openssl/cipher_ctx.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
//! The symmetric encryption context.
//!
//! # Examples
//!
//! Encrypt data with AES128 CBC
//!
//! ```
//! use openssl::cipher::Cipher;
//! use openssl::cipher_ctx::CipherCtx;
//!
//! let cipher = Cipher::aes_128_cbc();
//! let data = b"Some Crypto Text";
//! let key = b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F";
//! let iv = b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07";
//!
//! let mut ctx = CipherCtx::new().unwrap();
//! ctx.encrypt_init(Some(cipher), Some(key), Some(iv)).unwrap();
//!
//! let mut ciphertext = vec![];
//! ctx.cipher_update_vec(data, &mut ciphertext).unwrap();
//! ctx.cipher_final_vec(&mut ciphertext).unwrap();
//!
//! assert_eq!(
//! b"\xB4\xB9\xE7\x30\xD6\xD6\xF7\xDE\x77\x3F\x1C\xFF\xB3\x3E\x44\x5A\x91\xD7\x27\x62\x87\x4D\
//! \xFB\x3C\x5E\xC4\x59\x72\x4A\xF4\x7C\xA1",
//! &ciphertext[..],
//! );
//! ```
//!
//! Decrypt data with AES128 CBC
//!
//! ```
//! use openssl::cipher::Cipher;
//! use openssl::cipher_ctx::CipherCtx;
//!
//! let cipher = Cipher::aes_128_cbc();
//! let data = b"\xB4\xB9\xE7\x30\xD6\xD6\xF7\xDE\x77\x3F\x1C\xFF\xB3\x3E\x44\x5A\x91\xD7\x27\x62\
//! \x87\x4D\xFB\x3C\x5E\xC4\x59\x72\x4A\xF4\x7C\xA1";
//! let key = b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F";
//! let iv = b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07";
//!
//! let mut ctx = CipherCtx::new().unwrap();
//! ctx.decrypt_init(Some(cipher), Some(key), Some(iv)).unwrap();
//!
//! let mut plaintext = vec![];
//! ctx.cipher_update_vec(data, &mut plaintext).unwrap();
//! ctx.cipher_final_vec(&mut plaintext).unwrap();
//!
//! assert_eq!(b"Some Crypto Text", &plaintext[..]);
//! ```
#![warn(missing_docs)]
use crate::cipher::CipherRef;
use crate::error::ErrorStack;
#[cfg(not(boringssl))]
use crate::pkey::{HasPrivate, HasPublic, PKey, PKeyRef};
use crate::{cvt, cvt_p};
#[cfg(ossl102)]
use bitflags::bitflags;
use cfg_if::cfg_if;
use foreign_types::{ForeignType, ForeignTypeRef};
use libc::{c_int, c_uchar};
use openssl_macros::corresponds;
use std::convert::{TryFrom, TryInto};
use std::ptr;
cfg_if! {
if #[cfg(ossl300)] {
use ffi::EVP_CIPHER_CTX_get0_cipher;
} else {
use ffi::EVP_CIPHER_CTX_cipher as EVP_CIPHER_CTX_get0_cipher;
}
}
foreign_type_and_impl_send_sync! {
type CType = ffi::EVP_CIPHER_CTX;
fn drop = ffi::EVP_CIPHER_CTX_free;
/// A context object used to perform symmetric encryption operations.
pub struct CipherCtx;
/// A reference to a [`CipherCtx`].
pub struct CipherCtxRef;
}
#[cfg(ossl102)]
bitflags! {
/// Flags for `EVP_CIPHER_CTX`.
pub struct CipherCtxFlags : c_int {
/// The flag used to opt into AES key wrap ciphers.
const FLAG_WRAP_ALLOW = ffi::EVP_CIPHER_CTX_FLAG_WRAP_ALLOW;
}
}
impl CipherCtx {
/// Creates a new context.
#[corresponds(EVP_CIPHER_CTX_new)]
pub fn new() -> Result<Self, ErrorStack> {
ffi::init();
unsafe {
let ptr = cvt_p(ffi::EVP_CIPHER_CTX_new())?;
Ok(CipherCtx::from_ptr(ptr))
}
}
}
impl CipherCtxRef {
#[corresponds(EVP_CIPHER_CTX_copy)]
pub fn copy(&mut self, src: &CipherCtxRef) -> Result<(), ErrorStack> {
unsafe {
cvt(ffi::EVP_CIPHER_CTX_copy(self.as_ptr(), src.as_ptr()))?;
Ok(())
}
}
/// Initializes the context for encryption.
///
/// Normally this is called once to set all of the cipher, key, and IV. However, this process can be split up
/// by first setting the cipher with no key or IV and then setting the key and IV with no cipher. This can be used
/// to, for example, use a nonstandard IV size.
///
/// # Panics
///
/// Panics if the key buffer is smaller than the key size of the cipher, the IV buffer is smaller than the IV size
/// of the cipher, or if a key or IV is provided before a cipher.
#[corresponds(EVP_EncryptInit_ex)]
pub fn encrypt_init(
&mut self,
type_: Option<&CipherRef>,
key: Option<&[u8]>,
iv: Option<&[u8]>,
) -> Result<(), ErrorStack> {
self.cipher_init(type_, key, iv, ffi::EVP_EncryptInit_ex)
}
/// Initializes the context for decryption.
///
/// Normally this is called once to set all of the cipher, key, and IV. However, this process can be split up
/// by first setting the cipher with no key or IV and then setting the key and IV with no cipher. This can be used
/// to, for example, use a nonstandard IV size.
///
/// # Panics
///
/// Panics if the key buffer is smaller than the key size of the cipher, the IV buffer is smaller than the IV size
/// of the cipher, or if a key or IV is provided before a cipher.
#[corresponds(EVP_DecryptInit_ex)]
pub fn decrypt_init(
&mut self,
type_: Option<&CipherRef>,
key: Option<&[u8]>,
iv: Option<&[u8]>,
) -> Result<(), ErrorStack> {
self.cipher_init(type_, key, iv, ffi::EVP_DecryptInit_ex)
}
fn cipher_init(
&mut self,
type_: Option<&CipherRef>,
key: Option<&[u8]>,
iv: Option<&[u8]>,
f: unsafe extern "C" fn(
*mut ffi::EVP_CIPHER_CTX,
*const ffi::EVP_CIPHER,
*mut ffi::ENGINE,
*const c_uchar,
*const c_uchar,
) -> c_int,
) -> Result<(), ErrorStack> {
if let Some(key) = key {
let key_len = type_.map_or_else(|| self.key_length(), |c| c.key_length());
assert!(key_len <= key.len());
}
if let Some(iv) = iv {
let iv_len = type_.map_or_else(|| self.iv_length(), |c| c.iv_length());
assert!(iv_len <= iv.len());
}
unsafe {
cvt(f(
self.as_ptr(),
type_.map_or(ptr::null(), |p| p.as_ptr()),
ptr::null_mut(),
key.map_or(ptr::null(), |k| k.as_ptr()),
iv.map_or(ptr::null(), |iv| iv.as_ptr()),
))?;
}
Ok(())
}
/// Initializes the context to perform envelope encryption.
///
/// Normally this is called once to set both the cipher and public keys. However, this process may be split up by
/// first providing the cipher with no public keys and then setting the public keys with no cipher.
///
/// `encrypted_keys` will contain the generated symmetric key encrypted with each corresponding asymmetric private
/// key. The generated IV will be written to `iv`.
///
/// # Panics
///
/// Panics if `pub_keys` is not the same size as `encrypted_keys`, the IV buffer is smaller than the cipher's IV
/// size, or if an IV is provided before the cipher.
#[corresponds(EVP_SealInit)]
#[cfg(not(boringssl))]
pub fn seal_init<T>(
&mut self,
type_: Option<&CipherRef>,
pub_keys: &[PKey<T>],
encrypted_keys: &mut [Vec<u8>],
iv: Option<&mut [u8]>,
) -> Result<(), ErrorStack>
where
T: HasPublic,
{
assert_eq!(pub_keys.len(), encrypted_keys.len());
if !pub_keys.is_empty() {
let iv_len = type_.map_or_else(|| self.iv_length(), |c| c.iv_length());
assert!(iv.as_ref().map_or(0, |b| b.len()) >= iv_len);
}
for (pub_key, buf) in pub_keys.iter().zip(&mut *encrypted_keys) {
buf.resize(pub_key.size(), 0);
}
let mut keys = encrypted_keys
.iter_mut()
.map(|b| b.as_mut_ptr())
.collect::<Vec<_>>();
let mut key_lengths = vec![0; pub_keys.len()];
let pub_keys_len = i32::try_from(pub_keys.len()).unwrap();
unsafe {
cvt(ffi::EVP_SealInit(
self.as_ptr(),
type_.map_or(ptr::null(), |p| p.as_ptr()),
keys.as_mut_ptr(),
key_lengths.as_mut_ptr(),
iv.map_or(ptr::null_mut(), |b| b.as_mut_ptr()),
pub_keys.as_ptr() as *mut _,
pub_keys_len,
))?;
}
for (buf, len) in encrypted_keys.iter_mut().zip(key_lengths) {
buf.truncate(len as usize);
}
Ok(())
}
/// Initializes the context to perform envelope decryption.
///
/// Normally this is called once with all of the arguments present. However, this process may be split up by first
/// providing the cipher alone and then after providing the rest of the arguments in a second call.
///
/// # Panics
///
/// Panics if the IV buffer is smaller than the cipher's required IV size or if the IV is provided before the
/// cipher.
#[corresponds(EVP_OpenInit)]
#[cfg(not(boringssl))]
pub fn open_init<T>(
&mut self,
type_: Option<&CipherRef>,
encrypted_key: &[u8],
iv: Option<&[u8]>,
priv_key: Option<&PKeyRef<T>>,
) -> Result<(), ErrorStack>
where
T: HasPrivate,
{
if priv_key.is_some() {
let iv_len = type_.map_or_else(|| self.iv_length(), |c| c.iv_length());
assert!(iv.map_or(0, |b| b.len()) >= iv_len);
}
let len = c_int::try_from(encrypted_key.len()).unwrap();
unsafe {
cvt(ffi::EVP_OpenInit(
self.as_ptr(),
type_.map_or(ptr::null(), |p| p.as_ptr()),
encrypted_key.as_ptr(),
len,
iv.map_or(ptr::null(), |b| b.as_ptr()),
priv_key.map_or(ptr::null_mut(), ForeignTypeRef::as_ptr),
))?;
}
Ok(())
}
fn assert_cipher(&self) {
unsafe {
assert!(!EVP_CIPHER_CTX_get0_cipher(self.as_ptr()).is_null());
}
}
/// Returns the block size of the context's cipher.
///
/// Stream ciphers will report a block size of 1.
///
/// # Panics
///
/// Panics if the context has not been initialized with a cipher.
#[corresponds(EVP_CIPHER_CTX_block_size)]
pub fn block_size(&self) -> usize {
self.assert_cipher();
unsafe { ffi::EVP_CIPHER_CTX_block_size(self.as_ptr()) as usize }
}
/// Returns the key length of the context's cipher.
///
/// # Panics
///
/// Panics if the context has not been initialized with a cipher.
#[corresponds(EVP_CIPHER_CTX_key_length)]
pub fn key_length(&self) -> usize {
self.assert_cipher();
unsafe { ffi::EVP_CIPHER_CTX_key_length(self.as_ptr()) as usize }
}
/// Generates a random key based on the configured cipher.
///
/// # Panics
///
/// Panics if the context has not been initialized with a cipher or if the buffer is smaller than the cipher's key
/// length.
#[corresponds(EVP_CIPHER_CTX_rand_key)]
#[cfg(not(boringssl))]
pub fn rand_key(&self, buf: &mut [u8]) -> Result<(), ErrorStack> {
assert!(buf.len() >= self.key_length());
unsafe {
cvt(ffi::EVP_CIPHER_CTX_rand_key(
self.as_ptr(),
buf.as_mut_ptr(),
))?;
}
Ok(())
}
/// Sets the length of the key expected by the context.
///
/// Only some ciphers support configurable key lengths.
///
/// # Panics
///
/// Panics if the context has not been initialized with a cipher.
#[corresponds(EVP_CIPHER_CTX_set_key_length)]
pub fn set_key_length(&mut self, len: usize) -> Result<(), ErrorStack> {
self.assert_cipher();
unsafe {
cvt(ffi::EVP_CIPHER_CTX_set_key_length(
self.as_ptr(),
len.try_into().unwrap(),
))?;
}
Ok(())
}
/// Returns the length of the IV expected by this context.
///
/// Returns 0 if the cipher does not use an IV.
///
/// # Panics
///
/// Panics if the context has not been initialized with a cipher.
#[corresponds(EVP_CIPHER_CTX_iv_length)]
pub fn iv_length(&self) -> usize {
self.assert_cipher();
unsafe { ffi::EVP_CIPHER_CTX_iv_length(self.as_ptr()) as usize }
}
/// Returns the `num` parameter of the cipher.
///
/// Built-in ciphers typically use this to track how much of the
/// current underlying block has been "used" already.
///
/// # Panics
///
/// Panics if the context has not been initialized with a cipher.
#[corresponds(EVP_CIPHER_CTX_num)]
#[cfg(ossl110)]
pub fn num(&self) -> usize {
self.assert_cipher();
unsafe { ffi::EVP_CIPHER_CTX_num(self.as_ptr()) as usize }
}
/// Sets the length of the IV expected by this context.
///
/// Only some ciphers support configurable IV lengths.
///
/// # Panics
///
/// Panics if the context has not been initialized with a cipher.
#[corresponds(EVP_CIPHER_CTX_ctrl)]
pub fn set_iv_length(&mut self, len: usize) -> Result<(), ErrorStack> {
self.assert_cipher();
let len = c_int::try_from(len).unwrap();
unsafe {
cvt(ffi::EVP_CIPHER_CTX_ctrl(
self.as_ptr(),
ffi::EVP_CTRL_GCM_SET_IVLEN,
len,
ptr::null_mut(),
))?;
}
Ok(())
}
/// Returns the length of the authentication tag expected by this context.
///
/// Returns 0 if the cipher is not authenticated.
///
/// # Panics
///
/// Panics if the context has not been initialized with a cipher.
///
/// Requires OpenSSL 3.0.0 or newer.
#[corresponds(EVP_CIPHER_CTX_get_tag_length)]
#[cfg(ossl300)]
pub fn tag_length(&self) -> usize {
self.assert_cipher();
unsafe { ffi::EVP_CIPHER_CTX_get_tag_length(self.as_ptr()) as usize }
}
/// Retrieves the calculated authentication tag from the context.
///
/// This should be called after [`Self::cipher_final`], and is only supported by authenticated ciphers.
///
/// The size of the buffer indicates the size of the tag. While some ciphers support a range of tag sizes, it is
/// recommended to pick the maximum size.
#[corresponds(EVP_CIPHER_CTX_ctrl)]
pub fn tag(&self, tag: &mut [u8]) -> Result<(), ErrorStack> {
let len = c_int::try_from(tag.len()).unwrap();
unsafe {
cvt(ffi::EVP_CIPHER_CTX_ctrl(
self.as_ptr(),
ffi::EVP_CTRL_GCM_GET_TAG,
len,
tag.as_mut_ptr() as *mut _,
))?;
}
Ok(())
}
/// Sets the length of the generated authentication tag.
///
/// This must be called when encrypting with a cipher in CCM mode to use a tag size other than the default.
#[corresponds(EVP_CIPHER_CTX_ctrl)]
pub fn set_tag_length(&mut self, len: usize) -> Result<(), ErrorStack> {
let len = c_int::try_from(len).unwrap();
unsafe {
cvt(ffi::EVP_CIPHER_CTX_ctrl(
self.as_ptr(),
ffi::EVP_CTRL_GCM_SET_TAG,
len,
ptr::null_mut(),
))?;
}
Ok(())
}
/// Sets the authentication tag for verification during decryption.
#[corresponds(EVP_CIPHER_CTX_ctrl)]
pub fn set_tag(&mut self, tag: &[u8]) -> Result<(), ErrorStack> {
let len = c_int::try_from(tag.len()).unwrap();
unsafe {
cvt(ffi::EVP_CIPHER_CTX_ctrl(
self.as_ptr(),
ffi::EVP_CTRL_GCM_SET_TAG,
len,
tag.as_ptr() as *mut _,
))?;
}
Ok(())
}
/// Enables or disables padding.
///
/// If padding is disabled, the plaintext must be an exact multiple of the cipher's block size.
#[corresponds(EVP_CIPHER_CTX_set_padding)]
pub fn set_padding(&mut self, padding: bool) {
unsafe {
ffi::EVP_CIPHER_CTX_set_padding(self.as_ptr(), padding as c_int);
}
}
/// Sets the total length of plaintext data.
///
/// This is required for ciphers operating in CCM mode.
#[corresponds(EVP_CipherUpdate)]
pub fn set_data_len(&mut self, len: usize) -> Result<(), ErrorStack> {
let len = c_int::try_from(len).unwrap();
unsafe {
cvt(ffi::EVP_CipherUpdate(
self.as_ptr(),
ptr::null_mut(),
&mut 0,
ptr::null(),
len,
))?;
}
Ok(())
}
/// Set ctx flags.
///
/// This function is currently used to enable AES key wrap feature supported by OpenSSL 1.0.2 or newer.
#[corresponds(EVP_CIPHER_CTX_set_flags)]
#[cfg(ossl102)]
pub fn set_flags(&mut self, flags: CipherCtxFlags) {
unsafe {
ffi::EVP_CIPHER_CTX_set_flags(self.as_ptr(), flags.bits());
}
}
/// Writes data into the context.
///
/// Providing no output buffer will cause the input to be considered additional authenticated data (AAD).
///
/// Returns the number of bytes written to `output`.
///
/// # Panics
///
/// Panics if `output` doesn't contain enough space for data to be
/// written.
#[corresponds(EVP_CipherUpdate)]
pub fn cipher_update(
&mut self,
input: &[u8],
output: Option<&mut [u8]>,
) -> Result<usize, ErrorStack> {
if let Some(output) = &output {
let mut block_size = self.block_size();
if block_size == 1 {
block_size = 0;
}
let min_output_size = input.len() + block_size;
assert!(
output.len() >= min_output_size,
"Output buffer size should be at least {} bytes.",
min_output_size
);
}
unsafe { self.cipher_update_unchecked(input, output) }
}
/// Writes data into the context.
///
/// Providing no output buffer will cause the input to be considered additional authenticated data (AAD).
///
/// Returns the number of bytes written to `output`.
///
/// This function is the same as [`Self::cipher_update`] but with the
/// output size check removed. It can be used when the exact
/// buffer size control is maintained by the caller.
///
/// # Safety
///
/// The caller is expected to provide `output` buffer
/// large enough to contain correct number of bytes. For streaming
/// ciphers the output buffer size should be at least as big as
/// the input buffer. For block ciphers the size of the output
/// buffer depends on the state of partially updated blocks.
#[corresponds(EVP_CipherUpdate)]
pub unsafe fn cipher_update_unchecked(
&mut self,
input: &[u8],
output: Option<&mut [u8]>,
) -> Result<usize, ErrorStack> {
let inlen = c_int::try_from(input.len()).unwrap();
let mut outlen = 0;
cvt(ffi::EVP_CipherUpdate(
self.as_ptr(),
output.map_or(ptr::null_mut(), |b| b.as_mut_ptr()),
&mut outlen,
input.as_ptr(),
inlen,
))?;
Ok(outlen as usize)
}
/// Like [`Self::cipher_update`] except that it appends output to a [`Vec`].
pub fn cipher_update_vec(
&mut self,
input: &[u8],
output: &mut Vec<u8>,
) -> Result<usize, ErrorStack> {
let base = output.len();
output.resize(base + input.len() + self.block_size(), 0);
let len = self.cipher_update(input, Some(&mut output[base..]))?;
output.truncate(base + len);
Ok(len)
}
/// Like [`Self::cipher_update`] except that it writes output into the
/// `data` buffer. The `inlen` parameter specifies the number of bytes in
/// `data` that are considered the input. For streaming ciphers, the size of
/// `data` must be at least the input size. Otherwise, it must be at least
/// an additional block size larger.
///
/// Note: Use [`Self::cipher_update`] with no output argument to write AAD.
///
/// # Panics
///
/// This function panics if the input size cannot be represented as `int` or
/// exceeds the buffer size, or if the output buffer does not contain enough
/// additional space.
#[corresponds(EVP_CipherUpdate)]
pub fn cipher_update_inplace(
&mut self,
data: &mut [u8],
inlen: usize,
) -> Result<usize, ErrorStack> {
assert!(inlen <= data.len(), "Input size may not exceed buffer size");
let block_size = self.block_size();
if block_size != 1 {
assert!(
data.len() >= inlen + block_size,
"Output buffer size must be at least {} bytes.",
inlen + block_size
);
}
let inlen = c_int::try_from(inlen).unwrap();
let mut outlen = 0;
unsafe {
cvt(ffi::EVP_CipherUpdate(
self.as_ptr(),
data.as_mut_ptr(),
&mut outlen,
data.as_ptr(),
inlen,
))
}?;
Ok(outlen as usize)
}
/// Finalizes the encryption or decryption process.
///
/// Any remaining data will be written to the output buffer.
///
/// Returns the number of bytes written to `output`.
///
/// # Panics
///
/// Panics if `output` is smaller than the cipher's block size.
#[corresponds(EVP_CipherFinal)]
pub fn cipher_final(&mut self, output: &mut [u8]) -> Result<usize, ErrorStack> {
let block_size = self.block_size();
if block_size > 1 {
assert!(output.len() >= block_size);
}
unsafe { self.cipher_final_unchecked(output) }
}
/// Finalizes the encryption or decryption process.
///
/// Any remaining data will be written to the output buffer.
///
/// Returns the number of bytes written to `output`.
///
/// This function is the same as [`Self::cipher_final`] but with
/// the output buffer size check removed.
///
/// # Safety
///
/// The caller is expected to provide `output` buffer
/// large enough to contain correct number of bytes. For streaming
/// ciphers the output buffer can be empty, for block ciphers the
/// output buffer should be at least as big as the block.
#[corresponds(EVP_CipherFinal)]
pub unsafe fn cipher_final_unchecked(
&mut self,
output: &mut [u8],
) -> Result<usize, ErrorStack> {
let mut outl = 0;
cvt(ffi::EVP_CipherFinal(
self.as_ptr(),
output.as_mut_ptr(),
&mut outl,
))?;
Ok(outl as usize)
}
/// Like [`Self::cipher_final`] except that it appends output to a [`Vec`].
pub fn cipher_final_vec(&mut self, output: &mut Vec<u8>) -> Result<usize, ErrorStack> {
let base = output.len();
output.resize(base + self.block_size(), 0);
let len = self.cipher_final(&mut output[base..])?;
output.truncate(base + len);
Ok(len)
}
}
#[cfg(test)]
mod test {
use super::*;
use crate::{cipher::Cipher, rand::rand_bytes};
#[cfg(not(boringssl))]
use std::slice;
#[test]
#[cfg(not(boringssl))]
fn seal_open() {
let private_pem = include_bytes!("../test/rsa.pem");
let public_pem = include_bytes!("../test/rsa.pem.pub");
let private_key = PKey::private_key_from_pem(private_pem).unwrap();
let public_key = PKey::public_key_from_pem(public_pem).unwrap();
let cipher = Cipher::aes_256_cbc();
let secret = b"My secret message";
let mut ctx = CipherCtx::new().unwrap();
let mut encrypted_key = vec![];
let mut iv = vec![0; cipher.iv_length()];
let mut encrypted = vec![];
ctx.seal_init(
Some(cipher),
&[public_key],
slice::from_mut(&mut encrypted_key),
Some(&mut iv),
)
.unwrap();
ctx.cipher_update_vec(secret, &mut encrypted).unwrap();
ctx.cipher_final_vec(&mut encrypted).unwrap();
let mut decrypted = vec![];
ctx.open_init(Some(cipher), &encrypted_key, Some(&iv), Some(&private_key))
.unwrap();
ctx.cipher_update_vec(&encrypted, &mut decrypted).unwrap();
ctx.cipher_final_vec(&mut decrypted).unwrap();
assert_eq!(secret, &decrypted[..]);
}
fn aes_128_cbc(cipher: &CipherRef) {
// from https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf
let key = hex::decode("2b7e151628aed2a6abf7158809cf4f3c").unwrap();
let iv = hex::decode("000102030405060708090a0b0c0d0e0f").unwrap();
let pt = hex::decode("6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e51")
.unwrap();
let ct = hex::decode("7649abac8119b246cee98e9b12e9197d5086cb9b507219ee95db113a917678b2")
.unwrap();
let mut ctx = CipherCtx::new().unwrap();
ctx.encrypt_init(Some(cipher), Some(&key), Some(&iv))
.unwrap();
ctx.set_padding(false);
let mut buf = vec![];
ctx.cipher_update_vec(&pt, &mut buf).unwrap();
ctx.cipher_final_vec(&mut buf).unwrap();
assert_eq!(buf, ct);
ctx.decrypt_init(Some(cipher), Some(&key), Some(&iv))
.unwrap();
ctx.set_padding(false);
let mut buf = vec![];
ctx.cipher_update_vec(&ct, &mut buf).unwrap();
ctx.cipher_final_vec(&mut buf).unwrap();
assert_eq!(buf, pt);
}
#[test]
#[cfg(ossl300)]
fn fetched_aes_128_cbc() {
let cipher = Cipher::fetch(None, "AES-128-CBC", None).unwrap();
aes_128_cbc(&cipher);
}
#[test]
fn default_aes_128_cbc() {
let cipher = Cipher::aes_128_cbc();
aes_128_cbc(cipher);
}
#[test]
fn test_stream_ciphers() {
test_stream_cipher(Cipher::aes_192_ctr());
test_stream_cipher(Cipher::aes_256_ctr());
}
fn test_stream_cipher(cipher: &'static CipherRef) {
let mut key = vec![0; cipher.key_length()];
rand_bytes(&mut key).unwrap();
let mut iv = vec![0; cipher.iv_length()];
rand_bytes(&mut iv).unwrap();
let mut ctx = CipherCtx::new().unwrap();
ctx.encrypt_init(Some(cipher), Some(&key), Some(&iv))
.unwrap();
ctx.set_padding(false);
assert_eq!(
1,
cipher.block_size(),
"Need a stream cipher, not a block cipher"
);
// update cipher with non-full block
// this is a streaming cipher so the number of output bytes
// will be the same as the number of input bytes
let mut output = vec![0; 32];
let outlen = ctx
.cipher_update(&[1; 15], Some(&mut output[0..15]))
.unwrap();
assert_eq!(15, outlen);
// update cipher with missing bytes from the previous block
// as previously it will output the same number of bytes as
// the input
let outlen = ctx
.cipher_update(&[1; 17], Some(&mut output[15..]))
.unwrap();
assert_eq!(17, outlen);
ctx.cipher_final_vec(&mut vec![0; 0]).unwrap();
// encrypt again, but use in-place encryption this time
// First reset the IV
ctx.encrypt_init(None, None, Some(&iv)).unwrap();
ctx.set_padding(false);
let mut data_inplace: [u8; 32] = [1; 32];
let outlen = ctx
.cipher_update_inplace(&mut data_inplace[0..15], 15)
.unwrap();
assert_eq!(15, outlen);
let outlen = ctx
.cipher_update_inplace(&mut data_inplace[15..32], 17)
.unwrap();
assert_eq!(17, outlen);
ctx.cipher_final(&mut [0u8; 0]).unwrap();
// Check that the resulting data is encrypted in the same manner
assert_eq!(data_inplace.as_slice(), output.as_slice());
// try to decrypt
ctx.decrypt_init(Some(cipher), Some(&key), Some(&iv))
.unwrap();
ctx.set_padding(false);
// update cipher with non-full block
// expect that the output for stream cipher will contain
// the same number of bytes as the input
let mut output_decrypted = vec![0; 32];
let outlen = ctx
.cipher_update(&output[0..15], Some(&mut output_decrypted[0..15]))
.unwrap();
assert_eq!(15, outlen);
let outlen = ctx
.cipher_update(&output[15..], Some(&mut output_decrypted[15..]))
.unwrap();
assert_eq!(17, outlen);
ctx.cipher_final_vec(&mut vec![0; 0]).unwrap();
// check if the decrypted blocks are the same as input (all ones)
assert_eq!(output_decrypted, vec![1; 32]);
// decrypt again, but now the output in-place
ctx.decrypt_init(None, None, Some(&iv)).unwrap();
ctx.set_padding(false);
let outlen = ctx.cipher_update_inplace(&mut output[0..15], 15).unwrap();
assert_eq!(15, outlen);
let outlen = ctx.cipher_update_inplace(&mut output[15..], 17).unwrap();
assert_eq!(17, outlen);
ctx.cipher_final_vec(&mut vec![0; 0]).unwrap();
assert_eq!(output_decrypted, output);
}
#[test]
#[should_panic(expected = "Output buffer size should be at least 33 bytes.")]
fn full_block_updates_aes_128() {
output_buffer_too_small(Cipher::aes_128_cbc());
}
#[test]
#[should_panic(expected = "Output buffer size should be at least 33 bytes.")]
fn full_block_updates_aes_256() {
output_buffer_too_small(Cipher::aes_256_cbc());
}
#[test]
#[should_panic(expected = "Output buffer size should be at least 17 bytes.")]
fn full_block_updates_3des() {
output_buffer_too_small(Cipher::des_ede3_cbc());
}
fn output_buffer_too_small(cipher: &'static CipherRef) {
let mut key = vec![0; cipher.key_length()];
rand_bytes(&mut key).unwrap();
let mut iv = vec![0; cipher.iv_length()];
rand_bytes(&mut iv).unwrap();
let mut ctx = CipherCtx::new().unwrap();
ctx.encrypt_init(Some(cipher), Some(&key), Some(&iv))
.unwrap();
ctx.set_padding(false);
let block_size = cipher.block_size();
assert!(block_size > 1, "Need a block cipher, not a stream cipher");
ctx.cipher_update(&vec![0; block_size + 1], Some(&mut vec![0; block_size - 1]))
.unwrap();
}
#[cfg(ossl102)]
fn cipher_wrap_test(cipher: &CipherRef, pt: &str, ct: &str, key: &str, iv: Option<&str>) {
let pt = hex::decode(pt).unwrap();
let key = hex::decode(key).unwrap();
let expected = hex::decode(ct).unwrap();
let iv = iv.map(|v| hex::decode(v).unwrap());
let padding = 8 - pt.len() % 8;
let mut computed = vec![0; pt.len() + padding + cipher.block_size() * 2];
let mut ctx = CipherCtx::new().unwrap();
ctx.set_flags(CipherCtxFlags::FLAG_WRAP_ALLOW);
ctx.encrypt_init(Some(cipher), Some(&key), iv.as_deref())
.unwrap();
let count = ctx.cipher_update(&pt, Some(&mut computed)).unwrap();
let rest = ctx.cipher_final(&mut computed[count..]).unwrap();
computed.truncate(count + rest);
if computed != expected {
println!("Computed: {}", hex::encode(&computed));
println!("Expected: {}", hex::encode(&expected));
if computed.len() != expected.len() {
println!(
"Lengths differ: {} in computed vs {} expected",
computed.len(),
expected.len()
);
}
panic!("test failure");
}
}
#[test]
#[cfg(ossl102)]
fn test_aes128_wrap() {
let pt = "00112233445566778899aabbccddeeff";
let ct = "7940ff694448b5bb5139c959a4896832e55d69aa04daa27e";
let key = "2b7e151628aed2a6abf7158809cf4f3c";
let iv = "0001020304050607";
cipher_wrap_test(Cipher::aes_128_wrap(), pt, ct, key, Some(iv));
}
#[test]
#[cfg(ossl102)]
fn test_aes128_wrap_default_iv() {
let pt = "00112233445566778899aabbccddeeff";
let ct = "38f1215f0212526f8a70b51955b9fbdc9fe3041d9832306e";
let key = "2b7e151628aed2a6abf7158809cf4f3c";
cipher_wrap_test(Cipher::aes_128_wrap(), pt, ct, key, None);
}
#[test]
#[cfg(ossl110)]
fn test_aes128_wrap_pad() {
let pt = "00112233445566778899aabbccddee";
let ct = "f13998f5ab32ef82a1bdbcbe585e1d837385b529572a1e1b";
let key = "2b7e151628aed2a6abf7158809cf4f3c";
let iv = "00010203";
cipher_wrap_test(Cipher::aes_128_wrap_pad(), pt, ct, key, Some(iv));
}
#[test]
#[cfg(ossl110)]
fn test_aes128_wrap_pad_default_iv() {
let pt = "00112233445566778899aabbccddee";
let ct = "3a501085fb8cf66f4186b7df851914d471ed823411598add";
let key = "2b7e151628aed2a6abf7158809cf4f3c";
cipher_wrap_test(Cipher::aes_128_wrap_pad(), pt, ct, key, None);
}
#[test]
#[cfg(ossl102)]
fn test_aes192_wrap() {
let pt = "9f6dee187d35302116aecbfd059657efd9f7589c4b5e7f5b";
let ct = "83b89142dfeeb4871e078bfb81134d33e23fedc19b03a1cf689973d3831b6813";
let key = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b";
let iv = "0001020304050607";
cipher_wrap_test(Cipher::aes_192_wrap(), pt, ct, key, Some(iv));
}
#[test]
#[cfg(ossl102)]
fn test_aes192_wrap_default_iv() {
let pt = "9f6dee187d35302116aecbfd059657efd9f7589c4b5e7f5b";
let ct = "c02c2cf11505d3e4851030d5534cbf5a1d7eca7ba8839adbf239756daf1b43e6";
let key = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b";
cipher_wrap_test(Cipher::aes_192_wrap(), pt, ct, key, None);
}
#[test]
#[cfg(ossl110)]
fn test_aes192_wrap_pad() {
let pt = "00112233445566778899aabbccddee";
let ct = "b4f6bb167ef7caf061a74da82b36ad038ca057ab51e98d3a";
let key = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b";
let iv = "00010203";
cipher_wrap_test(Cipher::aes_192_wrap_pad(), pt, ct, key, Some(iv));
}
#[test]
#[cfg(ossl110)]
fn test_aes192_wrap_pad_default_iv() {
let pt = "00112233445566778899aabbccddee";
let ct = "b2c37a28cc602753a7c944a4c2555a2df9c98b2eded5312e";
let key = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b";
cipher_wrap_test(Cipher::aes_192_wrap_pad(), pt, ct, key, None);
}
#[test]
#[cfg(ossl102)]
fn test_aes256_wrap() {
let pt = "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e51";
let ct = "cc05da2a7f56f7dd0c144231f90bce58648fa20a8278f5a6b7d13bba6aa57a33229d4333866b7fd6";
let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4";
let iv = "0001020304050607";
cipher_wrap_test(Cipher::aes_256_wrap(), pt, ct, key, Some(iv));
}
#[test]
#[cfg(ossl102)]
fn test_aes256_wrap_default_iv() {
let pt = "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e51";
let ct = "0b24f068b50e52bc6987868411c36e1b03900866ed12af81eb87cef70a8d1911731c1d7abf789d88";
let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4";
cipher_wrap_test(Cipher::aes_256_wrap(), pt, ct, key, None);
}
#[test]
#[cfg(ossl110)]
fn test_aes256_wrap_pad() {
let pt = "00112233445566778899aabbccddee";
let ct = "91594e044ccc06130d60e6c84a996aa4f96a9faff8c5f6e7";
let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4";
let iv = "00010203";
cipher_wrap_test(Cipher::aes_256_wrap_pad(), pt, ct, key, Some(iv));
}
#[test]
#[cfg(ossl110)]
fn test_aes256_wrap_pad_default_iv() {
let pt = "00112233445566778899aabbccddee";
let ct = "dc3c166a854afd68aea624a4272693554bf2e4fcbae602cd";
let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4";
cipher_wrap_test(Cipher::aes_256_wrap_pad(), pt, ct, key, None);
}
}