1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
//! [![github]](https://github.com/dtolnay/itoa) [![crates-io]](https://crates.io/crates/itoa) [![docs-rs]](https://docs.rs/itoa)
//!
//! [github]: https://img.shields.io/badge/github-8da0cb?style=for-the-badge&labelColor=555555&logo=github
//! [crates-io]: https://img.shields.io/badge/crates.io-fc8d62?style=for-the-badge&labelColor=555555&logo=rust
//! [docs-rs]: https://img.shields.io/badge/docs.rs-66c2a5?style=for-the-badge&labelColor=555555&logo=docs.rs
//!
//! <br>
//!
//! This crate provides a fast conversion of integer primitives to decimal
//! strings. The implementation comes straight from [libcore] but avoids the
//! performance penalty of going through [`core::fmt::Formatter`].
//!
//! See also [`ryu`] for printing floating point primitives.
//!
//! [libcore]: https://github.com/rust-lang/rust/blob/b8214dc6c6fc20d0a660fb5700dca9ebf51ebe89/src/libcore/fmt/num.rs#L201-L254
//! [`core::fmt::Formatter`]: https://doc.rust-lang.org/std/fmt/struct.Formatter.html
//! [`ryu`]: https://github.com/dtolnay/ryu
//!
//! # Example
//!
//! ```
//! fn main() {
//! let mut buffer = itoa::Buffer::new();
//! let printed = buffer.format(128u64);
//! assert_eq!(printed, "128");
//! }
//! ```
//!
//! # Performance (lower is better)
//!
//! ![performance](https://raw.githubusercontent.com/dtolnay/itoa/master/performance.png)
#![doc(html_root_url = "https://docs.rs/itoa/1.0.11")]
#![no_std]
#![allow(
clippy::cast_lossless,
clippy::cast_possible_truncation,
clippy::expl_impl_clone_on_copy,
clippy::must_use_candidate,
clippy::needless_doctest_main,
clippy::unreadable_literal
)]
mod udiv128;
use core::mem::{self, MaybeUninit};
use core::{ptr, slice, str};
#[cfg(feature = "no-panic")]
use no_panic::no_panic;
/// A correctly sized stack allocation for the formatted integer to be written
/// into.
///
/// # Example
///
/// ```
/// let mut buffer = itoa::Buffer::new();
/// let printed = buffer.format(1234);
/// assert_eq!(printed, "1234");
/// ```
pub struct Buffer {
bytes: [MaybeUninit<u8>; I128_MAX_LEN],
}
impl Default for Buffer {
#[inline]
fn default() -> Buffer {
Buffer::new()
}
}
impl Copy for Buffer {}
impl Clone for Buffer {
#[inline]
#[allow(clippy::non_canonical_clone_impl)] // false positive https://github.com/rust-lang/rust-clippy/issues/11072
fn clone(&self) -> Self {
Buffer::new()
}
}
impl Buffer {
/// This is a cheap operation; you don't need to worry about reusing buffers
/// for efficiency.
#[inline]
#[cfg_attr(feature = "no-panic", no_panic)]
pub fn new() -> Buffer {
let bytes = [MaybeUninit::<u8>::uninit(); I128_MAX_LEN];
Buffer { bytes }
}
/// Print an integer into this buffer and return a reference to its string
/// representation within the buffer.
#[cfg_attr(feature = "no-panic", no_panic)]
pub fn format<I: Integer>(&mut self, i: I) -> &str {
i.write(unsafe {
&mut *(&mut self.bytes as *mut [MaybeUninit<u8>; I128_MAX_LEN]
as *mut <I as private::Sealed>::Buffer)
})
}
}
/// An integer that can be written into an [`itoa::Buffer`][Buffer].
///
/// This trait is sealed and cannot be implemented for types outside of itoa.
pub trait Integer: private::Sealed {}
// Seal to prevent downstream implementations of the Integer trait.
mod private {
pub trait Sealed: Copy {
type Buffer: 'static;
fn write(self, buf: &mut Self::Buffer) -> &str;
}
}
const DEC_DIGITS_LUT: &[u8] = b"\
0001020304050607080910111213141516171819\
2021222324252627282930313233343536373839\
4041424344454647484950515253545556575859\
6061626364656667686970717273747576777879\
8081828384858687888990919293949596979899";
// Adaptation of the original implementation at
// https://github.com/rust-lang/rust/blob/b8214dc6c6fc20d0a660fb5700dca9ebf51ebe89/src/libcore/fmt/num.rs#L188-L266
macro_rules! impl_Integer {
($($max_len:expr => $t:ident),* as $conv_fn:ident) => {$(
impl Integer for $t {}
impl private::Sealed for $t {
type Buffer = [MaybeUninit<u8>; $max_len];
#[allow(unused_comparisons)]
#[inline]
#[cfg_attr(feature = "no-panic", no_panic)]
fn write(self, buf: &mut [MaybeUninit<u8>; $max_len]) -> &str {
let is_nonnegative = self >= 0;
let mut n = if is_nonnegative {
self as $conv_fn
} else {
// Convert negative number to positive by summing 1 to its two's complement.
(!(self as $conv_fn)).wrapping_add(1)
};
let mut curr = buf.len() as isize;
let buf_ptr = buf.as_mut_ptr() as *mut u8;
let lut_ptr = DEC_DIGITS_LUT.as_ptr();
// Need at least 16 bits for the 4-digits-at-a-time to work.
if mem::size_of::<$t>() >= 2 {
// Eagerly decode 4 digits at a time.
while n >= 10000 {
let rem = (n % 10000) as isize;
n /= 10000;
let d1 = (rem / 100) << 1;
let d2 = (rem % 100) << 1;
curr -= 4;
unsafe {
ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2);
ptr::copy_nonoverlapping(lut_ptr.offset(d2), buf_ptr.offset(curr + 2), 2);
}
}
}
// If we reach here, numbers are <=9999 so at most 4 digits long.
let mut n = n as isize; // Possibly reduce 64-bit math.
// Decode 2 more digits, if >2 digits.
if n >= 100 {
let d1 = (n % 100) << 1;
n /= 100;
curr -= 2;
unsafe {
ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2);
}
}
// Decode last 1 or 2 digits.
if n < 10 {
curr -= 1;
unsafe {
*buf_ptr.offset(curr) = (n as u8) + b'0';
}
} else {
let d1 = n << 1;
curr -= 2;
unsafe {
ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2);
}
}
if !is_nonnegative {
curr -= 1;
unsafe {
*buf_ptr.offset(curr) = b'-';
}
}
let len = buf.len() - curr as usize;
let bytes = unsafe { slice::from_raw_parts(buf_ptr.offset(curr), len) };
unsafe { str::from_utf8_unchecked(bytes) }
}
}
)*};
}
const I8_MAX_LEN: usize = 4;
const U8_MAX_LEN: usize = 3;
const I16_MAX_LEN: usize = 6;
const U16_MAX_LEN: usize = 5;
const I32_MAX_LEN: usize = 11;
const U32_MAX_LEN: usize = 10;
const I64_MAX_LEN: usize = 20;
const U64_MAX_LEN: usize = 20;
impl_Integer!(
I8_MAX_LEN => i8,
U8_MAX_LEN => u8,
I16_MAX_LEN => i16,
U16_MAX_LEN => u16,
I32_MAX_LEN => i32,
U32_MAX_LEN => u32
as u32);
impl_Integer!(I64_MAX_LEN => i64, U64_MAX_LEN => u64 as u64);
#[cfg(target_pointer_width = "16")]
impl_Integer!(I16_MAX_LEN => isize, U16_MAX_LEN => usize as u16);
#[cfg(target_pointer_width = "32")]
impl_Integer!(I32_MAX_LEN => isize, U32_MAX_LEN => usize as u32);
#[cfg(target_pointer_width = "64")]
impl_Integer!(I64_MAX_LEN => isize, U64_MAX_LEN => usize as u64);
macro_rules! impl_Integer128 {
($($max_len:expr => $t:ident),*) => {$(
impl Integer for $t {}
impl private::Sealed for $t {
type Buffer = [MaybeUninit<u8>; $max_len];
#[allow(unused_comparisons)]
#[inline]
#[cfg_attr(feature = "no-panic", no_panic)]
fn write(self, buf: &mut [MaybeUninit<u8>; $max_len]) -> &str {
let is_nonnegative = self >= 0;
let n = if is_nonnegative {
self as u128
} else {
// Convert negative number to positive by summing 1 to its two's complement.
(!(self as u128)).wrapping_add(1)
};
let mut curr = buf.len() as isize;
let buf_ptr = buf.as_mut_ptr() as *mut u8;
// Divide by 10^19 which is the highest power less than 2^64.
let (n, rem) = udiv128::udivmod_1e19(n);
let buf1 = unsafe { buf_ptr.offset(curr - U64_MAX_LEN as isize) as *mut [MaybeUninit<u8>; U64_MAX_LEN] };
curr -= rem.write(unsafe { &mut *buf1 }).len() as isize;
if n != 0 {
// Memset the base10 leading zeros of rem.
let target = buf.len() as isize - 19;
unsafe {
ptr::write_bytes(buf_ptr.offset(target), b'0', (curr - target) as usize);
}
curr = target;
// Divide by 10^19 again.
let (n, rem) = udiv128::udivmod_1e19(n);
let buf2 = unsafe { buf_ptr.offset(curr - U64_MAX_LEN as isize) as *mut [MaybeUninit<u8>; U64_MAX_LEN] };
curr -= rem.write(unsafe { &mut *buf2 }).len() as isize;
if n != 0 {
// Memset the leading zeros.
let target = buf.len() as isize - 38;
unsafe {
ptr::write_bytes(buf_ptr.offset(target), b'0', (curr - target) as usize);
}
curr = target;
// There is at most one digit left
// because u128::MAX / 10^19 / 10^19 is 3.
curr -= 1;
unsafe {
*buf_ptr.offset(curr) = (n as u8) + b'0';
}
}
}
if !is_nonnegative {
curr -= 1;
unsafe {
*buf_ptr.offset(curr) = b'-';
}
}
let len = buf.len() - curr as usize;
let bytes = unsafe { slice::from_raw_parts(buf_ptr.offset(curr), len) };
unsafe { str::from_utf8_unchecked(bytes) }
}
}
)*};
}
const U128_MAX_LEN: usize = 39;
const I128_MAX_LEN: usize = 40;
impl_Integer128!(I128_MAX_LEN => i128, U128_MAX_LEN => u128);