1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
use std::{
    cell::RefCell,
    collections::HashMap,
    future::Future,
    io,
    pin::Pin,
    sync::atomic::{AtomicUsize, Ordering},
    task::{Context, Poll},
};

use futures_core::ready;
use tokio::sync::{mpsc, oneshot};

use crate::{arbiter::ArbiterHandle, Arbiter};

static SYSTEM_COUNT: AtomicUsize = AtomicUsize::new(0);

thread_local!(
    static CURRENT: RefCell<Option<System>> = const { RefCell::new(None) };
);

/// A manager for a per-thread distributed async runtime.
#[derive(Clone, Debug)]
pub struct System {
    id: usize,
    sys_tx: mpsc::UnboundedSender<SystemCommand>,

    /// Handle to the first [Arbiter] that is created with the System.
    arbiter_handle: ArbiterHandle,
}

#[cfg(not(feature = "io-uring"))]
impl System {
    /// Create a new system.
    ///
    /// # Panics
    /// Panics if underlying Tokio runtime can not be created.
    #[allow(clippy::new_ret_no_self)]
    pub fn new() -> SystemRunner {
        Self::with_tokio_rt(|| {
            crate::runtime::default_tokio_runtime()
                .expect("Default Actix (Tokio) runtime could not be created.")
        })
    }

    /// Create a new System using the [Tokio Runtime](tokio-runtime) returned from a closure.
    ///
    /// [tokio-runtime]: tokio::runtime::Runtime
    pub fn with_tokio_rt<F>(runtime_factory: F) -> SystemRunner
    where
        F: FnOnce() -> tokio::runtime::Runtime,
    {
        let (stop_tx, stop_rx) = oneshot::channel();
        let (sys_tx, sys_rx) = mpsc::unbounded_channel();

        let rt = crate::runtime::Runtime::from(runtime_factory());
        let sys_arbiter = rt.block_on(async { Arbiter::in_new_system() });
        let system = System::construct(sys_tx, sys_arbiter.clone());

        system
            .tx()
            .send(SystemCommand::RegisterArbiter(usize::MAX, sys_arbiter))
            .unwrap();

        // init background system arbiter
        let sys_ctrl = SystemController::new(sys_rx, stop_tx);
        rt.spawn(sys_ctrl);

        SystemRunner { rt, stop_rx }
    }
}

#[cfg(feature = "io-uring")]
impl System {
    /// Create a new system.
    ///
    /// # Panics
    /// Panics if underlying Tokio runtime can not be created.
    #[allow(clippy::new_ret_no_self)]
    pub fn new() -> SystemRunner {
        SystemRunner
    }

    /// Create a new System using the [Tokio Runtime](tokio-runtime) returned from a closure.
    ///
    /// [tokio-runtime]: tokio::runtime::Runtime
    #[doc(hidden)]
    pub fn with_tokio_rt<F>(_: F) -> SystemRunner
    where
        F: FnOnce() -> tokio::runtime::Runtime,
    {
        unimplemented!("System::with_tokio_rt is not implemented for io-uring feature yet")
    }
}

impl System {
    /// Constructs new system and registers it on the current thread.
    pub(crate) fn construct(
        sys_tx: mpsc::UnboundedSender<SystemCommand>,
        arbiter_handle: ArbiterHandle,
    ) -> Self {
        let sys = System {
            sys_tx,
            arbiter_handle,
            id: SYSTEM_COUNT.fetch_add(1, Ordering::SeqCst),
        };

        System::set_current(sys.clone());

        sys
    }

    /// Get current running system.
    ///
    /// # Panics
    /// Panics if no system is registered on the current thread.
    pub fn current() -> System {
        CURRENT.with(|cell| match *cell.borrow() {
            Some(ref sys) => sys.clone(),
            None => panic!("System is not running"),
        })
    }

    /// Try to get current running system.
    ///
    /// Returns `None` if no System has been started.
    ///
    /// Unlike [`current`](Self::current), this never panics.
    pub fn try_current() -> Option<System> {
        CURRENT.with(|cell| cell.borrow().clone())
    }

    /// Get handle to a the System's initial [Arbiter].
    pub fn arbiter(&self) -> &ArbiterHandle {
        &self.arbiter_handle
    }

    /// Check if there is a System registered on the current thread.
    pub fn is_registered() -> bool {
        CURRENT.with(|sys| sys.borrow().is_some())
    }

    /// Register given system on current thread.
    #[doc(hidden)]
    pub fn set_current(sys: System) {
        CURRENT.with(|cell| {
            *cell.borrow_mut() = Some(sys);
        })
    }

    /// Numeric system identifier.
    ///
    /// Useful when using multiple Systems.
    pub fn id(&self) -> usize {
        self.id
    }

    /// Stop the system (with code 0).
    pub fn stop(&self) {
        self.stop_with_code(0)
    }

    /// Stop the system with a given exit code.
    pub fn stop_with_code(&self, code: i32) {
        let _ = self.sys_tx.send(SystemCommand::Exit(code));
    }

    pub(crate) fn tx(&self) -> &mpsc::UnboundedSender<SystemCommand> {
        &self.sys_tx
    }
}

/// Runner that keeps a [System]'s event loop alive until stop message is received.
#[cfg(not(feature = "io-uring"))]
#[must_use = "A SystemRunner does nothing unless `run` is called."]
#[derive(Debug)]
pub struct SystemRunner {
    rt: crate::runtime::Runtime,
    stop_rx: oneshot::Receiver<i32>,
}

#[cfg(not(feature = "io-uring"))]
impl SystemRunner {
    /// Starts event loop and will return once [System] is [stopped](System::stop).
    pub fn run(self) -> io::Result<()> {
        let exit_code = self.run_with_code()?;

        match exit_code {
            0 => Ok(()),
            nonzero => Err(io::Error::new(
                io::ErrorKind::Other,
                format!("Non-zero exit code: {}", nonzero),
            )),
        }
    }

    /// Runs the event loop until [stopped](System::stop_with_code), returning the exit code.
    pub fn run_with_code(self) -> io::Result<i32> {
        let SystemRunner { rt, stop_rx, .. } = self;

        // run loop
        rt.block_on(stop_rx)
            .map_err(|err| io::Error::new(io::ErrorKind::Other, err))
    }

    /// Retrieves a reference to the underlying [Actix runtime](crate::Runtime) associated with this
    /// `SystemRunner` instance.
    ///
    /// The Actix runtime is responsible for managing the event loop for an Actix system and
    /// executing asynchronous tasks. This method provides access to the runtime, allowing direct
    /// interaction with its features.
    ///
    /// In a typical use case, you might need to share the same runtime between different
    /// parts of your project. For example, some components might require a [`Runtime`] to spawn
    /// tasks on the same runtime.
    ///
    /// Read more in the documentation for [`Runtime`].
    ///
    /// # Examples
    ///
    /// ```
    /// let system_runner = actix_rt::System::new();
    /// let actix_runtime = system_runner.runtime();
    ///
    /// // Use the runtime to spawn an async task or perform other operations
    /// ```
    ///
    /// # Note
    ///
    /// While this method provides an immutable reference to the Actix runtime, which is safe to
    /// share across threads, be aware that spawning blocking tasks on the Actix runtime could
    /// potentially impact system performance. This is because the Actix runtime is responsible for
    /// driving the system, and blocking tasks could delay other tasks in the run loop.
    ///
    /// [`Runtime`]: crate::Runtime
    pub fn runtime(&self) -> &crate::runtime::Runtime {
        &self.rt
    }

    /// Runs the provided future, blocking the current thread until the future completes.
    #[track_caller]
    #[inline]
    pub fn block_on<F: Future>(&self, fut: F) -> F::Output {
        self.rt.block_on(fut)
    }
}

/// Runner that keeps a [System]'s event loop alive until stop message is received.
#[cfg(feature = "io-uring")]
#[must_use = "A SystemRunner does nothing unless `run` is called."]
#[derive(Debug)]
pub struct SystemRunner;

#[cfg(feature = "io-uring")]
impl SystemRunner {
    /// Starts event loop and will return once [System] is [stopped](System::stop).
    pub fn run(self) -> io::Result<()> {
        unimplemented!("SystemRunner::run is not implemented for io-uring feature yet");
    }

    /// Runs the event loop until [stopped](System::stop_with_code), returning the exit code.
    pub fn run_with_code(self) -> io::Result<i32> {
        unimplemented!("SystemRunner::run_with_code is not implemented for io-uring feature yet");
    }

    /// Runs the provided future, blocking the current thread until the future completes.
    #[inline]
    pub fn block_on<F: Future>(&self, fut: F) -> F::Output {
        tokio_uring::start(async move {
            let (stop_tx, stop_rx) = oneshot::channel();
            let (sys_tx, sys_rx) = mpsc::unbounded_channel();

            let sys_arbiter = Arbiter::in_new_system();
            let system = System::construct(sys_tx, sys_arbiter.clone());

            system
                .tx()
                .send(SystemCommand::RegisterArbiter(usize::MAX, sys_arbiter))
                .unwrap();

            // init background system arbiter
            let sys_ctrl = SystemController::new(sys_rx, stop_tx);
            tokio_uring::spawn(sys_ctrl);

            let res = fut.await;
            drop(stop_rx);
            res
        })
    }
}

#[derive(Debug)]
pub(crate) enum SystemCommand {
    Exit(i32),
    RegisterArbiter(usize, ArbiterHandle),
    DeregisterArbiter(usize),
}

/// There is one `SystemController` per [System]. It runs in the background, keeping track of
/// [Arbiter]s and is able to distribute a system-wide stop command.
#[derive(Debug)]
pub(crate) struct SystemController {
    stop_tx: Option<oneshot::Sender<i32>>,
    cmd_rx: mpsc::UnboundedReceiver<SystemCommand>,
    arbiters: HashMap<usize, ArbiterHandle>,
}

impl SystemController {
    pub(crate) fn new(
        cmd_rx: mpsc::UnboundedReceiver<SystemCommand>,
        stop_tx: oneshot::Sender<i32>,
    ) -> Self {
        SystemController {
            cmd_rx,
            stop_tx: Some(stop_tx),
            arbiters: HashMap::with_capacity(4),
        }
    }
}

impl Future for SystemController {
    type Output = ();

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        // process all items currently buffered in channel
        loop {
            match ready!(self.cmd_rx.poll_recv(cx)) {
                // channel closed; no more messages can be received
                None => return Poll::Ready(()),

                // process system command
                Some(cmd) => match cmd {
                    SystemCommand::Exit(code) => {
                        // stop all arbiters
                        for arb in self.arbiters.values() {
                            arb.stop();
                        }

                        // stop event loop
                        // will only fire once
                        if let Some(stop_tx) = self.stop_tx.take() {
                            let _ = stop_tx.send(code);
                        }
                    }

                    SystemCommand::RegisterArbiter(id, arb) => {
                        self.arbiters.insert(id, arb);
                    }

                    SystemCommand::DeregisterArbiter(id) => {
                        self.arbiters.remove(&id);
                    }
                },
            }
        }
    }
}