed and owned byte data.
pub fn set_palette<T: Into<Cow<'a, [u8]>>>(&mut self, palette: T) {
self.info.palette = Some(palette.into());
}
/// Sets the raw byte contents of the tRNS chunk. This method accepts
/// both borrowed and owned byte data.
pub fn set_trns<T: Into<Cow<'a, [u8]>>>(&mut self, trns: T) {
self.info.trns = Some(trns.into());
}
/// Set the display gamma of the source system on which the image was generated or last edited.
pub fn set_source_gamma(&mut self, source_gamma: ScaledFloat) {
self.info.source_gamma = Some(source_gamma);
}
/// Set the chromaticities for the source system's display channels (red, green, blue) and the whitepoint
/// of the source system on which the image was generated or last edited.
pub fn set_source_chromaticities(
&mut self,
source_chromaticities: super::SourceChromaticities,
) {
self.info.source_chromaticities = Some(source_chromaticities);
}
/// Mark the image data as conforming to the SRGB color space with the specified rendering intent.
///
/// Matching source gamma and chromaticities chunks are added automatically.
/// Any manually specified source gamma or chromaticities will be ignored.
pub fn set_srgb(&mut self, rendering_intent: super::SrgbRenderingIntent) {
self.info.srgb = Some(rendering_intent);
}
/// Start encoding by writing the header data.
///
/// The remaining data can be supplied by methods on the returned [`Writer`].
pub fn write_header(self) -> Result<Writer<W>> {
Writer::new(self.w, PartialInfo::new(&self.info), self.options).init(&self.info)
}
/// Set the color of the encoded image.
///
/// These correspond to the color types in the png IHDR data that will be written. The length
/// of the image data that is later supplied must match the color type, otherwise an error will
/// be emitted.
pub fn set_color(&mut self, color: ColorType) {
self.info.color_type = color;
}
/// Set the indicated depth of the image data.
pub fn set_depth(&mut self, depth: BitDepth) {
self.info.bit_depth = depth;
}
/// Set compression parameters.
///
/// Accepts a `Compression` or any type that can transform into a `Compression`. Notably `deflate::Compression` and
/// `deflate::CompressionOptions` which "just work".
pub fn set_compression(&mut self, compression: Compression) {
self.info.compression = compression;
}
/// Set the used filter type.
///
/// The default filter is [`FilterType::Sub`] which provides a basic prediction algorithm for
/// sample values based on the previous. For a potentially better compression ratio, at the
/// cost of more complex processing, try out [`FilterType::Paeth`].
pub fn set_filter(&mut self, filter: FilterType) {
self.options.filter = filter;
}
/// Set the adaptive filter type.
///
/// Adaptive filtering attempts to select the best filter for each line
/// based on heuristics which minimize the file size for compression rather
/// than use a single filter for the entire image. The default method is
/// [`AdaptiveFilterType::NonAdaptive`].
pub fn set_adaptive_filter(&mut self, adaptive_filter: AdaptiveFilterType) {
self.options.adaptive_filter = adaptive_filter;
}
/// Set the fraction of time every frame is going to be displayed, in seconds.
///
/// *Note that this parameter can be set for each individual frame after
/// [`Encoder::write_header`] is called. (see [`Writer::set_frame_delay`])*
///
/// If the denominator is 0, it is to be treated as if it were 100
/// (that is, the numerator then specifies 1/100ths of a second).
/// If the value of the numerator is 0 the decoder should render the next frame
/// as quickly as possible, though viewers may impose a reasonable lower bound.
///
/// The default value is 0 for both the numerator and denominator.
///
/// This method will return an error if the image is not animated.
/// (see [`set_animated`])
///
/// [`write_header`]: Self::write_header
/// [`set_animated`]: Self::set_animated
pub fn set_frame_delay(&mut self, numerator: u16, denominator: u16) -> Result<()> {
if let Some(ref mut fctl) = self.info.frame_control {
fctl.delay_den = denominator;
fctl.delay_num = numerator;
Ok(())
} else {
Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
}
}
/// Set the blend operation for every frame.
///
/// The blend operation specifies whether the frame is to be alpha blended
/// into the current output buffer content, or whether it should completely
/// replace its region in the output buffer.
///
/// *Note that this parameter can be set for each individual frame after
/// [`write_header`] is called. (see [`Writer::set_blend_op`])*
///
/// See the [`BlendOp`] documentation for the possible values and their effects.
///
/// *Note that for the first frame the two blend modes are functionally
/// equivalent due to the clearing of the output buffer at the beginning
/// of each play.*
///
/// The default value is [`BlendOp::Source`].
///
/// This method will return an error if the image is not animated.
/// (see [`set_animated`])
///
/// [`write_header`]: Self::write_header
/// [`set_animated`]: Self::set_animated
pub fn set_blend_op(&mut self, op: BlendOp) -> Result<()> {
if let Some(ref mut fctl) = self.info.frame_control {
fctl.blend_op = op;
Ok(())
} else {
Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
}
}
/// Set the dispose operation for every frame.
///
/// The dispose operation specifies how the output buffer should be changed
/// at the end of the delay (before rendering the next frame)
///
/// *Note that this parameter can be set for each individual frame after
/// [`write_header`] is called (see [`Writer::set_dispose_op`])*
///
/// See the [`DisposeOp`] documentation for the possible values and their effects.
///
/// *Note that if the first frame uses [`DisposeOp::Previous`]
/// it will be treated as [`DisposeOp::Background`].*
///
/// The default value is [`DisposeOp::None`].
///
/// This method will return an error if the image is not animated.
/// (see [`set_animated`])
///
/// [`set_animated`]: Self::set_animated
/// [`write_header`]: Self::write_header
pub fn set_dispose_op(&mut self, op: DisposeOp) -> Result<()> {
if let Some(ref mut fctl) = self.info.frame_control {
fctl.dispose_op = op;
Ok(())
} else {
Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
}
}
pub fn set_pixel_dims(&mut self, pixel_dims: Option<PixelDimensions>) {
self.info.pixel_dims = pixel_dims
}
/// Convenience function to add tEXt chunks to [`Info`] struct
pub fn add_text_chunk(&mut self, keyword: String, text: String) -> Result<()> {
let text_chunk = TEXtChunk::new(keyword, text);
self.info.uncompressed_latin1_text.push(text_chunk);
Ok(())
}
/// Convenience function to add zTXt chunks to [`Info`] struct
pub fn add_ztxt_chunk(&mut self, keyword: String, text: String) -> Result<()> {
let text_chunk = ZTXtChunk::new(keyword, text);
self.info.compressed_latin1_text.push(text_chunk);
Ok(())
}
/// Convenience function to add iTXt chunks to [`Info`] struct
///
/// This function only sets the `keyword` and `text` field of the iTXt chunk.
/// To set the other fields, create a [`ITXtChunk`] directly, and then encode it to the output stream.
pub fn add_itxt_chunk(&mut self, keyword: String, text: String) -> Result<()> {
let text_chunk = ITXtChunk::new(keyword, text);
self.info.utf8_text.push(text_chunk);
Ok(())
}
/// Validate the written image sequence.
///
/// When validation is turned on (it's turned off by default) then attempts to write more than
/// one `IDAT` image or images beyond the number of frames indicated in the animation control
/// chunk will fail and return an error result instead. Attempts to [finish][finish] the image
/// with missing frames will also return an error.
///
/// [finish]: StreamWriter::finish
///
/// (It's possible to circumvent these checks by writing raw chunks instead.)
pub fn validate_sequence(&mut self, validate: bool) {
self.options.validate_sequence = validate;
}
}
/// PNG writer
///
/// Progresses through the image by writing images, frames, or raw individual chunks. This is
/// constructed through [`Encoder::write_header()`].
///
/// FIXME: Writing of animated chunks might be clearer if we had an _adapter_ that you would call
/// to guarantee the next image to be prefaced with a fcTL-chunk, and all other chunks would be
/// guaranteed to be `IDAT`/not affected by APNG's frame control.
pub struct Writer<W: Write> {
/// The underlying writer.
w: W,
/// The local version of the `Info` struct.
info: PartialInfo,
/// Global encoding options.
options: Options,
/// The total number of image frames, counting all consecutive IDAT and fdAT chunks.
images_written: u64,
/// The total number of animation frames, that is equivalent to counting fcTL chunks.
animation_written: u32,
/// A flag to note when the IEND chunk was already added.
/// This is only set on code paths that drop `Self` to control the destructor.
iend_written: bool,
}
/// Contains the subset of attributes of [Info] needed for [Writer] to function
struct PartialInfo {
width: u32,
height: u32,
bit_depth: BitDepth,
color_type: ColorType,
frame_control: Option<FrameControl>,
animation_control: Option<AnimationControl>,
compression: Compression,
has_palette: bool,
}
impl PartialInfo {
fn new(info: &Info) -> Self {
PartialInfo {
width: info.width,
height: info.height,
bit_depth: info.bit_depth,
color_type: info.color_type,
frame_control: info.frame_control,
animation_control: info.animation_control,
compression: info.compression,
has_palette: info.palette.is_some(),
}
}
fn bpp_in_prediction(&self) -> BytesPerPixel {
// Passthrough
self.to_info().bpp_in_prediction()
}
fn raw_row_length(&self) -> usize {
// Passthrough
self.to_info().raw_row_length()
}
fn raw_row_length_from_width(&self, width: u32) -> usize {
// Passthrough
self.to_info().raw_row_length_from_width(width)
}
/// Converts this partial info to an owned Info struct,
/// setting missing values to their defaults
fn to_info(&self) -> Info<'static> {
Info {
width: self.width,
height: self.height,
bit_depth: self.bit_depth,
color_type: self.color_type,
frame_control: self.frame_control,
animation_control: self.animation_control,
compression: self.compression,
..Default::default()
}
}
}
const DEFAULT_BUFFER_LENGTH: usize = 4 * 1024;
pub(crate) fn write_chunk<W: Write>(mut w: W, name: chunk::ChunkType, data: &[u8]) -> Result<()> {
w.write_be(data.len() as u32)?;
w.write_all(&name.0)?;
w.write_all(data)?;
let mut crc = Crc32::new();
crc.update(&name.0);
crc.update(data);
w.write_be(crc.finalize())?;
Ok(())
}
impl<W: Write> Writer<W> {
fn new(w: W, info: PartialInfo, options: Options) -> Writer<W> {
Writer {
w,
info,
options,
images_written: 0,
animation_written: 0,
iend_written: false,
}
}
fn init(mut self, info: &Info<'_>) -> Result<Self> {
if self.info.width == 0 {
return Err(EncodingError::Format(FormatErrorKind::ZeroWidth.into()));
}
if self.info.height == 0 {
return Err(EncodingError::Format(FormatErrorKind::ZeroHeight.into()));
}
if self
.info
.color_type
.is_combination_invalid(self.info.bit_depth)
{
return Err(EncodingError::Format(
FormatErrorKind::InvalidColorCombination(self.info.bit_depth, self.info.color_type)
.into(),
));
}
self.w.write_all(&[137, 80, 78, 71, 13, 10, 26, 10])?; // PNG signature
info.encode(&mut self.w)?;
Ok(self)
}
/// Write a raw chunk of PNG data.
///
/// The chunk will have its CRC calculated and correctly. The data is not filtered in any way,
/// but the chunk needs to be short enough to have its length encoded correctly.
pub fn write_chunk(&mut self, name: ChunkType, data: &[u8]) -> Result<()> {
use std::convert::TryFrom;
if u32::try_from(data.len()).map_or(true, |length| length > i32::MAX as u32) {
let kind = FormatErrorKind::WrittenTooMuch(data.len() - i32::MAX as usize);
return Err(EncodingError::Format(kind.into()));
}
write_chunk(&mut self.w, name, data)
}
pub fn write_text_chunk<T: EncodableTextChunk>(&mut self, text_chunk: &T) -> Result<()> {
text_chunk.encode(&mut self.w)
}
/// Check if we should allow writing another image.
fn validate_new_image(&self) -> Result<()> {
if !self.options.validate_sequence {
return Ok(());
}
match self.info.animation_control {
None => {
if self.images_written == 0 {
Ok(())
} else {
Err(EncodingError::Format(FormatErrorKind::EndReached.into()))
}
}
Some(_) => {
if self.info.frame_control.is_some() {
Ok(())
} else {
Err(EncodingError::Format(FormatErrorKind::EndReached.into()))
}
}
}
}
fn validate_sequence_done(&self) -> Result<()> {
if !self.options.validate_sequence {
return Ok(());
}
if (self.info.animation_control.is_some() && self.info.frame_control.is_some())
|| self.images_written == 0
{
Err(EncodingError::Format(FormatErrorKind::MissingFrames.into()))
} else {
Ok(())
}
}
const MAX_IDAT_CHUNK_LEN: u32 = u32::MAX >> 1;
#[allow(non_upper_case_globals)]
const MAX_fdAT_CHUNK_LEN: u32 = (u32::MAX >> 1) - 4;
/// Writes the next image data.
pub fn write_image_data(&mut self, data: &[u8]) -> Result<()> {
if self.info.color_type == ColorType::Indexed && !self.info.has_palette {
return Err(EncodingError::Format(FormatErrorKind::NoPalette.into()));
}
self.validate_new_image()?;
let width: usize;
let height: usize;
if let Some(ref mut fctl) = self.info.frame_control {
width = fctl.width as usize;
height = fctl.height as usize;
} else {
width = self.info.width as usize;
height = self.info.height as usize;
}
let in_len = self.info.raw_row_length_from_width(width as u32) - 1;
let data_size = in_len * height;
if data_size != data.len() {
return Err(EncodingError::Parameter(
ParameterErrorKind::ImageBufferSize {
expected: data_size,
actual: data.len(),
}
.into(),
));
}
let prev = vec![0; in_len];
let mut prev = prev.as_slice();
let bpp = self.info.bpp_in_prediction();
let filter_method = self.options.filter;
let adaptive_method = self.options.adaptive_filter;
let zlib_encoded = match self.info.compression {
Compression::Fast => {
let mut compressor = fdeflate::Compressor::new(std::io::Cursor::new(Vec::new()))?;
let mut current = vec![0; in_len + 1];
for line in data.chunks(in_len) {
let filter_type = filter(
filter_method,
adaptive_method,
bpp,
prev,
line,
&mut current[1..],
);
current[0] = filter_type as u8;
compressor.write_data(¤t)?;
prev = line;
}
let compressed = compressor.finish()?.into_inner();
if compressed.len()
> fdeflate::StoredOnlyCompressor::<()>::compressed_size((in_len + 1) * height)
{
// Write uncompressed data since the result from fast compression would take
// more space than that.
//
// We always use FilterType::NoFilter here regardless of the filter method
// requested by the user. Doing filtering again would only add performance
// cost for both encoding and subsequent decoding, without improving the
// compression ratio.
let mut compressor =
fdeflate::StoredOnlyCompressor::new(std::io::Cursor::new(Vec::new()))?;
for line in data.chunks(in_len) {
compressor.write_data(&[0])?;
compressor.write_data(line)?;
}
compressor.finish()?.into_inner()
} else {
compressed
}
}
_ => {
let mut current = vec![0; in_len];
let mut zlib = ZlibEncoder::new(Vec::new(), self.info.compression.to_options());
for line in data.chunks(in_len) {
let filter_type = filter(
filter_method,
adaptive_method,
bpp,
prev,
line,
&mut current,
);
zlib.write_all(&[filter_type as u8])?;
zlib.write_all(¤t)?;
prev = line;
}
zlib.finish()?
}
};
match self.info.frame_control {
None => {
self.write_zlib_encoded_idat(&zlib_encoded)?;
}
Some(_) if self.should_skip_frame_control_on_default_image() => {
self.write_zlib_encoded_idat(&zlib_encoded)?;
}
Some(ref mut fctl) => {
fctl.encode(&mut self.w)?;
fctl.sequence_number = fctl.sequence_number.wrapping_add(1);
self.animation_written += 1;
// If the default image is the first frame of an animation, it's still an IDAT.
if self.images_written == 0 {
self.write_zlib_encoded_idat(&zlib_encoded)?;
} else {
let buff_size = zlib_encoded.len().min(Self::MAX_fdAT_CHUNK_LEN as usize);
let mut alldata = vec![0u8; 4 + buff_size];
for chunk in zlib_encoded.chunks(Self::MAX_fdAT_CHUNK_LEN as usize) {
alldata[..4].copy_from_slice(&fctl.sequence_number.to_be_bytes());
alldata[4..][..chunk.len()].copy_from_slice(chunk);
write_chunk(&mut self.w, chunk::fdAT, &alldata[..4 + chunk.len()])?;
fctl.sequence_number = fctl.sequence_number.wrapping_add(1);
}
}
}
}
self.increment_images_written();
Ok(())
}
fn increment_images_written(&mut self) {
self.images_written = self.images_written.saturating_add(1);
if let Some(actl) = self.info.animation_control {
if actl.num_frames <= self.animation_written {
// If we've written all animation frames, all following will be normal image chunks.
self.info.frame_control = None;
}
}
}
fn write_iend(&mut self) -> Result<()> {
self.iend_written = true;
self.write_chunk(chunk::IEND, &[])
}
fn should_skip_frame_control_on_default_image(&self) -> bool {
self.options.sep_def_img && self.images_written == 0
}
fn write_zlib_encoded_idat(&mut self, zlib_encoded: &[u8]) -> Result<()> {
for chunk in zlib_encoded.chunks(Self::MAX_IDAT_CHUNK_LEN as usize) {
self.write_chunk(chunk::IDAT, chunk)?;
}
Ok(())
}
/// Set the used filter type for the following frames.
///
/// The default filter is [`FilterType::Sub`] which provides a basic prediction algorithm for
/// sample values based on the previous. For a potentially better compression ratio, at the
/// cost of more complex processing, try out [`FilterType::Paeth`].
pub fn set_filter(&mut self, filter: FilterType) {
self.options.filter = filter;
}
/// Set the adaptive filter type for the following frames.
///
/// Adaptive filtering attempts to select the best filter for each line
/// based on heuristics which minimize the file size for compression rather
/// than use a single filter for the entire image. The default method is
/// [`AdaptiveFilterType::NonAdaptive`].
pub fn set_adaptive_filter(&mut self, adaptive_filter: AdaptiveFilterType) {
self.options.adaptive_filter = adaptive_filter;
}
/// Set the fraction of time the following frames are going to be displayed,
/// in seconds
///
/// If the denominator is 0, it is to be treated as if it were 100
/// (that is, the numerator then specifies 1/100ths of a second).
/// If the value of the numerator is 0 the decoder should render the next frame
/// as quickly as possible, though viewers may impose a reasonable lower bound.
///
/// This method will return an error if the image is not animated.
pub fn set_frame_delay(&mut self, numerator: u16, denominator: u16) -> Result<()> {
if let Some(ref mut fctl) = self.info.frame_control {
fctl.delay_den = denominator;
fctl.delay_num = numerator;
Ok(())
} else {
Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
}
}
/// Set the dimension of the following frames.
///
/// This function will return an error when:
/// - The image is not an animated;
///
/// - The selected dimension, considering also the current frame position,
/// goes outside the image boundaries;
///
/// - One or both the width and height are 0;
///
// ??? TODO ???
// - The next frame is the default image
pub fn set_frame_dimension(&mut self, width: u32, height: u32) -> Result<()> {
if let Some(ref mut fctl) = self.info.frame_control {
if Some(width) > self.info.width.checked_sub(fctl.x_offset)
|| Some(height) > self.info.height.checked_sub(fctl.y_offset)
{
return Err(EncodingError::Format(FormatErrorKind::OutOfBounds.into()));
} else if width == 0 {
return Err(EncodingError::Format(FormatErrorKind::ZeroWidth.into()));
} else if height == 0 {
return Err(EncodingError::Format(FormatErrorKind::ZeroHeight.into()));
}
fctl.width = width;
fctl.height = height;
Ok(())
} else {
Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
}
}
/// Set the position of the following frames.
///
/// An error will be returned if:
/// - The image is not animated;
///
/// - The selected position, considering also the current frame dimension,
/// goes outside the image boundaries;
///
// ??? TODO ???
// - The next frame is the default image
pub fn set_frame_position(&mut self, x: u32, y: u32) -> Result<()> {
if let Some(ref mut fctl) = self.info.frame_control {
if Some(x) > self.info.width.checked_sub(fctl.width)
|| Some(y) > self.info.height.checked_sub(fctl.height)
{
return Err(EncodingError::Format(FormatErrorKind::OutOfBounds.into()));
}
fctl.x_offset = x;
fctl.y_offset = y;
Ok(())
} else {
Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
}
}
/// Set the frame dimension to occupy all the image, starting from
/// the current position.
///
/// To reset the frame to the full image size [`reset_frame_position`]
/// should be called first.
///
/// This method will return an error if the image is not animated.
///
/// [`reset_frame_position`]: Writer::reset_frame_position
pub fn reset_frame_dimension(&mut self) -> Result<()> {
if let Some(ref mut fctl) = self.info.frame_control {
fctl.width = self.info.width - fctl.x_offset;
fctl.height = self.info.height - fctl.y_offset;
Ok(())
} else {
Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
}
}
/// Set the frame position to (0, 0).
///
/// Equivalent to calling [`set_frame_position(0, 0)`].
///
/// This method will return an error if the image is not animated.
///
/// [`set_frame_position(0, 0)`]: Writer::set_frame_position
pub fn reset_frame_position(&mut self) -> Result<()> {
if let Some(ref mut fctl) = self.info.frame_control {
fctl.x_offset = 0;
fctl.y_offset = 0;
Ok(())
} else {
Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
}
}
/// Set the blend operation for the following frames.
///
/// The blend operation specifies whether the frame is to be alpha blended
/// into the current output buffer content, or whether it should completely
/// replace its region in the output buffer.
///
/// See the [`BlendOp`] documentation for the possible values and their effects.
///
/// *Note that for the first frame the two blend modes are functionally
/// equivalent due to the clearing of the output buffer at the beginning
/// of each play.*
///
/// This method will return an error if the image is not animated.
pub fn set_blend_op(&mut self, op: BlendOp) -> Result<()> {
if let Some(ref mut fctl) = self.info.frame_control {
fctl.blend_op = op;
Ok(())
} else {
Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
}
}
/// Set the dispose operation for the following frames.
///
/// The dispose operation specifies how the output buffer should be changed
/// at the end of the delay (before rendering the next frame)
///
/// See the [`DisposeOp`] documentation for the possible values and their effects.
///
/// *Note that if the first frame uses [`DisposeOp::Previous`]
/// it will be treated as [`DisposeOp::Background`].*
///
/// This method will return an error if the image is not animated.
pub fn set_dispose_op(&mut self, op: DisposeOp) -> Result<()> {
if let Some(ref mut fctl) = self.info.frame_control {
fctl.dispose_op = op;
Ok(())
} else {
Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
}
}
/// Create a stream writer.
///
/// This allows you to create images that do not fit in memory. The default
/// chunk size is 4K, use `stream_writer_with_size` to set another chunk
/// size.
///
/// This borrows the writer which allows for manually appending additional
/// chunks after the image data has been written.
pub fn stream_writer(&mut self) -> Result<StreamWriter<W>> {
self.stream_writer_with_size(DEFAULT_BUFFER_LENGTH)
}
/// Create a stream writer with custom buffer size.
///
/// See [`stream_writer`].
///
/// [`stream_writer`]: Self::stream_writer
pub fn stream_writer_with_size(&mut self, size: usize) -> Result<StreamWriter<W>> {
StreamWriter::new(ChunkOutput::Borrowed(self), size)
}
/// Turn this into a stream writer for image data.
///
/// This allows you to create images that do not fit in memory. The default
/// chunk size is 4K, use [`stream_writer_with_size`] to set another chunk
/// size.
///
/// [`stream_writer_with_size`]: Self::stream_writer_with_size
pub fn into_stream_writer(self) -> Result<StreamWriter<'static, W>> {
self.into_stream_writer_with_size(DEFAULT_BUFFER_LENGTH)
}
/// Turn this into a stream writer with custom buffer size.
///
/// See [`into_stream_writer`].
///
/// [`into_stream_writer`]: Self::into_stream_writer
pub fn into_stream_writer_with_size(self, size: usize) -> Result<StreamWriter<'static, W>> {
StreamWriter::new(ChunkOutput::Owned(self), size)
}
/// Consume the stream writer with validation.
///
/// Unlike a simple drop this ensures that the final chunk was written correctly. When other
/// validation options (chunk sequencing) had been turned on in the configuration then it will
/// also do a check on their correctness _before_ writing the final chunk.
pub fn finish(mut self) -> Result<()> {
self.validate_sequence_done()?;
self.write_iend()?;
self.w.flush()?;
// Explicitly drop `self` just for clarity.
drop(self);
Ok(())
}
}
impl<W: Write> Drop for Writer<W> {
fn drop(&mut self) {
if !self.iend_written {
let _ = self.write_iend();
}
}
}
enum ChunkOutput<'a, W: Write> {
Borrowed(&'a mut Writer<W>),
Owned(Writer<W>),
}
// opted for deref for practical reasons
impl<'a, W: Write> Deref for ChunkOutput<'a, W> {
type Target = Writer<W>;
fn deref(&self) -> &Self::Target {
match self {
ChunkOutput::Borrowed(writer) => writer,
ChunkOutput::Owned(writer) => writer,
}
}
}
impl<'a, W: Write> DerefMut for ChunkOutput<'a, W> {
fn deref_mut(&mut self) -> &mut Self::Target {
match self {
ChunkOutput::Borrowed(writer) => writer,
ChunkOutput::Owned(writer) => writer,
}
}
}
/// This writer is used between the actual writer and the
/// ZlibEncoder and has the job of packaging the compressed
/// data into a PNG chunk, based on the image metadata
///
/// Currently the way it works is that the specified buffer
/// will hold one chunk at the time and buffer the incoming
/// data until `flush` is called or the maximum chunk size
/// is reached.
///
/// The maximum chunk is the smallest between the selected buffer size
/// and `u32::MAX >> 1` (`0x7fffffff` or `2147483647` dec)
///
/// When a chunk has to be flushed the length (that is now known)
/// and the CRC will be written at the correct locations in the chunk.
struct ChunkWriter<'a, W: Write> {
writer: ChunkOutput<'a, W>,
buffer: Vec<u8>,
/// keeps track of where the last byte was written
index: usize,
curr_chunk: ChunkType,
}
impl<'a, W: Write> ChunkWriter<'a, W> {
fn new(writer: ChunkOutput<'a, W>, buf_len: usize) -> ChunkWriter<'a, W> {
// currently buf_len will determine the size of each chunk
// the len is capped to the maximum size every chunk can hold
// (this wont ever overflow an u32)
//
// TODO (maybe): find a way to hold two chunks at a time if `usize`
// is 64 bits.
const CAP: usize = u32::MAX as usize >> 1;
let curr_chunk = if writer.images_written == 0 {
chunk::IDAT
} else {
chunk::fdAT
};
ChunkWriter {
writer,
buffer: vec![0; CAP.min(buf_len)],
index: 0,
curr_chunk,
}
}
/// Returns the size of each scanline for the next frame
/// paired with the size of the whole frame
///
/// This is used by the `StreamWriter` to know when the scanline ends
/// so it can filter compress it and also to know when to start
/// the next one
fn next_frame_info(&self) -> (usize, usize) {
let wrt = self.writer.deref();
let width: usize;
let height: usize;
if let Some(fctl) = wrt.info.frame_control {
width = fctl.width as usize;
height = fctl.height as usize;
} else {
width = wrt.info.width as usize;
height = wrt.info.height as usize;
}
let in_len = wrt.info.raw_row_length_from_width(width as u32) - 1;
let data_size = in_len * height;
(in_len, data_size)
}
/// NOTE: this bypasses the internal buffer so the flush method should be called before this
/// in the case there is some data left in the buffer when this is called, it will panic
fn write_header(&mut self) -> Result<()> {
assert_eq!(self.index, 0, "Called when not flushed");
let wrt = self.writer.deref_mut();
self.curr_chunk = if wrt.images_written == 0 {
chunk::IDAT
} else {
chunk::fdAT
};
match wrt.info.frame_control {
Some(_) if wrt.should_skip_frame_control_on_default_image() => {}
Some(ref mut fctl) => {
fctl.encode(&mut wrt.w)?;
fctl.sequence_number += 1;
}
_ => {}
}
Ok(())
}
/// Set the [`FrameControl`] for the following frame
///
/// It will ignore the `sequence_number` of the parameter
/// as it is updated internally.
fn set_fctl(&mut self, f: FrameControl) {
if let Some(ref mut fctl) = self.writer.info.frame_control {
// Ignore the sequence number
*fctl = FrameControl {
sequence_number: fctl.sequence_number,
..f
};
} else {
panic!("This function must be called on an animated PNG")
}
}
/// Flushes the current chunk
fn flush_inner(&mut self) -> io::Result<()> {
if self.index > 0 {
// flush the chunk and reset everything
write_chunk(
&mut self.writer.w,
self.curr_chunk,
&self.buffer[..self.index],
)?;
self.index = 0;
}
Ok(())
}
}
impl<'a, W: Write> Write for ChunkWriter<'a, W> {
fn write(&mut self, mut data: &[u8]) -> io::Result<usize> {
if data.is_empty() {
return Ok(0);
}
// index == 0 means a chunk has been flushed out
if self.index == 0 {
let wrt = self.writer.deref_mut();
// Prepare the next animated frame, if any.
let no_fctl = wrt.should_skip_frame_control_on_default_image();
if wrt.info.frame_control.is_some() && !no_fctl {
let fctl = wrt.info.frame_control.as_mut().unwrap();
self.buffer[0..4].copy_from_slice(&fctl.sequence_number.to_be_bytes());
fctl.sequence_number += 1;
self.index = 4;
}
}
// Cap the buffer length to the maximum number of bytes that can't still
// be added to the current chunk
let written = data.len().min(self.buffer.len() - self.index);
data = &data[..written];
self.buffer[self.index..][..written].copy_from_slice(data);
self.index += written;
// if the maximum data for this chunk as been reached it needs to be flushed
if self.index == self.buffer.len() {
self.flush_inner()?;
}
Ok(written)
}
fn flush(&mut self) -> io::Result<()> {
self.flush_inner()
}
}
impl<W: Write> Drop for ChunkWriter<'_, W> {
fn drop(&mut self) {
let _ = self.flush();
}
}
// TODO: find a better name
//
/// This enum is used to be allow the `StreamWriter` to keep
/// its inner `ChunkWriter` without wrapping it inside a
/// `ZlibEncoder`. This is used in the case that between the
/// change of state that happens when the last write of a frame
/// is performed an error occurs, which obviously has to be returned.
/// This creates the problem of where to store the writer before
/// exiting the function, and this is where `Wrapper` comes in.
///
/// Unfortunately the `ZlibWriter` can't be used because on the
/// write following the error, `finish` would be called and that
/// would write some data even if 0 bytes where compressed.
///
/// If the `finish` function fails then there is nothing much to
/// do as the `ChunkWriter` would get lost so the `Unrecoverable`
/// variant is used to signal that.
enum Wrapper<'a, W: Write> {
Chunk(ChunkWriter<'a, W>),
Zlib(ZlibEncoder<ChunkWriter<'a, W>>),
Unrecoverable,
/// This is used in-between, should never be matched
None,
}
impl<'a, W: Write> Wrapper<'a, W> {
/// Like `Option::take` this returns the `Wrapper` contained
/// in `self` and replaces it with `Wrapper::None`
fn take(&mut self) -> Wrapper<'a, W> {
let mut swap = Wrapper::None;
mem::swap(self, &mut swap);
swap
}
}
/// Streaming PNG writer
///
/// This may silently fail in the destructor, so it is a good idea to call
/// [`finish`] or [`flush`] before dropping.
///
/// [`finish`]: Self::finish
/// [`flush`]: Write::flush
pub struct StreamWriter<'a, W: Write> {
/// The option here is needed in order to access the inner `ChunkWriter` in-between
/// each frame, which is needed for writing the fcTL chunks between each frame
writer: Wrapper<'a, W>,
prev_buf: Vec<u8>,
curr_buf: Vec<u8>,
/// Amount of data already written
index: usize,
/// length of the current scanline
line_len: usize,
/// size of the frame (width * height * sample_size)
to_write: usize,
width: u32,
height: u32,
bpp: BytesPerPixel,
filter: FilterType,
adaptive_filter: AdaptiveFilterType,
fctl: Option<FrameControl>,
compression: Compression,
}
impl<'a, W: Write> StreamWriter<'a, W> {
fn new(writer: ChunkOutput<'a, W>, buf_len: usize) -> Result<StreamWriter<'a, W>> {
let PartialInfo {
width,
height,
frame_control: fctl,
compression,
..
} = writer.info;
let bpp = writer.info.bpp_in_prediction();
let in_len = writer.info.raw_row_length() - 1;
let filter = writer.options.filter;
let adaptive_filter = writer.options.adaptive_filter;
let prev_buf = vec![0; in_len];
let curr_buf = vec![0; in_len];
let mut chunk_writer = ChunkWriter::new(writer, buf_len);
let (line_len, to_write) = chunk_writer.next_frame_info();
chunk_writer.write_header()?;
let zlib = ZlibEncoder::new(chunk_writer, compression.to_options());
Ok(StreamWriter {
writer: Wrapper::Zlib(zlib),
index: 0,
prev_buf,
curr_buf,
bpp,
filter,
width,
height,
adaptive_filter,
line_len,
to_write,
fctl,
compression,
})
}
/// Set the used filter type for the next frame.
///
/// The default filter is [`FilterType::Sub`] which provides a basic prediction algorithm for
/// sample values based on the previous.
///
/// For optimal compression ratio you should enable adaptive filtering
/// instead of setting a single filter for the entire image, see
/// [set_adaptive_filter](Self::set_adaptive_filter).
pub fn set_filter(&mut self, filter: FilterType) {
self.filter = filter;
}
/// Set the adaptive filter type for the next frame.
///
/// Adaptive filtering attempts to select the best filter for each line
/// based on heuristics which minimize the file size for compression rather
/// than use a single filter for the entire image.
///
/// The default method is [`AdaptiveFilterType::NonAdaptive`].
pub fn set_adaptive_filter(&mut self, adaptive_filter: AdaptiveFilterType) {
self.adaptive_filter = adaptive_filter;
}
/// Set the fraction of time the following frames are going to be displayed,
/// in seconds
///
/// If the denominator is 0, it is to be treated as if it were 100
/// (that is, the numerator then specifies 1/100ths of a second).
/// If the value of the numerator is 0 the decoder should render the next frame
/// as quickly as possible, though viewers may impose a reasonable lower bound.
///
/// This method will return an error if the image is not animated.
pub fn set_frame_delay(&mut self, numerator: u16, denominator: u16) -> Result<()> {
if let Some(ref mut fctl) = self.fctl {
fctl.delay_den = denominator;
fctl.delay_num = numerator;
Ok(())
} else {
Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
}
}
/// Set the dimension of the following frames.
///
/// This function will return an error when:
/// - The image is not an animated;
///
/// - The selected dimension, considering also the current frame position,
/// goes outside the image boundaries;
///
/// - One or both the width and height are 0;
///
pub fn set_frame_dimension(&mut self, width: u32, height: u32) -> Result<()> {
if let Some(ref mut fctl) = self.fctl {
if Some(width) > self.width.checked_sub(fctl.x_offset)
|| Some(height) > self.height.checked_sub(fctl.y_offset)
{
return Err(EncodingError::Format(FormatErrorKind::OutOfBounds.into()));
} else if width == 0 {
return Err(EncodingError::Format(FormatErrorKind::ZeroWidth.into()));
} else if height == 0 {
return Err(EncodingError::Format(FormatErrorKind::ZeroHeight.into()));
}
fctl.width = width;
fctl.height = height;
Ok(())
} else {
Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
}
}
/// Set the position of the following frames.
///
/// An error will be returned if:
/// - The image is not animated;
///
/// - The selected position, considering also the current frame dimension,
/// goes outside the image boundaries;
///
pub fn set_frame_position(&mut self, x: u32, y: u32) -> Result<()> {
if let Some(ref mut fctl) = self.fctl {
if Some(x) > self.width.checked_sub(fctl.width)
|| Some(y) > self.height.checked_sub(fctl.height)
{
return Err(EncodingError::Format(FormatErrorKind::OutOfBounds.into()));
}
fctl.x_offset = x;
fctl.y_offset = y;
Ok(())
} else {
Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
}
}
/// Set the frame dimension to occupy all the image, starting from
/// the current position.
///
/// To reset the frame to the full image size [`reset_frame_position`]
/// should be called first.
///
/// This method will return an error if the image is not animated.
///
/// [`reset_frame_position`]: Writer::reset_frame_position
pub fn reset_frame_dimension(&mut self) -> Result<()> {
if let Some(ref mut fctl) = self.fctl {
fctl.width = self.width - fctl.x_offset;
fctl.height = self.height - fctl.y_offset;
Ok(())
} else {
Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
}
}
/// Set the frame position to (0, 0).
///
/// Equivalent to calling [`set_frame_position(0, 0)`].
///
/// This method will return an error if the image is not animated.
///
/// [`set_frame_position(0, 0)`]: Writer::set_frame_position
pub fn reset_frame_position(&mut self) -> Result<()> {
if let Some(ref mut fctl) = self.fctl {
fctl.x_offset = 0;
fctl.y_offset = 0;
Ok(())
} else {
Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
}
}
/// Set the blend operation for the following frames.
///
/// The blend operation specifies whether the frame is to be alpha blended
/// into the current output buffer content, or whether it should completely
/// replace its region in the output buffer.
///
/// See the [`BlendOp`] documentation for the possible values and their effects.
///
/// *Note that for the first frame the two blend modes are functionally
/// equivalent due to the clearing of the output buffer at the beginning
/// of each play.*
///
/// This method will return an error if the image is not animated.
pub fn set_blend_op(&mut self, op: BlendOp) -> Result<()> {
if let Some(ref mut fctl) = self.fctl {
fctl.blend_op = op;
Ok(())
} else {
Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
}
}
/// Set the dispose operation for the following frames.
///
/// The dispose operation specifies how the output buffer should be changed
/// at the end of the delay (before rendering the next frame)
///
/// See the [`DisposeOp`] documentation for the possible values and their effects.
///
/// *Note that if the first frame uses [`DisposeOp::Previous`]
/// it will be treated as [`DisposeOp::Background`].*
///
/// This method will return an error if the image is not animated.
pub fn set_dispose_op(&mut self, op: DisposeOp) -> Result<()> {
if let Some(ref mut fctl) = self.fctl {
fctl.dispose_op = op;
Ok(())
} else {
Err(EncodingError::Format(FormatErrorKind::NotAnimated.into()))
}
}
/// Consume the stream writer with validation.
///
/// Unlike a simple drop this ensures that the all data was written correctly. When other
/// validation options (chunk sequencing) had been turned on in the configuration of inner
/// [`Writer`], then it will also do a check on their correctness. Differently from
/// [`Writer::finish`], this just `flush`es, returns error if some data is abandoned.
pub fn finish(mut self) -> Result<()> {
if self.to_write > 0 {
let err = FormatErrorKind::MissingData(self.to_write).into();
return Err(EncodingError::Format(err));
}
// TODO: call `writer.finish` somehow?
self.flush()?;
if let Wrapper::Chunk(wrt) = self.writer.take() {
wrt.writer.validate_sequence_done()?;
}
Ok(())
}
/// Flushes the buffered chunk, checks if it was the last frame,
/// writes the next frame header and gets the next frame scanline size
/// and image size.
/// NOTE: This method must only be called when the writer is the variant Chunk(_)
fn new_frame(&mut self) -> Result<()> {
let wrt = match &mut self.writer {
Wrapper::Chunk(wrt) => wrt,
Wrapper::Unrecoverable => {
let err = FormatErrorKind::Unrecoverable.into();
return Err(EncodingError::Format(err));
}
Wrapper::Zlib(_) => unreachable!("never called on a half-finished frame"),
Wrapper::None => unreachable!(),
};
wrt.flush()?;
wrt.writer.validate_new_image()?;
if let Some(fctl) = self.fctl {
wrt.set_fctl(fctl);
}
let (scansize, size) = wrt.next_frame_info();
self.line_len = scansize;
self.to_write = size;
wrt.write_header()?;
wrt.writer.increment_images_written();
// now it can be taken because the next statements cannot cause any errors
match self.writer.take() {
Wrapper::Chunk(wrt) => {
let encoder = ZlibEncoder::new(wrt, self.compression.to_options());
self.writer = Wrapper::Zlib(encoder);
}
_ => unreachable!(),
};
Ok(())
}
}
impl<'a, W: Write> Write for StreamWriter<'a, W> {
fn write(&mut self, mut data: &[u8]) -> io::Result<usize> {
if let Wrapper::Unrecoverable = self.writer {
let err = FormatErrorKind::Unrecoverable.into();
return Err(EncodingError::Format(err).into());
}
if data.is_empty() {
return Ok(0);
}
if self.to_write == 0 {
match self.writer.take() {
Wrapper::Zlib(wrt) => match wrt.finish() {
Ok(chunk) => self.writer = Wrapper::Chunk(chunk),
Err(err) => {
self.writer = Wrapper::Unrecoverable;
return Err(err);
}
},
chunk @ Wrapper::Chunk(_) => self.writer = chunk,
Wrapper::Unrecoverable => unreachable!(),
Wrapper::None => unreachable!(),
};
// Transition Wrapper::Chunk to Wrapper::Zlib.
self.new_frame()?;
}
let written = data.read(&mut self.curr_buf[..self.line_len][self.index..])?;
self.index += written;
self.to_write -= written;
if self.index == self.line_len {
// TODO: reuse this buffer between rows.
let mut filtered = vec![0; self.curr_buf.len()];
let filter_type = filter(
self.filter,
self.adaptive_filter,
self.bpp,
&self.prev_buf,
&self.curr_buf,
&mut filtered,
);
// This can't fail as the other variant is used only to allow the zlib encoder to finish
let wrt = match &mut self.writer {
Wrapper::Zlib(wrt) => wrt,
_ => unreachable!(),
};
wrt.write_all(&[filter_type as u8])?;
wrt.write_all(&filtered)?;
mem::swap(&mut self.prev_buf, &mut self.curr_buf);
self.index = 0;
}
Ok(written)
}
fn flush(&mut self) -> io::Result<()> {
match &mut self.writer {
Wrapper::Zlib(wrt) => wrt.flush()?,
Wrapper::Chunk(wrt) => wrt.flush()?,
// This handles both the case where we entered an unrecoverable state after zlib
// decoding failure and after a panic while we had taken the chunk/zlib reader.
Wrapper::Unrecoverable | Wrapper::None => {
let err = FormatErrorKind::Unrecoverable.into();
return Err(EncodingError::Format(err).into());
}
}
if self.index > 0 {
let err = FormatErrorKind::WrittenTooMuch(self.index).into();
return Err(EncodingError::Format(err).into());
}
Ok(())
}
}
impl<W: Write> Drop for StreamWriter<'_, W> {
fn drop(&mut self) {
let _ = self.flush();
}
}
/// Mod to encapsulate the converters depending on the `deflate` crate.
///
/// Since this only contains trait impls, there is no need to make this public, they are simply
/// available when the mod is compiled as well.
impl Compression {
fn to_options(self) -> flate2::Compression {
#[allow(deprecated)]
match self {
Compression::Default => flate2::Compression::default(),
Compression::Fast => flate2::Compression::fast(),
Compression::Best => flate2::Compression::best(),
#[allow(deprecated)]
Compression::Huffman => flate2::Compression::none(),
#[allow(deprecated)]
Compression::Rle => flate2::Compression::none(),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::Decoder;
use rand::{thread_rng, Rng};
use std::cmp;
use std::fs::File;
use std::io::Cursor;
#[test]
fn roundtrip() {
// More loops = more random testing, but also more test wait time
for _ in 0..10 {
for path in glob::glob("tests/pngsuite/*.png")
.unwrap()
.map(|r| r.unwrap())
{
if path.file_name().unwrap().to_str().unwrap().starts_with('x') {
// x* files are expected to fail to decode
continue;
}
eprintln!("{}", path.display());
// Decode image
let decoder = Decoder::new(File::open(path).unwrap());
let mut reader = decoder.read_info().unwrap();
let mut buf = vec![0; reader.output_buffer_size()];
let info = reader.next_frame(&mut buf).unwrap();
// Encode decoded image
let mut out = Vec::new();
{
let mut wrapper = RandomChunkWriter {
rng: thread_rng(),
w: &mut out,
};
let mut encoder = Encoder::new(&mut wrapper, info.width, info.height);
encoder.set_color(info.color_type);
encoder.set_depth(info.bit_depth);
if let Some(palette) = &reader.info().palette {
encoder.set_palette(palette.clone());
}
let mut encoder = encoder.write_header().unwrap();
encoder.write_image_data(&buf).unwrap();
}
// Decode encoded decoded image
let decoder = Decoder::new(&*out);
let mut reader = decoder.read_info().unwrap();
let mut buf2 = vec![0; reader.output_buffer_size()];
reader.next_frame(&mut buf2).unwrap();
// check if the encoded image is ok:
assert_eq!(buf, buf2);
}
}
}
#[test]
fn roundtrip_stream() {
// More loops = more random testing, but also more test wait time
for _ in 0..10 {
for path in glob::glob("tests/pngsuite/*.png")
.unwrap()
.map(|r| r.unwrap())
{
if path.file_name().unwrap().to_str().unwrap().starts_with('x') {
// x* files are expected to fail to decode
continue;
}
// Decode image
let decoder = Decoder::new(File::open(path).unwrap());
let mut reader = decoder.read_info().unwrap();
let mut buf = vec![0; reader.output_buffer_size()];
let info = reader.next_frame(&mut buf).unwrap();
// Encode decoded image
let mut out = Vec::new();
{
let mut wrapper = RandomChunkWriter {
rng: thread_rng(),
w: &mut out,
};
let mut encoder = Encoder::new(&mut wrapper, info.width, info.height);
encoder.set_color(info.color_type);
encoder.set_depth(info.bit_depth);
if let Some(palette) = &reader.info().palette {
encoder.set_palette(palette.clone());
}
let mut encoder = encoder.write_header().unwrap();
let mut stream_writer = encoder.stream_writer().unwrap();
let mut outer_wrapper = RandomChunkWriter {
rng: thread_rng(),
w: &mut stream_writer,
};
outer_wrapper.write_all(&buf).unwrap();
}
// Decode encoded decoded image
let decoder = Decoder::new(&*out);
let mut reader = decoder.read_info().unwrap();
let mut buf2 = vec![0; reader.output_buffer_size()];
reader.next_frame(&mut buf2).unwrap();
// check if the encoded image is ok:
assert_eq!(buf, buf2);
}
}
}
#[test]
fn image_palette() -> Result<()> {
for &bit_depth in &[1u8, 2, 4, 8] {
// Do a reference decoding, choose a fitting palette image from pngsuite
let path = format!("tests/pngsuite/basn3p0{}.png", bit_depth);
let decoder = Decoder::new(File::open(&path).unwrap());
let mut reader = decoder.read_info().unwrap();
let mut decoded_pixels = vec![0; reader.output_buffer_size()];
let info = reader.info();
assert_eq!(
info.width as usize * info.height as usize * usize::from(bit_depth),
decoded_pixels.len() * 8
);
let info = reader.next_frame(&mut decoded_pixels).unwrap();
let indexed_data = decoded_pixels;
let palette = reader.info().palette.as_ref().unwrap();
let mut out = Vec::new();
{
let mut encoder = Encoder::new(&mut out, info.width, info.height);
encoder.set_depth(BitDepth::from_u8(bit_depth).unwrap());
encoder.set_color(ColorType::Indexed);
encoder.set_palette(palette.as_ref());
let mut writer = encoder.write_header().unwrap();
writer.write_image_data(&indexed_data).unwrap();
}
// Decode re-encoded image
let decoder = Decoder::new(&*out);
let mut reader = decoder.read_info().unwrap();
let mut redecoded = vec![0; reader.output_buffer_size()];
reader.next_frame(&mut redecoded).unwrap();
// check if the encoded image is ok:
assert_eq!(indexed_data, redecoded);
}
Ok(())
}
#[test]
fn expect_error_on_wrong_image_len() -> Result<()> {
let width = 10;
let height = 10;
let output = vec![0u8; 1024];
let writer = Cursor::new(output);
let mut encoder = Encoder::new(writer, width as u32, height as u32);
encoder.set_depth(BitDepth::Eight);
encoder.set_color(ColorType::Rgb);
let mut png_writer = encoder.write_header()?;
let correct_image_size = width * height * 3;
let image = vec![0u8; correct_image_size + 1];
let result = png_writer.write_image_data(image.as_ref());
assert!(result.is_err());
Ok(())
}
#[test]
fn expect_error_on_empty_image() -> Result<()> {
let output = vec![0u8; 1024];
let mut writer = Cursor::new(output);
let encoder = Encoder::new(&mut writer, 0, 0);
assert!(encoder.write_header().is_err());
let encoder = Encoder::new(&mut writer, 100, 0);
assert!(encoder.write_header().is_err());
let encoder = Encoder::new(&mut writer, 0, 100);
assert!(encoder.write_header().is_err());
Ok(())
}
#[test]
fn expect_error_on_invalid_bit_depth_color_type_combination() -> Result<()> {
let output = vec![0u8; 1024];
let mut writer = Cursor::new(output);
let mut encoder = Encoder::new(&mut writer, 1, 1);
encoder.set_depth(BitDepth::One);
encoder.set_color(ColorType::Rgb);
assert!(encoder.write_header().is_err());
let mut encoder = Encoder::new(&mut writer, 1, 1);
encoder.set_depth(BitDepth::One);
encoder.set_color(ColorType::GrayscaleAlpha);
assert!(encoder.write_header().is_err());
let mut encoder = Encoder::new(&mut writer, 1, 1);
encoder.set_depth(BitDepth::One);
encoder.set_color(ColorType::Rgba);
assert!(encoder.write_header().is_err());
let mut encoder = Encoder::new(&mut writer, 1, 1);
encoder.set_depth(BitDepth::Two);
encoder.set_color(ColorType::Rgb);
assert!(encoder.write_header().is_err());
let mut encoder = Encoder::new(&mut writer, 1, 1);
encoder.set_depth(BitDepth::Two);
encoder.set_color(ColorType::GrayscaleAlpha);
assert!(encoder.write_header().is_err());
let mut encoder = Encoder::new(&mut writer, 1, 1);
encoder.set_depth(BitDepth::Two);
encoder.set_color(ColorType::Rgba);
assert!(encoder.write_header().is_err());
let mut encoder = Encoder::new(&mut writer, 1, 1);
encoder.set_depth(BitDepth::Four);
encoder.set_color(ColorType::Rgb);
assert!(encoder.write_header().is_err());
let mut encoder = Encoder::new(&mut writer, 1, 1);
encoder.set_depth(BitDepth::Four);
encoder.set_color(ColorType::GrayscaleAlpha);
assert!(encoder.write_header().is_err());
let mut encoder = Encoder::new(&mut writer, 1, 1);
encoder.set_depth(BitDepth::Four);
encoder.set_color(ColorType::Rgba);
assert!(encoder.write_header().is_err());
let mut encoder = Encoder::new(&mut writer, 1, 1);
encoder.set_depth(BitDepth::Sixteen);
encoder.set_color(ColorType::Indexed);
assert!(encoder.write_header().is_err());
Ok(())
}
#[test]
fn can_write_header_with_valid_bit_depth_color_type_combination() -> Result<()> {
let output = vec![0u8; 1024];
let mut writer = Cursor::new(output);
let mut encoder = Encoder::new(&mut writer, 1, 1);
encoder.set_depth(BitDepth::One);
encoder.set_color(ColorType::Grayscale);
assert!(encoder.write_header().is_ok());
let mut encoder = Encoder::new(&mut writer, 1, 1);
encoder.set_depth(BitDepth::One);
encoder.set_color(ColorType::Indexed);
assert!(encoder.write_header().is_ok());
let mut encoder = Encoder::new(&mut writer, 1, 1);
encoder.set_depth(BitDepth::Two);
encoder.set_color(ColorType::Grayscale);
assert!(encoder.write_header().is_ok());
let mut encoder = Encoder::new(&mut writer, 1, 1);
encoder.set_depth(BitDepth::Two);
encoder.set_color(ColorType::Indexed);
assert!(encoder.write_header().is_ok());
let mut encoder = Encoder::new(&mut writer, 1, 1);
encoder.set_depth(BitDepth::Four);
encoder.set_color(ColorType::Grayscale);
assert!(encoder.write_header().is_ok());
let mut encoder = Encoder::new(&mut writer, 1, 1);
encoder.set_depth(BitDepth::Four);
encoder.set_color(ColorType::Indexed);
assert!(encoder.write_header().is_ok());
let mut encoder = Encoder::new(&mut writer, 1, 1);
encoder.set_depth(BitDepth::Eight);
encoder.set_color(ColorType::Grayscale);
assert!(encoder.write_header().is_ok());
let mut encoder = Encoder::new(&mut writer, 1, 1);
encoder.set_depth(BitDepth::Eight);
encoder.set_color(ColorType::Rgb);
assert!(encoder.write_header().is_ok());
let mut encoder = Encoder::new(&mut writer, 1, 1);
encoder.set_depth(BitDepth::Eight);
encoder.set_color(ColorType::Indexed);
assert!(encoder.write_header().is_ok());
let mut encoder = Encoder::new(&mut writer, 1, 1);
encoder.set_depth(BitDepth::Eight);
encoder.set_color(ColorType::GrayscaleAlpha);
assert!(encoder.write_header().is_ok());
let mut encoder = Encoder::new(&mut writer, 1, 1);
encoder.set_depth(BitDepth::Eight);
encoder.set_color(ColorType::Rgba);
assert!(encoder.write_header().is_ok());
let mut encoder = Encoder::new(&mut writer, 1, 1);
encoder.set_depth(BitDepth::Sixteen);
encoder.set_color(ColorType::Grayscale);
assert!(encoder.write_header().is_ok());
let mut encoder = Encoder::new(&mut writer, 1, 1);
encoder.set_depth(BitDepth::Sixteen);
encoder.set_color(ColorType::Rgb);
assert!(encoder.write_header().is_ok());
let mut encoder = Encoder::new(&mut writer, 1, 1);
encoder.set_depth(BitDepth::Sixteen);
encoder.set_color(ColorType::GrayscaleAlpha);
assert!(encoder.write_header().is_ok());
let mut encoder = Encoder::new(&mut writer, 1, 1);
encoder.set_depth(BitDepth::Sixteen);
encoder.set_color(ColorType::Rgba);
assert!(encoder.write_header().is_ok());
Ok(())
}
#[test]
fn all_filters_roundtrip() -> io::Result<()> {
let pixel: Vec<_> = (0..48).collect();
let roundtrip = |filter: FilterType| -> io::Result<()> {
let mut buffer = vec![];
let mut encoder = Encoder::new(&mut buffer, 4, 4);
encoder.set_depth(BitDepth::Eight);
encoder.set_color(ColorType::Rgb);
encoder.set_filter(filter);
encoder.write_header()?.write_image_data(&pixel)?;
let decoder = crate::Decoder::new(Cursor::new(buffer));
let mut reader = decoder.read_info()?;
let info = reader.info();
assert_eq!(info.width, 4);
assert_eq!(info.height, 4);
let mut dest = vec![0; pixel.len()];
reader.next_frame(&mut dest)?;
assert_eq!(dest, pixel, "Deviation with filter type {:?}", filter);
Ok(())
};
roundtrip(FilterType::NoFilter)?;
roundtrip(FilterType::Sub)?;
roundtrip(FilterType::Up)?;
roundtrip(FilterType::Avg)?;
roundtrip(FilterType::Paeth)?;
Ok(())
}
#[test]
fn some_gamma_roundtrip() -> io::Result<()> {
let pixel: Vec<_> = (0..48).collect();
let roundtrip = |gamma: Option<ScaledFloat>| -> io::Result<()> {
let mut buffer = vec![];
let mut encoder = Encoder::new(&mut buffer, 4, 4);
encoder.set_depth(BitDepth::Eight);
encoder.set_color(ColorType::Rgb);
encoder.set_filter(FilterType::Avg);
if let Some(gamma) = gamma {
encoder.set_source_gamma(gamma);
}
encoder.write_header()?.write_image_data(&pixel)?;
let decoder = crate::Decoder::new(Cursor::new(buffer));
let mut reader = decoder.read_info()?;
assert_eq!(
reader.info().source_gamma,
gamma,
"Deviation with gamma {:?}",
gamma
);
let mut dest = vec![0; pixel.len()];
let info = reader.next_frame(&mut dest)?;
assert_eq!(info.width, 4);
assert_eq!(info.height, 4);
Ok(())
};
roundtrip(None)?;
roundtrip(Some(ScaledFloat::new(0.35)))?;
roundtrip(Some(ScaledFloat::new(0.45)))?;
roundtrip(Some(ScaledFloat::new(0.55)))?;
roundtrip(Some(ScaledFloat::new(0.7)))?;
roundtrip(Some(ScaledFloat::new(1.0)))?;
roundtrip(Some(ScaledFloat::new(2.5)))?;
Ok(())
}
#[test]
fn write_image_chunks_beyond_first() -> Result<()> {
let width = 10;
let height = 10;
let output = vec![0u8; 1024];
let writer = Cursor::new(output);
// Not an animation but we should still be able to write multiple images
// See issue: <https://github.com/image-rs/image-png/issues/301>
// This is technically all valid png so there is no issue with correctness.
let mut encoder = Encoder::new(writer, width, height);
encoder.set_depth(BitDepth::Eight);
encoder.set_color(ColorType::Grayscale);
let mut png_writer = encoder.write_header()?;
for _ in 0..3 {
let correct_image_size = (width * height) as usize;
let image = vec![0u8; correct_image_size];
png_writer.write_image_data(image.as_ref())?;
}
Ok(())
}
#[test]
fn image_validate_sequence_without_animation() -> Result<()> {
let width = 10;
let height = 10;
let output = vec![0u8; 1024];
let writer = Cursor::new(output);
let mut encoder = Encoder::new(writer, width, height);
encoder.set_depth(BitDepth::Eight);
encoder.set_color(ColorType::Grayscale);
encoder.validate_sequence(true);
let mut png_writer = encoder.write_header()?;
let correct_image_size = (width * height) as usize;
let image = vec![0u8; correct_image_size];
png_writer.write_image_data(image.as_ref())?;
assert!(png_writer.write_image_data(image.as_ref()).is_err());
Ok(())
}
#[test]
fn image_validate_animation() -> Result<()> {
let width = 10;
let height = 10;
let output = vec![0u8; 1024];
let writer = Cursor::new(output);
let correct_image_size = (width * height) as usize;
let image = vec![0u8; correct_image_size];
let mut encoder = Encoder::new(writer, width, height);
encoder.set_depth(BitDepth::Eight);
encoder.set_color(ColorType::Grayscale);
encoder.set_animated(1, 0)?;
encoder.validate_sequence(true);
let mut png_writer = encoder.write_header()?;
png_writer.write_image_data(image.as_ref())?;
Ok(())
}
#[test]
fn image_validate_animation2() -> Result<()> {
let width = 10;
let height = 10;
let output = vec![0u8; 1024];
let writer = Cursor::new(output);
let correct_image_size = (width * height) as usize;
let image = vec![0u8; correct_image_size];
let mut encoder = Encoder::new(writer, width, height);
encoder.set_depth(BitDepth::Eight);
encoder.set_color(ColorType::Grayscale);
encoder.set_animated(2, 0)?;
encoder.validate_sequence(true);
let mut png_writer = encoder.write_header()?;
png_writer.write_image_data(image.as_ref())?;
png_writer.write_image_data(image.as_ref())?;
png_writer.finish()?;
Ok(())
}
#[test]
fn image_validate_animation_sep_def_image() -> Result<()> {
let width = 10;
let height = 10;
let output = vec![0u8; 1024];
let writer = Cursor::new(output);
let correct_image_size = (width * height) as usize;
let image = vec![0u8; correct_image_size];
let mut encoder = Encoder::new(writer, width, height);
encoder.set_depth(BitDepth::Eight);
encoder.set_color(ColorType::Grayscale);
encoder.set_animated(1, 0)?;
encoder.set_sep_def_img(true)?;
encoder.validate_sequence(true);
let mut png_writer = encoder.write_header()?;
png_writer.write_image_data(image.as_ref())?;
png_writer.write_image_data(image.as_ref())?;
png_writer.finish()?;
Ok(())
}
#[test]
fn image_validate_missing_image() -> Result<()> {
let width = 10;
let height = 10;
let output = vec![0u8; 1024];
let writer = Cursor::new(output);
let mut encoder = Encoder::new(writer, width, height);
encoder.set_depth(BitDepth::Eight);
encoder.set_color(ColorType::Grayscale);
encoder.validate_sequence(true);
let png_writer = encoder.write_header()?;
assert!(png_writer.finish().is_err());
Ok(())
}
#[test]
fn image_validate_missing_animated_frame() -> Result<()> {
let width = 10;
let height = 10;
let output = vec![0u8; 1024];
let writer = Cursor::new(output);
let correct_image_size = (width * height) as usize;
let image = vec![0u8; correct_image_size];
let mut encoder = Encoder::new(writer, width, height);
encoder.set_depth(BitDepth::Eight);
encoder.set_color(ColorType::Grayscale);
encoder.set_animated(2, 0)?;
encoder.validate_sequence(true);
let mut png_writer = encoder.write_header()?;
png_writer.write_image_data(image.as_ref())?;
assert!(png_writer.finish().is_err());
Ok(())
}
#[test]
fn issue_307_stream_validation() -> Result<()> {
let output = vec![0u8; 1024];
let mut cursor = Cursor::new(output);
let encoder = Encoder::new(&mut cursor, 1, 1); // Create a 1-pixel image
let mut writer = encoder.write_header()?;
let mut stream = writer.stream_writer()?;
let written = stream.write(&[1, 2, 3, 4])?;
assert_eq!(written, 1);
stream.finish()?;
drop(writer);
{
cursor.set_position(0);
let mut decoder = Decoder::new(cursor).read_info().expect("A valid image");
let mut buffer = [0u8; 1];
decoder.next_frame(&mut buffer[..]).expect("Valid read");
assert_eq!(buffer, [1]);
}
Ok(())
}
#[test]
fn stream_filtering() -> Result<()> {
let output = vec![0u8; 1024];
let mut cursor = Cursor::new(output);
let mut encoder = Encoder::new(&mut cursor, 8, 8);
encoder.set_color(ColorType::Rgba);
encoder.set_filter(FilterType::Paeth);
let mut writer = encoder.write_header()?;
let mut stream = writer.stream_writer()?;
for _ in 0..8 {
let written = stream.write(&[1; 32])?;
assert_eq!(written, 32);
}
stream.finish()?;
drop(writer);
{
cursor.set_position(0);
let mut decoder = Decoder::new(cursor).read_info().expect("A valid image");
let mut buffer = [0u8; 256];
decoder.next_frame(&mut buffer[..]).expect("Valid read");
assert_eq!(buffer, [1; 256]);
}
Ok(())
}
#[test]
#[cfg(all(unix, not(target_pointer_width = "32")))]
fn exper_error_on_huge_chunk() -> Result<()> {
// Okay, so we want a proper 4 GB chunk but not actually spend the memory for reserving it.
// Let's rely on overcommit? Otherwise we got the rather dumb option of mmap-ing /dev/zero.
let empty = vec![0; 1usize << 31];
let writer = Cursor::new(vec![0u8; 1024]);
let mut encoder = Encoder::new(writer, 10, 10);
encoder.set_depth(BitDepth::Eight);
encoder.set_color(ColorType::Grayscale);
let mut png_writer = encoder.write_header()?;
assert!(png_writer.write_chunk(chunk::fdAT, &empty).is_err());
Ok(())
}
#[test]
#[cfg(all(unix, not(target_pointer_width = "32")))]
fn exper_error_on_non_u32_chunk() -> Result<()> {
// Okay, so we want a proper 4 GB chunk but not actually spend the memory for reserving it.
// Let's rely on overcommit? Otherwise we got the rather dumb option of mmap-ing /dev/zero.
let empty = vec![0; 1usize << 32];
let writer = Cursor::new(vec![0u8; 1024]);
let mut encoder = Encoder::new(writer, 10, 10);
encoder.set_depth(BitDepth::Eight);
encoder.set_color(ColorType::Grayscale);
let mut png_writer = encoder.write_header()?;
assert!(png_writer.write_chunk(chunk::fdAT, &empty).is_err());
Ok(())
}
#[test]
fn finish_drops_inner_writer() -> Result<()> {
struct NoWriter<'flag>(&'flag mut bool);
impl Write for NoWriter<'_> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
impl Drop for NoWriter<'_> {
fn drop(&mut self) {
*self.0 = true;
}
}
let mut flag = false;
{
let mut encoder = Encoder::new(NoWriter(&mut flag), 10, 10);
encoder.set_depth(BitDepth::Eight);
encoder.set_color(ColorType::Grayscale);
let mut writer = encoder.write_header()?;
writer.write_image_data(&[0; 100])?;
writer.finish()?;
}
assert!(flag, "PNG finished but writer was not dropped");
Ok(())
}
/// A Writer that only writes a few bytes at a time
struct RandomChunkWriter<R: Rng, W: Write> {
rng: R,
w: W,
}
impl<R: Rng, W: Write> Write for RandomChunkWriter<R, W> {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
// choose a random length to write
let len = cmp::min(self.rng.gen_range(1..50), buf.len());
self.w.write(&buf[0..len])
}
fn flush(&mut self) -> io::Result<()> {
self.w.flush()
}
}
}