1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
/*!
Provides [`Automaton`] trait for abstracting over Aho-Corasick automata.
The `Automaton` trait provides a way to write generic code over any
Aho-Corasick automaton. It also provides access to lower level APIs that
permit walking the state transitions of an Aho-Corasick automaton manually.
*/
use alloc::{string::String, vec::Vec};
use crate::util::{
error::MatchError,
primitives::PatternID,
search::{Anchored, Input, Match, MatchKind, Span},
};
pub use crate::util::{
prefilter::{Candidate, Prefilter},
primitives::{StateID, StateIDError},
};
/// We seal the `Automaton` trait for now. It's a big trait, and it's
/// conceivable that I might want to add new required methods, and sealing the
/// trait permits doing that in a backwards compatible fashion. On other the
/// hand, if you have a solid use case for implementing the trait yourself,
/// please file an issue and we can discuss it. This was *mostly* done as a
/// conservative step.
pub(crate) mod private {
pub trait Sealed {}
}
impl private::Sealed for crate::nfa::noncontiguous::NFA {}
impl private::Sealed for crate::nfa::contiguous::NFA {}
impl private::Sealed for crate::dfa::DFA {}
impl<'a, T: private::Sealed + ?Sized> private::Sealed for &'a T {}
/// A trait that abstracts over Aho-Corasick automata.
///
/// This trait primarily exists for niche use cases such as:
///
/// * Using an NFA or DFA directly, bypassing the top-level
/// [`AhoCorasick`](crate::AhoCorasick) searcher. Currently, these include
/// [`noncontiguous::NFA`](crate::nfa::noncontiguous::NFA),
/// [`contiguous::NFA`](crate::nfa::contiguous::NFA) and
/// [`dfa::DFA`](crate::dfa::DFA).
/// * Implementing your own custom search routine by walking the automaton
/// yourself. This might be useful for implementing search on non-contiguous
/// strings or streams.
///
/// For most use cases, it is not expected that users will need
/// to use or even know about this trait. Indeed, the top level
/// [`AhoCorasick`](crate::AhoCorasick) searcher does not expose any details
/// about this trait, nor does it implement it itself.
///
/// Note that this trait defines a number of default methods, such as
/// [`Automaton::try_find`] and [`Automaton::try_find_iter`], which implement
/// higher level search routines in terms of the lower level automata API.
///
/// # Sealed
///
/// Currently, this trait is sealed. That means users of this crate can write
/// generic routines over this trait but cannot implement it themselves. This
/// restriction may be lifted in the future, but sealing the trait permits
/// adding new required methods in a backwards compatible fashion.
///
/// # Special states
///
/// This trait encodes a notion of "special" states in an automaton. Namely,
/// a state is treated as special if it is a dead, match or start state:
///
/// * A dead state is a state that cannot be left once entered. All transitions
/// on a dead state lead back to itself. The dead state is meant to be treated
/// as a sentinel indicating that the search should stop and return a match if
/// one has been found, and nothing otherwise.
/// * A match state is a state that indicates one or more patterns have
/// matched. Depending on the [`MatchKind`] of the automaton, a search may
/// stop once a match is seen, or it may continue looking for matches until
/// it enters a dead state or sees the end of the haystack.
/// * A start state is a state that a search begins in. It is useful to know
/// when a search enters a start state because it may mean that a prefilter can
/// be used to skip ahead and quickly look for candidate matches. Unlike dead
/// and match states, it is never necessary to explicitly handle start states
/// for correctness. Indeed, in this crate, implementations of `Automaton`
/// will only treat start states as "special" when a prefilter is enabled and
/// active. Otherwise, treating it as special has no purpose and winds up
/// slowing down the overall search because it results in ping-ponging between
/// the main state transition and the "special" state logic.
///
/// Since checking whether a state is special by doing three different
/// checks would be too expensive inside a fast search loop, the
/// [`Automaton::is_special`] method is provided for quickly checking whether
/// the state is special. The `Automaton::is_dead`, `Automaton::is_match` and
/// `Automaton::is_start` predicates can then be used to determine which kind
/// of special state it is.
///
/// # Panics
///
/// Most of the APIs on this trait should panic or give incorrect results
/// if invalid inputs are given to it. For example, `Automaton::next_state`
/// has unspecified behavior if the state ID given to it is not a valid
/// state ID for the underlying automaton. Valid state IDs can only be
/// retrieved in one of two ways: calling `Automaton::start_state` or calling
/// `Automaton::next_state` with a valid state ID.
///
/// # Safety
///
/// This trait is not safe to implement so that code may rely on the
/// correctness of implementations of this trait to avoid undefined behavior.
/// The primary correctness guarantees are:
///
/// * `Automaton::start_state` always returns a valid state ID or an error or
/// panics.
/// * `Automaton::next_state`, when given a valid state ID, always returns
/// a valid state ID for all values of `anchored` and `byte`, or otherwise
/// panics.
///
/// In general, the rest of the methods on `Automaton` need to uphold their
/// contracts as well. For example, `Automaton::is_dead` should only returns
/// true if the given state ID is actually a dead state.
///
/// Note that currently this crate does not rely on the safety property defined
/// here to avoid undefined behavior. Instead, this was done to make it
/// _possible_ to do in the future.
///
/// # Example
///
/// This example shows how one might implement a basic but correct search
/// routine. We keep things simple by not using prefilters or worrying about
/// anchored searches, but do make sure our search is correct for all possible
/// [`MatchKind`] semantics. (The comments in the code below note the parts
/// that are needed to support certain `MatchKind` semantics.)
///
/// ```
/// use aho_corasick::{
/// automaton::Automaton,
/// nfa::noncontiguous::NFA,
/// Anchored, Match, MatchError, MatchKind,
/// };
///
/// // Run an unanchored search for 'aut' in 'haystack'. Return the first match
/// // seen according to the automaton's match semantics. This returns an error
/// // if the given automaton does not support unanchored searches.
/// fn find<A: Automaton>(
/// aut: A,
/// haystack: &[u8],
/// ) -> Result<Option<Match>, MatchError> {
/// let mut sid = aut.start_state(Anchored::No)?;
/// let mut at = 0;
/// let mut mat = None;
/// let get_match = |sid, at| {
/// let pid = aut.match_pattern(sid, 0);
/// let len = aut.pattern_len(pid);
/// Match::new(pid, (at - len)..at)
/// };
/// // Start states can be match states!
/// if aut.is_match(sid) {
/// mat = Some(get_match(sid, at));
/// // Standard semantics require matches to be reported as soon as
/// // they're seen. Otherwise, we continue until we see a dead state
/// // or the end of the haystack.
/// if matches!(aut.match_kind(), MatchKind::Standard) {
/// return Ok(mat);
/// }
/// }
/// while at < haystack.len() {
/// sid = aut.next_state(Anchored::No, sid, haystack[at]);
/// if aut.is_special(sid) {
/// if aut.is_dead(sid) {
/// return Ok(mat);
/// } else if aut.is_match(sid) {
/// mat = Some(get_match(sid, at + 1));
/// // As above, standard semantics require that we return
/// // immediately once a match is found.
/// if matches!(aut.match_kind(), MatchKind::Standard) {
/// return Ok(mat);
/// }
/// }
/// }
/// at += 1;
/// }
/// Ok(mat)
/// }
///
/// // Show that it works for standard searches.
/// let nfa = NFA::new(&["samwise", "sam"]).unwrap();
/// assert_eq!(Some(Match::must(1, 0..3)), find(&nfa, b"samwise")?);
///
/// // But also works when using leftmost-first. Notice how the match result
/// // has changed!
/// let nfa = NFA::builder()
/// .match_kind(MatchKind::LeftmostFirst)
/// .build(&["samwise", "sam"])
/// .unwrap();
/// assert_eq!(Some(Match::must(0, 0..7)), find(&nfa, b"samwise")?);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub unsafe trait Automaton: private::Sealed {
/// Returns the starting state for the given anchor mode.
///
/// Upon success, the state ID returned is guaranteed to be valid for
/// this automaton.
///
/// # Errors
///
/// This returns an error when the given search configuration is not
/// supported by the underlying automaton. For example, if the underlying
/// automaton only supports unanchored searches but the given configuration
/// was set to an anchored search, then this must return an error.
fn start_state(&self, anchored: Anchored) -> Result<StateID, MatchError>;
/// Performs a state transition from `sid` for `byte` and returns the next
/// state.
///
/// `anchored` should be [`Anchored::Yes`] when executing an anchored
/// search and [`Anchored::No`] otherwise. For some implementations of
/// `Automaton`, it is required to know whether the search is anchored
/// or not in order to avoid following failure transitions. Other
/// implementations may ignore `anchored` altogether and depend on
/// `Automaton::start_state` returning a state that walks a different path
/// through the automaton depending on whether the search is anchored or
/// not.
///
/// # Panics
///
/// This routine may panic or return incorrect results when the given state
/// ID is invalid. A state ID is valid if and only if:
///
/// 1. It came from a call to `Automaton::start_state`, or
/// 2. It came from a previous call to `Automaton::next_state` with a
/// valid state ID.
///
/// Implementations must treat all possible values of `byte` as valid.
///
/// Implementations may panic on unsupported values of `anchored`, but are
/// not required to do so.
fn next_state(
&self,
anchored: Anchored,
sid: StateID,
byte: u8,
) -> StateID;
/// Returns true if the given ID represents a "special" state. A special
/// state is a dead, match or start state.
///
/// Note that implementations may choose to return false when the given ID
/// corresponds to a start state. Namely, it always correct to treat start
/// states as non-special. Implementations must return true for states that
/// are dead or contain matches.
///
/// This has unspecified behavior when given an invalid state ID.
fn is_special(&self, sid: StateID) -> bool;
/// Returns true if the given ID represents a dead state.
///
/// A dead state is a type of "sink" in a finite state machine. It
/// corresponds to a state whose transitions all loop back to itself. That
/// is, once entered, it can never be left. In practice, it serves as a
/// sentinel indicating that the search should terminate.
///
/// This has unspecified behavior when given an invalid state ID.
fn is_dead(&self, sid: StateID) -> bool;
/// Returns true if the given ID represents a match state.
///
/// A match state is always associated with one or more pattern IDs that
/// matched at the position in the haystack when the match state was
/// entered. When a match state is entered, the match semantics dictate
/// whether it should be returned immediately (for `MatchKind::Standard`)
/// or if the search should continue (for `MatchKind::LeftmostFirst` and
/// `MatchKind::LeftmostLongest`) until a dead state is seen or the end of
/// the haystack has been reached.
///
/// This has unspecified behavior when given an invalid state ID.
fn is_match(&self, sid: StateID) -> bool;
/// Returns true if the given ID represents a start state.
///
/// While it is never incorrect to ignore start states during a search
/// (except for the start of the search of course), knowing whether one has
/// entered a start state can be useful for certain classes of performance
/// optimizations. For example, if one is in a start state, it may be legal
/// to try to skip ahead and look for match candidates more quickly than
/// would otherwise be accomplished by walking the automaton.
///
/// Implementations of `Automaton` in this crate "unspecialize" start
/// states when a prefilter is not active or enabled. In this case, it
/// is possible for `Automaton::is_special(sid)` to return false while
/// `Automaton::is_start(sid)` returns true.
///
/// This has unspecified behavior when given an invalid state ID.
fn is_start(&self, sid: StateID) -> bool;
/// Returns the match semantics that this automaton was built with.
fn match_kind(&self) -> MatchKind;
/// Returns the total number of matches for the given state ID.
///
/// This has unspecified behavior if the given ID does not refer to a match
/// state.
fn match_len(&self, sid: StateID) -> usize;
/// Returns the pattern ID for the match state given by `sid` at the
/// `index` given.
///
/// Typically, `index` is only ever greater than `0` when implementing an
/// overlapping search. Otherwise, it's likely that your search only cares
/// about reporting the first pattern ID in a match state.
///
/// This has unspecified behavior if the given ID does not refer to a match
/// state, or if the index is greater than or equal to the total number of
/// matches in this match state.
fn match_pattern(&self, sid: StateID, index: usize) -> PatternID;
/// Returns the total number of patterns compiled into this automaton.
fn patterns_len(&self) -> usize;
/// Returns the length of the pattern for the given ID.
///
/// This has unspecified behavior when given an invalid pattern
/// ID. A pattern ID is valid if and only if it is less than
/// `Automaton::patterns_len`.
fn pattern_len(&self, pid: PatternID) -> usize;
/// Returns the length, in bytes, of the shortest pattern in this
/// automaton.
fn min_pattern_len(&self) -> usize;
/// Returns the length, in bytes, of the longest pattern in this automaton.
fn max_pattern_len(&self) -> usize;
/// Returns the heap memory usage, in bytes, used by this automaton.
fn memory_usage(&self) -> usize;
/// Returns a prefilter, if available, that can be used to accelerate
/// searches for this automaton.
///
/// The typical way this is used is when the start state is entered during
/// a search. When that happens, one can use a prefilter to skip ahead and
/// look for candidate matches without having to walk the automaton on the
/// bytes between candidates.
///
/// Typically a prefilter is only available when there are a small (<100)
/// number of patterns built into the automaton.
fn prefilter(&self) -> Option<&Prefilter>;
/// Executes a non-overlapping search with this automaton using the given
/// configuration.
///
/// See
/// [`AhoCorasick::try_find`](crate::AhoCorasick::try_find)
/// for more documentation and examples.
fn try_find(
&self,
input: &Input<'_>,
) -> Result<Option<Match>, MatchError> {
try_find_fwd(&self, input)
}
/// Executes a overlapping search with this automaton using the given
/// configuration.
///
/// See
/// [`AhoCorasick::try_find_overlapping`](crate::AhoCorasick::try_find_overlapping)
/// for more documentation and examples.
fn try_find_overlapping(
&self,
input: &Input<'_>,
state: &mut OverlappingState,
) -> Result<(), MatchError> {
try_find_overlapping_fwd(&self, input, state)
}
/// Returns an iterator of non-overlapping matches with this automaton
/// using the given configuration.
///
/// See
/// [`AhoCorasick::try_find_iter`](crate::AhoCorasick::try_find_iter)
/// for more documentation and examples.
fn try_find_iter<'a, 'h>(
&'a self,
input: Input<'h>,
) -> Result<FindIter<'a, 'h, Self>, MatchError>
where
Self: Sized,
{
FindIter::new(self, input)
}
/// Returns an iterator of overlapping matches with this automaton
/// using the given configuration.
///
/// See
/// [`AhoCorasick::try_find_overlapping_iter`](crate::AhoCorasick::try_find_overlapping_iter)
/// for more documentation and examples.
fn try_find_overlapping_iter<'a, 'h>(
&'a self,
input: Input<'h>,
) -> Result<FindOverlappingIter<'a, 'h, Self>, MatchError>
where
Self: Sized,
{
if !self.match_kind().is_standard() {
return Err(MatchError::unsupported_overlapping(
self.match_kind(),
));
}
// We might consider lifting this restriction. The reason why I added
// it was to ban the combination of "anchored search" and "overlapping
// iteration." The match semantics aren't totally clear in that case.
// Should we allow *any* matches that are adjacent to *any* previous
// match? Or only following the most recent one? Or only matches
// that start at the beginning of the search? We might also elect to
// just keep this restriction in place, as callers should be able to
// implement it themselves if they want to.
if input.get_anchored().is_anchored() {
return Err(MatchError::invalid_input_anchored());
}
let _ = self.start_state(input.get_anchored())?;
let state = OverlappingState::start();
Ok(FindOverlappingIter { aut: self, input, state })
}
/// Replaces all non-overlapping matches in `haystack` with
/// strings from `replace_with` depending on the pattern that
/// matched. The `replace_with` slice must have length equal to
/// `Automaton::patterns_len`.
///
/// See
/// [`AhoCorasick::try_replace_all`](crate::AhoCorasick::try_replace_all)
/// for more documentation and examples.
fn try_replace_all<B>(
&self,
haystack: &str,
replace_with: &[B],
) -> Result<String, MatchError>
where
Self: Sized,
B: AsRef<str>,
{
assert_eq!(
replace_with.len(),
self.patterns_len(),
"replace_all requires a replacement for every pattern \
in the automaton"
);
let mut dst = String::with_capacity(haystack.len());
self.try_replace_all_with(haystack, &mut dst, |mat, _, dst| {
dst.push_str(replace_with[mat.pattern()].as_ref());
true
})?;
Ok(dst)
}
/// Replaces all non-overlapping matches in `haystack` with
/// strings from `replace_with` depending on the pattern that
/// matched. The `replace_with` slice must have length equal to
/// `Automaton::patterns_len`.
///
/// See
/// [`AhoCorasick::try_replace_all_bytes`](crate::AhoCorasick::try_replace_all_bytes)
/// for more documentation and examples.
fn try_replace_all_bytes<B>(
&self,
haystack: &[u8],
replace_with: &[B],
) -> Result<Vec<u8>, MatchError>
where
Self: Sized,
B: AsRef<[u8]>,
{
assert_eq!(
replace_with.len(),
self.patterns_len(),
"replace_all requires a replacement for every pattern \
in the automaton"
);
let mut dst = Vec::with_capacity(haystack.len());
self.try_replace_all_with_bytes(haystack, &mut dst, |mat, _, dst| {
dst.extend(replace_with[mat.pattern()].as_ref());
true
})?;
Ok(dst)
}
/// Replaces all non-overlapping matches in `haystack` by calling the
/// `replace_with` closure given.
///
/// See
/// [`AhoCorasick::try_replace_all_with`](crate::AhoCorasick::try_replace_all_with)
/// for more documentation and examples.
fn try_replace_all_with<F>(
&self,
haystack: &str,
dst: &mut String,
mut replace_with: F,
) -> Result<(), MatchError>
where
Self: Sized,
F: FnMut(&Match, &str, &mut String) -> bool,
{
let mut last_match = 0;
for m in self.try_find_iter(Input::new(haystack))? {
// Since there are no restrictions on what kinds of patterns are
// in an Aho-Corasick automaton, we might get matches that split
// a codepoint, or even matches of a partial codepoint. When that
// happens, we just skip the match.
if !haystack.is_char_boundary(m.start())
|| !haystack.is_char_boundary(m.end())
{
continue;
}
dst.push_str(&haystack[last_match..m.start()]);
last_match = m.end();
if !replace_with(&m, &haystack[m.start()..m.end()], dst) {
break;
};
}
dst.push_str(&haystack[last_match..]);
Ok(())
}
/// Replaces all non-overlapping matches in `haystack` by calling the
/// `replace_with` closure given.
///
/// See
/// [`AhoCorasick::try_replace_all_with_bytes`](crate::AhoCorasick::try_replace_all_with_bytes)
/// for more documentation and examples.
fn try_replace_all_with_bytes<F>(
&self,
haystack: &[u8],
dst: &mut Vec<u8>,
mut replace_with: F,
) -> Result<(), MatchError>
where
Self: Sized,
F: FnMut(&Match, &[u8], &mut Vec<u8>) -> bool,
{
let mut last_match = 0;
for m in self.try_find_iter(Input::new(haystack))? {
dst.extend(&haystack[last_match..m.start()]);
last_match = m.end();
if !replace_with(&m, &haystack[m.start()..m.end()], dst) {
break;
};
}
dst.extend(&haystack[last_match..]);
Ok(())
}
/// Returns an iterator of non-overlapping matches with this automaton
/// from the stream given.
///
/// See
/// [`AhoCorasick::try_stream_find_iter`](crate::AhoCorasick::try_stream_find_iter)
/// for more documentation and examples.
#[cfg(feature = "std")]
fn try_stream_find_iter<'a, R: std::io::Read>(
&'a self,
rdr: R,
) -> Result<StreamFindIter<'a, Self, R>, MatchError>
where
Self: Sized,
{
Ok(StreamFindIter { it: StreamChunkIter::new(self, rdr)? })
}
/// Replaces all non-overlapping matches in `rdr` with strings from
/// `replace_with` depending on the pattern that matched, and writes the
/// result to `wtr`. The `replace_with` slice must have length equal to
/// `Automaton::patterns_len`.
///
/// See
/// [`AhoCorasick::try_stream_replace_all`](crate::AhoCorasick::try_stream_replace_all)
/// for more documentation and examples.
#[cfg(feature = "std")]
fn try_stream_replace_all<R, W, B>(
&self,
rdr: R,
wtr: W,
replace_with: &[B],
) -> std::io::Result<()>
where
Self: Sized,
R: std::io::Read,
W: std::io::Write,
B: AsRef<[u8]>,
{
assert_eq!(
replace_with.len(),
self.patterns_len(),
"streaming replace_all requires a replacement for every pattern \
in the automaton",
);
self.try_stream_replace_all_with(rdr, wtr, |mat, _, wtr| {
wtr.write_all(replace_with[mat.pattern()].as_ref())
})
}
/// Replaces all non-overlapping matches in `rdr` by calling the
/// `replace_with` closure given and writing the result to `wtr`.
///
/// See
/// [`AhoCorasick::try_stream_replace_all_with`](crate::AhoCorasick::try_stream_replace_all_with)
/// for more documentation and examples.
#[cfg(feature = "std")]
fn try_stream_replace_all_with<R, W, F>(
&self,
rdr: R,
mut wtr: W,
mut replace_with: F,
) -> std::io::Result<()>
where
Self: Sized,
R: std::io::Read,
W: std::io::Write,
F: FnMut(&Match, &[u8], &mut W) -> std::io::Result<()>,
{
let mut it = StreamChunkIter::new(self, rdr).map_err(|e| {
let kind = std::io::ErrorKind::Other;
std::io::Error::new(kind, e)
})?;
while let Some(result) = it.next() {
let chunk = result?;
match chunk {
StreamChunk::NonMatch { bytes, .. } => {
wtr.write_all(bytes)?;
}
StreamChunk::Match { bytes, mat } => {
replace_with(&mat, bytes, &mut wtr)?;
}
}
}
Ok(())
}
}
// SAFETY: This just defers to the underlying 'AcAutomaton' and thus inherits
// its safety properties.
unsafe impl<'a, A: Automaton + ?Sized> Automaton for &'a A {
#[inline(always)]
fn start_state(&self, anchored: Anchored) -> Result<StateID, MatchError> {
(**self).start_state(anchored)
}
#[inline(always)]
fn next_state(
&self,
anchored: Anchored,
sid: StateID,
byte: u8,
) -> StateID {
(**self).next_state(anchored, sid, byte)
}
#[inline(always)]
fn is_special(&self, sid: StateID) -> bool {
(**self).is_special(sid)
}
#[inline(always)]
fn is_dead(&self, sid: StateID) -> bool {
(**self).is_dead(sid)
}
#[inline(always)]
fn is_match(&self, sid: StateID) -> bool {
(**self).is_match(sid)
}
#[inline(always)]
fn is_start(&self, sid: StateID) -> bool {
(**self).is_start(sid)
}
#[inline(always)]
fn match_kind(&self) -> MatchKind {
(**self).match_kind()
}
#[inline(always)]
fn match_len(&self, sid: StateID) -> usize {
(**self).match_len(sid)
}
#[inline(always)]
fn match_pattern(&self, sid: StateID, index: usize) -> PatternID {
(**self).match_pattern(sid, index)
}
#[inline(always)]
fn patterns_len(&self) -> usize {
(**self).patterns_len()
}
#[inline(always)]
fn pattern_len(&self, pid: PatternID) -> usize {
(**self).pattern_len(pid)
}
#[inline(always)]
fn min_pattern_len(&self) -> usize {
(**self).min_pattern_len()
}
#[inline(always)]
fn max_pattern_len(&self) -> usize {
(**self).max_pattern_len()
}
#[inline(always)]
fn memory_usage(&self) -> usize {
(**self).memory_usage()
}
#[inline(always)]
fn prefilter(&self) -> Option<&Prefilter> {
(**self).prefilter()
}
}
/// Represents the current state of an overlapping search.
///
/// This is used for overlapping searches since they need to know something
/// about the previous search. For example, when multiple patterns match at the
/// same position, this state tracks the last reported pattern so that the next
/// search knows whether to report another matching pattern or continue with
/// the search at the next position. Additionally, it also tracks which state
/// the last search call terminated in and the current offset of the search
/// in the haystack.
///
/// This type provides limited introspection capabilities. The only thing a
/// caller can do is construct it and pass it around to permit search routines
/// to use it to track state, and to ask whether a match has been found.
///
/// Callers should always provide a fresh state constructed via
/// [`OverlappingState::start`] when starting a new search. That same state
/// should be reused for subsequent searches on the same `Input`. The state
/// given will advance through the haystack itself. Callers can detect the end
/// of a search when neither an error nor a match is returned.
///
/// # Example
///
/// This example shows how to manually iterate over all overlapping matches. If
/// you need this, you might consider using
/// [`AhoCorasick::find_overlapping_iter`](crate::AhoCorasick::find_overlapping_iter)
/// instead, but this shows how to correctly use an `OverlappingState`.
///
/// ```
/// use aho_corasick::{
/// automaton::OverlappingState,
/// AhoCorasick, Input, Match,
/// };
///
/// let patterns = &["append", "appendage", "app"];
/// let haystack = "append the app to the appendage";
///
/// let ac = AhoCorasick::new(patterns).unwrap();
/// let mut state = OverlappingState::start();
/// let mut matches = vec![];
///
/// loop {
/// ac.find_overlapping(haystack, &mut state);
/// let mat = match state.get_match() {
/// None => break,
/// Some(mat) => mat,
/// };
/// matches.push(mat);
/// }
/// let expected = vec![
/// Match::must(2, 0..3),
/// Match::must(0, 0..6),
/// Match::must(2, 11..14),
/// Match::must(2, 22..25),
/// Match::must(0, 22..28),
/// Match::must(1, 22..31),
/// ];
/// assert_eq!(expected, matches);
/// ```
#[derive(Clone, Debug)]
pub struct OverlappingState {
/// The match reported by the most recent overlapping search to use this
/// state.
///
/// If a search does not find any matches, then it is expected to clear
/// this value.
mat: Option<Match>,
/// The state ID of the state at which the search was in when the call
/// terminated. When this is a match state, `last_match` must be set to a
/// non-None value.
///
/// A `None` value indicates the start state of the corresponding
/// automaton. We cannot use the actual ID, since any one automaton may
/// have many start states, and which one is in use depends on search-time
/// factors (such as whether the search is anchored or not).
id: Option<StateID>,
/// The position of the search.
///
/// When `id` is None (i.e., we are starting a search), this is set to
/// the beginning of the search as given by the caller regardless of its
/// current value. Subsequent calls to an overlapping search pick up at
/// this offset.
at: usize,
/// The index into the matching patterns of the next match to report if the
/// current state is a match state. Note that this may be 1 greater than
/// the total number of matches to report for the current match state. (In
/// which case, no more matches should be reported at the current position
/// and the search should advance to the next position.)
next_match_index: Option<usize>,
}
impl OverlappingState {
/// Create a new overlapping state that begins at the start state.
pub fn start() -> OverlappingState {
OverlappingState { mat: None, id: None, at: 0, next_match_index: None }
}
/// Return the match result of the most recent search to execute with this
/// state.
///
/// Every search will clear this result automatically, such that if no
/// match is found, this will always correctly report `None`.
pub fn get_match(&self) -> Option<Match> {
self.mat
}
}
/// An iterator of non-overlapping matches in a particular haystack.
///
/// This iterator yields matches according to the [`MatchKind`] used by this
/// automaton.
///
/// This iterator is constructed via the [`Automaton::try_find_iter`] method.
///
/// The type variable `A` refers to the implementation of the [`Automaton`]
/// trait used to execute the search.
///
/// The lifetime `'a` refers to the lifetime of the [`Automaton`]
/// implementation.
///
/// The lifetime `'h` refers to the lifetime of the haystack being searched.
#[derive(Debug)]
pub struct FindIter<'a, 'h, A> {
/// The automaton used to drive the search.
aut: &'a A,
/// The input parameters to give to each search call.
///
/// The start position of the search is mutated during iteration.
input: Input<'h>,
/// Records the end offset of the most recent match. This is necessary to
/// handle a corner case for preventing empty matches from overlapping with
/// the ending bounds of a prior match.
last_match_end: Option<usize>,
}
impl<'a, 'h, A: Automaton> FindIter<'a, 'h, A> {
/// Creates a new non-overlapping iterator. If the given automaton would
/// return an error on a search with the given input configuration, then
/// that error is returned here.
fn new(
aut: &'a A,
input: Input<'h>,
) -> Result<FindIter<'a, 'h, A>, MatchError> {
// The only way this search can fail is if we cannot retrieve the start
// state. e.g., Asking for an anchored search when only unanchored
// searches are supported.
let _ = aut.start_state(input.get_anchored())?;
Ok(FindIter { aut, input, last_match_end: None })
}
/// Executes a search and returns a match if one is found.
///
/// This does not advance the input forward. It just executes a search
/// based on the current configuration/offsets.
fn search(&self) -> Option<Match> {
// The unwrap is OK here because we check at iterator construction time
// that no subsequent search call (using the same configuration) will
// ever return an error.
self.aut
.try_find(&self.input)
.expect("already checked that no match error can occur")
}
/// Handles the special case of an empty match by ensuring that 1) the
/// iterator always advances and 2) empty matches never overlap with other
/// matches.
///
/// (1) is necessary because we principally make progress by setting the
/// starting location of the next search to the ending location of the last
/// match. But if a match is empty, then this results in a search that does
/// not advance and thus does not terminate.
///
/// (2) is not strictly necessary, but makes intuitive sense and matches
/// the presiding behavior of most general purpose regex engines.
/// (Obviously this crate isn't a regex engine, but we choose to match
/// their semantics.) The "intuitive sense" here is that we want to report
/// NON-overlapping matches. So for example, given the patterns 'a' and
/// '' (an empty string) against the haystack 'a', without the special
/// handling, you'd get the matches [0, 1) and [1, 1), where the latter
/// overlaps with the end bounds of the former.
///
/// Note that we mark this cold and forcefully prevent inlining because
/// handling empty matches like this is extremely rare and does require
/// quite a bit of code, comparatively. Keeping this code out of the main
/// iterator function keeps it smaller and more amenable to inlining
/// itself.
#[cold]
#[inline(never)]
fn handle_overlapping_empty_match(
&mut self,
mut m: Match,
) -> Option<Match> {
assert!(m.is_empty());
if Some(m.end()) == self.last_match_end {
self.input.set_start(self.input.start().checked_add(1).unwrap());
m = self.search()?;
}
Some(m)
}
}
impl<'a, 'h, A: Automaton> Iterator for FindIter<'a, 'h, A> {
type Item = Match;
#[inline(always)]
fn next(&mut self) -> Option<Match> {
let mut m = self.search()?;
if m.is_empty() {
m = self.handle_overlapping_empty_match(m)?;
}
self.input.set_start(m.end());
self.last_match_end = Some(m.end());
Some(m)
}
}
/// An iterator of overlapping matches in a particular haystack.
///
/// This iterator will report all possible matches in a particular haystack,
/// even when the matches overlap.
///
/// This iterator is constructed via the
/// [`Automaton::try_find_overlapping_iter`] method.
///
/// The type variable `A` refers to the implementation of the [`Automaton`]
/// trait used to execute the search.
///
/// The lifetime `'a` refers to the lifetime of the [`Automaton`]
/// implementation.
///
/// The lifetime `'h` refers to the lifetime of the haystack being searched.
#[derive(Debug)]
pub struct FindOverlappingIter<'a, 'h, A> {
aut: &'a A,
input: Input<'h>,
state: OverlappingState,
}
impl<'a, 'h, A: Automaton> Iterator for FindOverlappingIter<'a, 'h, A> {
type Item = Match;
#[inline(always)]
fn next(&mut self) -> Option<Match> {
self.aut
.try_find_overlapping(&self.input, &mut self.state)
.expect("already checked that no match error can occur here");
self.state.get_match()
}
}
/// An iterator that reports matches in a stream.
///
/// This iterator yields elements of type `io::Result<Match>`, where an error
/// is reported if there was a problem reading from the underlying stream.
/// The iterator terminates only when the underlying stream reaches `EOF`.
///
/// This iterator is constructed via the [`Automaton::try_stream_find_iter`]
/// method.
///
/// The type variable `A` refers to the implementation of the [`Automaton`]
/// trait used to execute the search.
///
/// The type variable `R` refers to the `io::Read` stream that is being read
/// from.
///
/// The lifetime `'a` refers to the lifetime of the [`Automaton`]
/// implementation.
#[cfg(feature = "std")]
#[derive(Debug)]
pub struct StreamFindIter<'a, A, R> {
it: StreamChunkIter<'a, A, R>,
}
#[cfg(feature = "std")]
impl<'a, A: Automaton, R: std::io::Read> Iterator
for StreamFindIter<'a, A, R>
{
type Item = std::io::Result<Match>;
fn next(&mut self) -> Option<std::io::Result<Match>> {
loop {
match self.it.next() {
None => return None,
Some(Err(err)) => return Some(Err(err)),
Some(Ok(StreamChunk::NonMatch { .. })) => {}
Some(Ok(StreamChunk::Match { mat, .. })) => {
return Some(Ok(mat));
}
}
}
}
}
/// An iterator that reports matches in a stream.
///
/// (This doesn't actually implement the `Iterator` trait because it returns
/// something with a lifetime attached to a buffer it owns, but that's OK. It
/// still has a `next` method and is iterator-like enough to be fine.)
///
/// This iterator yields elements of type `io::Result<StreamChunk>`, where
/// an error is reported if there was a problem reading from the underlying
/// stream. The iterator terminates only when the underlying stream reaches
/// `EOF`.
///
/// The idea here is that each chunk represents either a match or a non-match,
/// and if you concatenated all of the chunks together, you'd reproduce the
/// entire contents of the stream, byte-for-byte.
///
/// This chunk machinery is a bit complicated and it isn't strictly required
/// for a stream searcher that just reports matches. But we do need something
/// like this to deal with the "replacement" API, which needs to know which
/// chunks it can copy and which it needs to replace.
#[cfg(feature = "std")]
#[derive(Debug)]
struct StreamChunkIter<'a, A, R> {
/// The underlying automaton to do the search.
aut: &'a A,
/// The source of bytes we read from.
rdr: R,
/// A roll buffer for managing bytes from `rdr`. Basically, this is used
/// to handle the case of a match that is split by two different
/// calls to `rdr.read()`. This isn't strictly needed if all we needed to
/// do was report matches, but here we are reporting chunks of non-matches
/// and matches and in order to do that, we really just cannot treat our
/// stream as non-overlapping blocks of bytes. We need to permit some
/// overlap while we retain bytes from a previous `read` call in memory.
buf: crate::util::buffer::Buffer,
/// The unanchored starting state of this automaton.
start: StateID,
/// The state of the automaton.
sid: StateID,
/// The absolute position over the entire stream.
absolute_pos: usize,
/// The position we're currently at within `buf`.
buffer_pos: usize,
/// The buffer position of the end of the bytes that we last returned
/// to the caller. Basically, whenever we find a match, we look to see if
/// there is a difference between where the match started and the position
/// of the last byte we returned to the caller. If there's a difference,
/// then we need to return a 'NonMatch' chunk.
buffer_reported_pos: usize,
}
#[cfg(feature = "std")]
impl<'a, A: Automaton, R: std::io::Read> StreamChunkIter<'a, A, R> {
fn new(
aut: &'a A,
rdr: R,
) -> Result<StreamChunkIter<'a, A, R>, MatchError> {
// This restriction is a carry-over from older versions of this crate.
// I didn't have the bandwidth to think through how to handle, say,
// leftmost-first or leftmost-longest matching, but... it should be
// possible? The main problem is that once you see a match state in
// leftmost-first semantics, you can't just stop at that point and
// report a match. You have to keep going until you either hit a dead
// state or EOF. So how do you know when you'll hit a dead state? Well,
// you don't. With Aho-Corasick, I believe you can put a bound on it
// and say, "once a match has been seen, you'll need to scan forward at
// most N bytes" where N=aut.max_pattern_len().
//
// Which is fine, but it does mean that state about whether we're still
// looking for a dead state or not needs to persist across buffer
// refills. Which this code doesn't really handle. It does preserve
// *some* state across buffer refills, basically ensuring that a match
// span is always in memory.
if !aut.match_kind().is_standard() {
return Err(MatchError::unsupported_stream(aut.match_kind()));
}
// This is kind of a cop-out, but empty matches are SUPER annoying.
// If we know they can't happen (which is what we enforce here), then
// it makes a lot of logic much simpler. With that said, I'm open to
// supporting this case, but we need to define proper semantics for it
// first. It wasn't totally clear to me what it should do at the time
// of writing, so I decided to just be conservative.
//
// It also seems like a very weird case to support anyway. Why search a
// stream if you're just going to get a match at every position?
//
// ¯\_(ツ)_/¯
if aut.min_pattern_len() == 0 {
return Err(MatchError::unsupported_empty());
}
let start = aut.start_state(Anchored::No)?;
Ok(StreamChunkIter {
aut,
rdr,
buf: crate::util::buffer::Buffer::new(aut.max_pattern_len()),
start,
sid: start,
absolute_pos: 0,
buffer_pos: 0,
buffer_reported_pos: 0,
})
}
fn next(&mut self) -> Option<std::io::Result<StreamChunk>> {
// This code is pretty gnarly. It IS simpler than the equivalent code
// in the previous aho-corasick release, in part because we inline
// automaton traversal here and also in part because we have abdicated
// support for automatons that contain an empty pattern.
//
// I suspect this code could be made a bit simpler by designing a
// better buffer abstraction.
//
// But in general, this code is basically write-only. So you'll need
// to go through it step-by-step to grok it. One of the key bits of
// complexity is tracking a few different offsets. 'buffer_pos' is
// where we are in the buffer for search. 'buffer_reported_pos' is the
// position immediately following the last byte in the buffer that
// we've returned to the caller. And 'absolute_pos' is the overall
// current absolute position of the search in the entire stream, and
// this is what match spans are reported in terms of.
loop {
if self.aut.is_match(self.sid) {
let mat = self.get_match();
if let Some(r) = self.get_non_match_chunk(mat) {
self.buffer_reported_pos += r.len();
let bytes = &self.buf.buffer()[r];
return Some(Ok(StreamChunk::NonMatch { bytes }));
}
self.sid = self.start;
let r = self.get_match_chunk(mat);
self.buffer_reported_pos += r.len();
let bytes = &self.buf.buffer()[r];
return Some(Ok(StreamChunk::Match { bytes, mat }));
}
if self.buffer_pos >= self.buf.buffer().len() {
if let Some(r) = self.get_pre_roll_non_match_chunk() {
self.buffer_reported_pos += r.len();
let bytes = &self.buf.buffer()[r];
return Some(Ok(StreamChunk::NonMatch { bytes }));
}
if self.buf.buffer().len() >= self.buf.min_buffer_len() {
self.buffer_pos = self.buf.min_buffer_len();
self.buffer_reported_pos -=
self.buf.buffer().len() - self.buf.min_buffer_len();
self.buf.roll();
}
match self.buf.fill(&mut self.rdr) {
Err(err) => return Some(Err(err)),
Ok(true) => {}
Ok(false) => {
// We've hit EOF, but if there are still some
// unreported bytes remaining, return them now.
if let Some(r) = self.get_eof_non_match_chunk() {
self.buffer_reported_pos += r.len();
let bytes = &self.buf.buffer()[r];
return Some(Ok(StreamChunk::NonMatch { bytes }));
}
// We've reported everything!
return None;
}
}
}
let start = self.absolute_pos;
for &byte in self.buf.buffer()[self.buffer_pos..].iter() {
self.sid = self.aut.next_state(Anchored::No, self.sid, byte);
self.absolute_pos += 1;
if self.aut.is_match(self.sid) {
break;
}
}
self.buffer_pos += self.absolute_pos - start;
}
}
/// Return a match chunk for the given match. It is assumed that the match
/// ends at the current `buffer_pos`.
fn get_match_chunk(&self, mat: Match) -> core::ops::Range<usize> {
let start = self.buffer_pos - mat.len();
let end = self.buffer_pos;
start..end
}
/// Return a non-match chunk, if necessary, just before reporting a match.
/// This returns `None` if there is nothing to report. Otherwise, this
/// assumes that the given match ends at the current `buffer_pos`.
fn get_non_match_chunk(
&self,
mat: Match,
) -> Option<core::ops::Range<usize>> {
let buffer_mat_start = self.buffer_pos - mat.len();
if buffer_mat_start > self.buffer_reported_pos {
let start = self.buffer_reported_pos;
let end = buffer_mat_start;
return Some(start..end);
}
None
}
/// Look for any bytes that should be reported as a non-match just before
/// rolling the buffer.
///
/// Note that this only reports bytes up to `buffer.len() -
/// min_buffer_len`, as it's not possible to know whether the bytes
/// following that will participate in a match or not.
fn get_pre_roll_non_match_chunk(&self) -> Option<core::ops::Range<usize>> {
let end =
self.buf.buffer().len().saturating_sub(self.buf.min_buffer_len());
if self.buffer_reported_pos < end {
return Some(self.buffer_reported_pos..end);
}
None
}
/// Return any unreported bytes as a non-match up to the end of the buffer.
///
/// This should only be called when the entire contents of the buffer have
/// been searched and EOF has been hit when trying to fill the buffer.
fn get_eof_non_match_chunk(&self) -> Option<core::ops::Range<usize>> {
if self.buffer_reported_pos < self.buf.buffer().len() {
return Some(self.buffer_reported_pos..self.buf.buffer().len());
}
None
}
/// Return the match at the current position for the current state.
///
/// This panics if `self.aut.is_match(self.sid)` isn't true.
fn get_match(&self) -> Match {
get_match(self.aut, self.sid, 0, self.absolute_pos)
}
}
/// A single chunk yielded by the stream chunk iterator.
///
/// The `'r` lifetime refers to the lifetime of the stream chunk iterator.
#[cfg(feature = "std")]
#[derive(Debug)]
enum StreamChunk<'r> {
/// A chunk that does not contain any matches.
NonMatch { bytes: &'r [u8] },
/// A chunk that precisely contains a match.
Match { bytes: &'r [u8], mat: Match },
}
#[inline(never)]
pub(crate) fn try_find_fwd<A: Automaton + ?Sized>(
aut: &A,
input: &Input<'_>,
) -> Result<Option<Match>, MatchError> {
if input.is_done() {
return Ok(None);
}
let earliest = aut.match_kind().is_standard() || input.get_earliest();
if input.get_anchored().is_anchored() {
try_find_fwd_imp(aut, input, None, Anchored::Yes, earliest)
} else if let Some(pre) = aut.prefilter() {
if earliest {
try_find_fwd_imp(aut, input, Some(pre), Anchored::No, true)
} else {
try_find_fwd_imp(aut, input, Some(pre), Anchored::No, false)
}
} else {
if earliest {
try_find_fwd_imp(aut, input, None, Anchored::No, true)
} else {
try_find_fwd_imp(aut, input, None, Anchored::No, false)
}
}
}
#[inline(always)]
fn try_find_fwd_imp<A: Automaton + ?Sized>(
aut: &A,
input: &Input<'_>,
pre: Option<&Prefilter>,
anchored: Anchored,
earliest: bool,
) -> Result<Option<Match>, MatchError> {
let mut sid = aut.start_state(input.get_anchored())?;
let mut at = input.start();
let mut mat = None;
if aut.is_match(sid) {
mat = Some(get_match(aut, sid, 0, at));
if earliest {
return Ok(mat);
}
}
if let Some(pre) = pre {
match pre.find_in(input.haystack(), input.get_span()) {
Candidate::None => return Ok(None),
Candidate::Match(m) => return Ok(Some(m)),
Candidate::PossibleStartOfMatch(i) => {
at = i;
}
}
}
while at < input.end() {
// I've tried unrolling this loop and eliding bounds checks, but no
// matter what I did, I could not observe a consistent improvement on
// any benchmark I could devise. (If someone wants to re-litigate this,
// the way to do it is to add an 'next_state_unchecked' method to the
// 'Automaton' trait with a default impl that uses 'next_state'. Then
// use 'aut.next_state_unchecked' here and implement it on DFA using
// unchecked slice index acces.)
sid = aut.next_state(anchored, sid, input.haystack()[at]);
if aut.is_special(sid) {
if aut.is_dead(sid) {
return Ok(mat);
} else if aut.is_match(sid) {
// We use 'at + 1' here because the match state is entered
// at the last byte of the pattern. Since we use half-open
// intervals, the end of the range of the match is one past the
// last byte.
let m = get_match(aut, sid, 0, at + 1);
// For the automata in this crate, we make a size trade off
// where we reuse the same automaton for both anchored and
// unanchored searches. We achieve this, principally, by simply
// not following failure transitions while computing the next
// state. Instead, if we fail to find the next state, we return
// a dead state, which instructs the search to stop. (This
// is why 'next_state' needs to know whether the search is
// anchored or not.) In addition, we have different start
// states for anchored and unanchored searches. The latter has
// a self-loop where as the former does not.
//
// In this way, we can use the same trie to execute both
// anchored and unanchored searches. There is a catch though.
// When building an Aho-Corasick automaton for unanchored
// searches, we copy matches from match states to other states
// (which would otherwise not be match states) if they are
// reachable via a failure transition. In the case of an
// anchored search, we *specifically* do not want to report
// these matches because they represent matches that start past
// the beginning of the search.
//
// Now we could tweak the automaton somehow to differentiate
// anchored from unanchored match states, but this would make
// 'aut.is_match' and potentially 'aut.is_special' slower. And
// also make the automaton itself more complex.
//
// Instead, we insert a special hack: if the search is
// anchored, we simply ignore matches that don't begin at
// the start of the search. This is not quite ideal, but we
// do specialize this function in such a way that unanchored
// searches don't pay for this additional branch. While this
// might cause a search to continue on for more than it
// otherwise optimally would, it will be no more than the
// longest pattern in the automaton. The reason for this is
// that we ensure we don't follow failure transitions during
// an anchored search. Combined with using a different anchored
// starting state with no self-loop, we guarantee that we'll
// at worst move through a number of transitions equal to the
// longest pattern.
//
// Now for DFAs, the whole point of them is to eliminate
// failure transitions entirely. So there is no way to say "if
// it's an anchored search don't follow failure transitions."
// Instead, we actually have to build two entirely separate
// automatons into the transition table. One with failure
// transitions built into it and another that is effectively
// just an encoding of the base trie into a transition table.
// DFAs still need this check though, because the match states
// still carry matches only reachable via a failure transition.
// Why? Because removing them seems difficult, although I
// haven't given it a lot of thought.
if !(anchored.is_anchored() && m.start() > input.start()) {
mat = Some(m);
if earliest {
return Ok(mat);
}
}
} else if let Some(pre) = pre {
// If we're here, we know it's a special state that is not a
// dead or a match state AND that a prefilter is active. Thus,
// it must be a start state.
debug_assert!(aut.is_start(sid));
// We don't care about 'Candidate::Match' here because if such
// a match were possible, it would have been returned above
// when we run the prefilter before walking the automaton.
let span = Span::from(at..input.end());
match pre.find_in(input.haystack(), span).into_option() {
None => return Ok(None),
Some(i) => {
if i > at {
at = i;
continue;
}
}
}
} else {
// When pre.is_none(), then starting states should not be
// treated as special. That is, without a prefilter, is_special
// should only return true when the state is a dead or a match
// state.
//
// It is possible to execute a search without a prefilter even
// when the underlying searcher has one: an anchored search.
// But in this case, the automaton makes it impossible to move
// back to the start state by construction, and thus, we should
// never reach this branch.
debug_assert!(false, "unreachable");
}
}
at += 1;
}
Ok(mat)
}
#[inline(never)]
fn try_find_overlapping_fwd<A: Automaton + ?Sized>(
aut: &A,
input: &Input<'_>,
state: &mut OverlappingState,
) -> Result<(), MatchError> {
state.mat = None;
if input.is_done() {
return Ok(());
}
// Searching with a pattern ID is always anchored, so we should only ever
// use a prefilter when no pattern ID is given.
if aut.prefilter().is_some() && !input.get_anchored().is_anchored() {
let pre = aut.prefilter().unwrap();
try_find_overlapping_fwd_imp(aut, input, Some(pre), state)
} else {
try_find_overlapping_fwd_imp(aut, input, None, state)
}
}
#[inline(always)]
fn try_find_overlapping_fwd_imp<A: Automaton + ?Sized>(
aut: &A,
input: &Input<'_>,
pre: Option<&Prefilter>,
state: &mut OverlappingState,
) -> Result<(), MatchError> {
let mut sid = match state.id {
None => {
let sid = aut.start_state(input.get_anchored())?;
// Handle the case where the start state is a match state. That is,
// the empty string is in our automaton. We report every match we
// can here before moving on and updating 'state.at' and 'state.id'
// to find more matches in other parts of the haystack.
if aut.is_match(sid) {
let i = state.next_match_index.unwrap_or(0);
let len = aut.match_len(sid);
if i < len {
state.next_match_index = Some(i + 1);
state.mat = Some(get_match(aut, sid, i, input.start()));
return Ok(());
}
}
state.at = input.start();
state.id = Some(sid);
state.next_match_index = None;
state.mat = None;
sid
}
Some(sid) => {
// If we still have matches left to report in this state then
// report them until we've exhausted them. Only after that do we
// advance to the next offset in the haystack.
if let Some(i) = state.next_match_index {
let len = aut.match_len(sid);
if i < len {
state.next_match_index = Some(i + 1);
state.mat = Some(get_match(aut, sid, i, state.at + 1));
return Ok(());
}
// Once we've reported all matches at a given position, we need
// to advance the search to the next position.
state.at += 1;
state.next_match_index = None;
state.mat = None;
}
sid
}
};
while state.at < input.end() {
sid = aut.next_state(
input.get_anchored(),
sid,
input.haystack()[state.at],
);
if aut.is_special(sid) {
state.id = Some(sid);
if aut.is_dead(sid) {
return Ok(());
} else if aut.is_match(sid) {
state.next_match_index = Some(1);
state.mat = Some(get_match(aut, sid, 0, state.at + 1));
return Ok(());
} else if let Some(pre) = pre {
// If we're here, we know it's a special state that is not a
// dead or a match state AND that a prefilter is active. Thus,
// it must be a start state.
debug_assert!(aut.is_start(sid));
let span = Span::from(state.at..input.end());
match pre.find_in(input.haystack(), span).into_option() {
None => return Ok(()),
Some(i) => {
if i > state.at {
state.at = i;
continue;
}
}
}
} else {
// When pre.is_none(), then starting states should not be
// treated as special. That is, without a prefilter, is_special
// should only return true when the state is a dead or a match
// state.
//
// ... except for one special case: in stream searching, we
// currently call overlapping search with a 'None' prefilter,
// regardless of whether one exists or not, because stream
// searching can't currently deal with prefilters correctly in
// all cases.
}
}
state.at += 1;
}
state.id = Some(sid);
Ok(())
}
#[inline(always)]
fn get_match<A: Automaton + ?Sized>(
aut: &A,
sid: StateID,
index: usize,
at: usize,
) -> Match {
let pid = aut.match_pattern(sid, index);
let len = aut.pattern_len(pid);
Match::new(pid, (at - len)..at)
}
/// Write a prefix "state" indicator for fmt::Debug impls. It always writes
/// exactly two printable bytes to the given formatter.
///
/// Specifically, this tries to succinctly distinguish the different types of
/// states: dead states, start states and match states. It even accounts for
/// the possible overlappings of different state types. (The only possible
/// overlapping is that of match and start states.)
pub(crate) fn fmt_state_indicator<A: Automaton>(
f: &mut core::fmt::Formatter<'_>,
aut: A,
id: StateID,
) -> core::fmt::Result {
if aut.is_dead(id) {
write!(f, "D ")?;
} else if aut.is_match(id) {
if aut.is_start(id) {
write!(f, "*>")?;
} else {
write!(f, "* ")?;
}
} else if aut.is_start(id) {
write!(f, " >")?;
} else {
write!(f, " ")?;
}
Ok(())
}
/// Return an iterator of transitions in a sparse format given an iterator
/// of all explicitly defined transitions. The iterator yields ranges of
/// transitions, such that any adjacent transitions mapped to the same
/// state are combined into a single range.
pub(crate) fn sparse_transitions<'a>(
mut it: impl Iterator<Item = (u8, StateID)> + 'a,
) -> impl Iterator<Item = (u8, u8, StateID)> + 'a {
let mut cur: Option<(u8, u8, StateID)> = None;
core::iter::from_fn(move || {
while let Some((class, next)) = it.next() {
let (prev_start, prev_end, prev_next) = match cur {
Some(x) => x,
None => {
cur = Some((class, class, next));
continue;
}
};
if prev_next == next {
cur = Some((prev_start, class, prev_next));
} else {
cur = Some((class, class, next));
return Some((prev_start, prev_end, prev_next));
}
}
if let Some((start, end, next)) = cur.take() {
return Some((start, end, next));
}
None
})
}