regex_lite/
utf8.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
/// Returns true if and only if the given byte is considered a word character.
/// This only applies to ASCII.
pub(crate) fn is_word_byte(b: u8) -> bool {
    const fn mkwordset() -> [bool; 256] {
        // FIXME: Use as_usize() once const functions in traits are stable.
        let mut set = [false; 256];
        set[b'_' as usize] = true;

        let mut byte = b'0';
        while byte <= b'9' {
            set[byte as usize] = true;
            byte += 1;
        }
        byte = b'A';
        while byte <= b'Z' {
            set[byte as usize] = true;
            byte += 1;
        }
        byte = b'a';
        while byte <= b'z' {
            set[byte as usize] = true;
            byte += 1;
        }
        set
    }
    const WORD: [bool; 256] = mkwordset();
    WORD[b as usize]
}

/// The accept state index. When we enter this state, we know we've found a
/// valid Unicode scalar value.
const ACCEPT: usize = 12;
/// The reject state index. When we enter this state, we know that we've found
/// invalid UTF-8.
const REJECT: usize = 0;

/// Like `decode`, but automatically converts the `None` case to the
/// replacement codepoint.
pub(crate) fn decode_lossy<B: AsRef<[u8]>>(slice: B) -> (char, usize) {
    match decode(slice) {
        (Some(ch), size) => (ch, size),
        (None, size) => ('\u{FFFD}', size),
    }
}

/// UTF-8 decode a single Unicode scalar value from the beginning of a slice.
///
/// When successful, the corresponding Unicode scalar value is returned along
/// with the number of bytes it was encoded with. The number of bytes consumed
/// for a successful decode is always between 1 and 4, inclusive.
///
/// When unsuccessful, `None` is returned along with the number of bytes that
/// make up a maximal prefix of a valid UTF-8 code unit sequence. In this case,
/// the number of bytes consumed is always between 0 and 3, inclusive, where
/// 0 is only returned when `slice` is empty.
pub(crate) fn decode<B: AsRef<[u8]>>(slice: B) -> (Option<char>, usize) {
    let slice = slice.as_ref();
    match slice.get(0) {
        None => return (None, 0),
        Some(&b) if b <= 0x7F => return (Some(b as char), 1),
        _ => {}
    }

    let (mut state, mut cp, mut i) = (ACCEPT, 0, 0);
    while i < slice.len() {
        decode_step(&mut state, &mut cp, slice[i]);
        i += 1;

        if state == ACCEPT {
            // OK since `decode_step` guarantees that `cp` is a valid Unicode
            // scalar value in an ACCEPT state.
            //
            // We don't have to use safe code here, but do so because perf
            // isn't our primary objective in regex-lite.
            let ch = char::from_u32(cp).unwrap();
            return (Some(ch), i);
        } else if state == REJECT {
            // At this point, we always want to advance at least one byte.
            return (None, core::cmp::max(1, i.saturating_sub(1)));
        }
    }
    (None, i)
}

/// Transitions to the next state and updates `cp` while it does.
fn decode_step(state: &mut usize, cp: &mut u32, b: u8) {
    // Splits the space of all bytes into equivalence classes, such that
    // any byte in the same class can never discriminate between whether a
    // particular sequence is valid UTF-8 or not.
    #[rustfmt::skip]
    const CLASSES: [u8; 256] = [
       0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
       0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
       0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
       0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,  0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
       1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,  9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
       7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,  7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
       8,8,2,2,2,2,2,2,2,2,2,2,2,2,2,2,  2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
      10,3,3,3,3,3,3,3,3,3,3,3,3,4,3,3, 11,6,6,6,5,8,8,8,8,8,8,8,8,8,8,8,
    ];

    // A state machine taken from `bstr` which was in turn adapted from:
    // https://bjoern.hoehrmann.de/utf-8/decoder/dfa/
    #[rustfmt::skip]
    const STATES_FORWARD: &'static [u8] = &[
      0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
      12, 0, 24, 36, 60, 96, 84, 0, 0, 0, 48, 72,
      0, 12, 0, 0, 0, 0, 0, 12, 0, 12, 0, 0,
      0, 24, 0, 0, 0, 0, 0, 24, 0, 24, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0,
      0, 24, 0, 0, 0, 0, 0, 0, 0, 24, 0, 0,
      0, 0, 0, 0, 0, 0, 0, 36, 0, 36, 0, 0,
      0, 36, 0, 0, 0, 0, 0, 36, 0, 36, 0, 0,
      0, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    ];

    let class = CLASSES[usize::from(b)];
    if *state == ACCEPT {
        *cp = (0xFF >> class) & (b as u32);
    } else {
        *cp = (b as u32 & 0b111111) | (*cp << 6);
    }
    *state = usize::from(STATES_FORWARD[*state + usize::from(class)]);
}

#[cfg(test)]
mod tests {
    use alloc::{vec, vec::Vec};

    use super::*;

    #[test]
    fn decode_valid() {
        fn d(mut s: &str) -> Vec<char> {
            let mut chars = vec![];
            while !s.is_empty() {
                let (ch, size) = decode(s.as_bytes());
                s = &s[size..];
                chars.push(ch.unwrap());
            }
            chars
        }

        assert_eq!(vec!['☃'], d("☃"));
        assert_eq!(vec!['☃', '☃'], d("☃☃"));
        assert_eq!(vec!['α', 'β', 'γ', 'δ', 'ε'], d("αβγδε"));
        assert_eq!(vec!['☃', '⛄', '⛇'], d("☃⛄⛇"));
        assert_eq!(vec!['𝗮', '𝗯', '𝗰', '𝗱', '𝗲'], d("𝗮𝗯𝗰𝗱𝗲"));
    }

    #[test]
    fn decode_invalid() {
        let (ch, size) = decode(b"");
        assert_eq!(None, ch);
        assert_eq!(0, size);

        let (ch, size) = decode(b"\xFF");
        assert_eq!(None, ch);
        assert_eq!(1, size);

        let (ch, size) = decode(b"\xCE\xF0");
        assert_eq!(None, ch);
        assert_eq!(1, size);

        let (ch, size) = decode(b"\xE2\x98\xF0");
        assert_eq!(None, ch);
        assert_eq!(2, size);

        let (ch, size) = decode(b"\xF0\x9D\x9D");
        assert_eq!(None, ch);
        assert_eq!(3, size);

        let (ch, size) = decode(b"\xF0\x9D\x9D\xF0");
        assert_eq!(None, ch);
        assert_eq!(3, size);

        let (ch, size) = decode(b"\xF0\x82\x82\xAC");
        assert_eq!(None, ch);
        assert_eq!(1, size);

        let (ch, size) = decode(b"\xED\xA0\x80");
        assert_eq!(None, ch);
        assert_eq!(1, size);

        let (ch, size) = decode(b"\xCEa");
        assert_eq!(None, ch);
        assert_eq!(1, size);

        let (ch, size) = decode(b"\xE2\x98a");
        assert_eq!(None, ch);
        assert_eq!(2, size);

        let (ch, size) = decode(b"\xF0\x9D\x9Ca");
        assert_eq!(None, ch);
        assert_eq!(3, size);
    }

    #[test]
    fn decode_lossily() {
        let (ch, size) = decode_lossy(b"");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(0, size);

        let (ch, size) = decode_lossy(b"\xFF");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(1, size);

        let (ch, size) = decode_lossy(b"\xCE\xF0");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(1, size);

        let (ch, size) = decode_lossy(b"\xE2\x98\xF0");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(2, size);

        let (ch, size) = decode_lossy(b"\xF0\x9D\x9D\xF0");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(3, size);

        let (ch, size) = decode_lossy(b"\xF0\x82\x82\xAC");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(1, size);

        let (ch, size) = decode_lossy(b"\xED\xA0\x80");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(1, size);

        let (ch, size) = decode_lossy(b"\xCEa");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(1, size);

        let (ch, size) = decode_lossy(b"\xE2\x98a");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(2, size);

        let (ch, size) = decode_lossy(b"\xF0\x9D\x9Ca");
        assert_eq!('\u{FFFD}', ch);
        assert_eq!(3, size);
    }
}