want/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
#![doc(html_root_url = "https://docs.rs/want/0.3.1")]
#![deny(warnings)]
#![deny(missing_docs)]
#![deny(missing_debug_implementations)]

//! A Futures channel-like utility to signal when a value is wanted.
//!
//! Futures are supposed to be lazy, and only starting work if `Future::poll`
//! is called. The same is true of `Stream`s, but when using a channel as
//! a `Stream`, it can be hard to know if the receiver is ready for the next
//! value.
//!
//! Put another way, given a `(tx, rx)` from `futures::sync::mpsc::channel()`,
//! how can the sender (`tx`) know when the receiver (`rx`) actually wants more
//! work to be produced? Just because there is room in the channel buffer
//! doesn't mean the work would be used by the receiver.
//!
//! This is where something like `want` comes in. Added to a channel, you can
//! make sure that the `tx` only creates the message and sends it when the `rx`
//! has `poll()` for it, and the buffer was empty.
//!
//! # Example
//!
//! ```nightly
//! # //#![feature(async_await)]
//! extern crate want;
//!
//! # fn spawn<T>(_t: T) {}
//! # fn we_still_want_message() -> bool { true }
//! # fn mpsc_channel() -> (Tx, Rx) { (Tx, Rx) }
//! # struct Tx;
//! # impl Tx { fn send<T>(&mut self, _: T) {} }
//! # struct Rx;
//! # impl Rx { async fn recv(&mut self) -> Option<Expensive> { Some(Expensive) } }
//!
//! // Some message that is expensive to produce.
//! struct Expensive;
//!
//! // Some futures-aware MPSC channel...
//! let (mut tx, mut rx) = mpsc_channel();
//!
//! // And our `want` channel!
//! let (mut gv, mut tk) = want::new();
//!
//!
//! // Our receiving task...
//! spawn(async move {
//!     // Maybe something comes up that prevents us from ever
//!     // using the expensive message.
//!     //
//!     // Without `want`, the "send" task may have started to
//!     // produce the expensive message even though we wouldn't
//!     // be able to use it.
//!     if !we_still_want_message() {
//!         return;
//!     }
//!
//!     // But we can use it! So tell the `want` channel.
//!     tk.want();
//!
//!     match rx.recv().await {
//!         Some(_msg) => println!("got a message"),
//!         None => println!("DONE"),
//!     }
//! });
//!
//! // Our sending task
//! spawn(async move {
//!     // It's expensive to create a new message, so we wait until the
//!     // receiving end truly *wants* the message.
//!     if let Err(_closed) = gv.want().await {
//!         // Looks like they will never want it...
//!         return;
//!     }
//!
//!     // They want it, let's go!
//!     tx.send(Expensive);
//! });
//!
//! # fn main() {}
//! ```

use std::fmt;
use std::future::Future;
use std::mem;
use std::pin::Pin;
use std::sync::Arc;
use std::sync::atomic::AtomicUsize;
// SeqCst is the only ordering used to ensure accessing the state and
// TryLock are never re-ordered.
use std::sync::atomic::Ordering::SeqCst;
use std::task::{self, Poll, Waker};


use try_lock::TryLock;

/// Create a new `want` channel.
pub fn new() -> (Giver, Taker) {
    let inner = Arc::new(Inner {
        state: AtomicUsize::new(State::Idle.into()),
        task: TryLock::new(None),
    });
    let inner2 = inner.clone();
    (
        Giver {
            inner,
        },
        Taker {
            inner: inner2,
        },
    )
}

/// An entity that gives a value when wanted.
pub struct Giver {
    inner: Arc<Inner>,
}

/// An entity that wants a value.
pub struct Taker {
    inner: Arc<Inner>,
}

/// A cloneable `Giver`.
///
/// It differs from `Giver` in that you cannot poll for `want`. It's only
/// usable as a cancellation watcher.
#[derive(Clone)]
pub struct SharedGiver {
    inner: Arc<Inner>,
}

/// The `Taker` has canceled its interest in a value.
pub struct Closed {
    _inner: (),
}

#[derive(Clone, Copy, Debug)]
enum State {
    Idle,
    Want,
    Give,
    Closed,
}

impl From<State> for usize {
    fn from(s: State) -> usize {
        match s {
            State::Idle => 0,
            State::Want => 1,
            State::Give => 2,
            State::Closed => 3,
        }
    }
}

impl From<usize> for State {
    fn from(num: usize) -> State {
        match num {
            0 => State::Idle,
            1 => State::Want,
            2 => State::Give,
            3 => State::Closed,
            _ => unreachable!("unknown state: {}", num),
        }
    }
}

struct Inner {
    state: AtomicUsize,
    task: TryLock<Option<Waker>>,
}

// ===== impl Giver ======

impl Giver {
    /// Returns a `Future` that fulfills when the `Taker` has done some action.
    pub fn want(&mut self) -> impl Future<Output = Result<(), Closed>> + '_ {
        Want(self)
    }

    /// Poll whether the `Taker` has registered interest in another value.
    ///
    /// - If the `Taker` has called `want()`, this returns `Async::Ready(())`.
    /// - If the `Taker` has not called `want()` since last poll, this
    ///   returns `Async::NotReady`, and parks the current task to be notified
    ///   when the `Taker` does call `want()`.
    /// - If the `Taker` has canceled (or dropped), this returns `Closed`.
    ///
    /// After knowing that the Taker is wanting, the state can be reset by
    /// calling [`give`](Giver::give).
    pub fn poll_want(&mut self, cx: &mut task::Context<'_>) -> Poll<Result<(), Closed>> {
        loop {
            let state = self.inner.state.load(SeqCst).into();
            match state {
                State::Want => {
                    return Poll::Ready(Ok(()));
                },
                State::Closed => {
                    return Poll::Ready(Err(Closed { _inner: () }));
                },
                State::Idle | State::Give => {
                    // Taker doesn't want anything yet, so park.
                    if let Some(mut locked) = self.inner.task.try_lock_explicit(SeqCst, SeqCst) {

                        // While we have the lock, try to set to GIVE.
                        let old = self.inner.state.compare_exchange(
                            state.into(),
                            State::Give.into(),
                            SeqCst,
                            SeqCst,
                        );
                        // If it's still the first state (Idle or Give), park current task.
                        if old == Ok(state.into()) {
                            let park = locked.as_ref()
                                .map(|w| !w.will_wake(cx.waker()))
                                .unwrap_or(true);
                            if park {
                                let old = mem::replace(&mut *locked, Some(cx.waker().clone()));
                                drop(locked);
                                if let Some(prev_task) = old {
                                    // there was an old task parked here.
                                    // it might be waiting to be notified,
                                    // so poke it before dropping.
                                    prev_task.wake();
                                };
                            }
                            return Poll::Pending;
                        }
                        // Otherwise, something happened! Go around the loop again.
                    } else {
                        // if we couldn't take the lock, then a Taker has it.
                        // The *ONLY* reason is because it is in the process of notifying us
                        // of its want.
                        //
                        // We need to loop again to see what state it was changed to.
                    }
                },
            }
        }
    }

    /// Mark the state as idle, if the Taker currently is wanting.
    ///
    /// Returns true if Taker was wanting, false otherwise.
    #[inline]
    pub fn give(&self) -> bool {
        // only set to IDLE if it is still Want
        let old = self.inner.state.compare_exchange(
            State::Want.into(),
            State::Idle.into(),
            SeqCst,
            SeqCst);
        old == Ok(State::Want.into())
    }

    /// Check if the `Taker` has called `want()` without parking a task.
    ///
    /// This is safe to call outside of a futures task context, but other
    /// means of being notified is left to the user.
    #[inline]
    pub fn is_wanting(&self) -> bool {
        self.inner.state.load(SeqCst) == State::Want.into()
    }


    /// Check if the `Taker` has canceled interest without parking a task.
    #[inline]
    pub fn is_canceled(&self) -> bool {
        self.inner.state.load(SeqCst) == State::Closed.into()
    }

    /// Converts this into a `SharedGiver`.
    #[inline]
    pub fn shared(self) -> SharedGiver {
        SharedGiver {
            inner: self.inner,
        }
    }
}

impl fmt::Debug for Giver {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Giver")
            .field("state", &self.inner.state())
            .finish()
    }
}

// ===== impl SharedGiver ======

impl SharedGiver {
    /// Check if the `Taker` has called `want()` without parking a task.
    ///
    /// This is safe to call outside of a futures task context, but other
    /// means of being notified is left to the user.
    #[inline]
    pub fn is_wanting(&self) -> bool {
        self.inner.state.load(SeqCst) == State::Want.into()
    }


    /// Check if the `Taker` has canceled interest without parking a task.
    #[inline]
    pub fn is_canceled(&self) -> bool {
        self.inner.state.load(SeqCst) == State::Closed.into()
    }
}

impl fmt::Debug for SharedGiver {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("SharedGiver")
            .field("state", &self.inner.state())
            .finish()
    }
}

// ===== impl Taker ======

impl Taker {
    /// Signal to the `Giver` that the want is canceled.
    ///
    /// This is useful to tell that the channel is closed if you cannot
    /// drop the value yet.
    #[inline]
    pub fn cancel(&mut self) {
        self.signal(State::Closed)
    }

    /// Signal to the `Giver` that a value is wanted.
    #[inline]
    pub fn want(&mut self) {
        debug_assert!(
            self.inner.state.load(SeqCst) != State::Closed.into(),
            "want called after cancel"
        );
        self.signal(State::Want)
    }

    #[inline]
    fn signal(&mut self, state: State) {
        let old_state = self.inner.state.swap(state.into(), SeqCst).into();
        match old_state {
            State::Idle | State::Want | State::Closed => (),
            State::Give => {
                loop {
                    if let Some(mut locked) = self.inner.task.try_lock_explicit(SeqCst, SeqCst) {
                        if let Some(task) = locked.take() {
                            drop(locked);
                            task.wake();
                        }
                        return;
                    } else {
                        // if we couldn't take the lock, then a Giver has it.
                        // The *ONLY* reason is because it is in the process of parking.
                        //
                        // We need to loop and take the lock so we can notify this task.
                    }
                }
            },
        }
    }
}

impl Drop for Taker {
    #[inline]
    fn drop(&mut self) {
        self.signal(State::Closed);
    }
}

impl fmt::Debug for Taker {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Taker")
            .field("state", &self.inner.state())
            .finish()
    }
}

// ===== impl Closed ======

impl fmt::Debug for Closed {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Closed")
            .finish()
    }
}

// ===== impl Inner ======

impl Inner {
    #[inline]
    fn state(&self) -> State {
        self.state.load(SeqCst).into()
    }
}

// ===== impl PollFn ======

struct Want<'a>(&'a mut Giver);


impl Future for Want<'_> {
    type Output = Result<(), Closed>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Self::Output> {
        self.0.poll_want(cx)
    }
}

#[cfg(test)]
mod tests {
    use std::thread;
    use tokio_sync::oneshot;
    use super::*;

    fn block_on<F: Future>(f: F) -> F::Output {
        tokio_executor::enter()
            .expect("block_on enter")
            .block_on(f)
    }

    #[test]
    fn want_ready() {
        let (mut gv, mut tk) = new();

        tk.want();

        block_on(gv.want()).unwrap();
    }

    #[test]
    fn want_notify_0() {
        let (mut gv, mut tk) = new();
        let (tx, rx) = oneshot::channel();

        thread::spawn(move || {
            tk.want();
            // use a oneshot to keep this thread alive
            // until other thread was notified of want
            block_on(rx).expect("rx");
        });

        block_on(gv.want()).expect("want");

        assert!(gv.is_wanting(), "still wanting after poll_want success");
        assert!(gv.give(), "give is true when wanting");

        assert!(!gv.is_wanting(), "no longer wanting after give");
        assert!(!gv.is_canceled(), "give doesn't cancel");

        assert!(!gv.give(), "give is false if not wanting");

        tx.send(()).expect("tx");
    }

    /*
    /// This tests that if the Giver moves tasks after parking,
    /// it will still wake up the correct task.
    #[test]
    fn want_notify_moving_tasks() {
        use std::sync::Arc;
        use futures::executor::{spawn, Notify, NotifyHandle};

        struct WantNotify;

        impl Notify for WantNotify {
            fn notify(&self, _id: usize) {
            }
        }

        fn n() -> NotifyHandle {
            Arc::new(WantNotify).into()
        }

        let (mut gv, mut tk) = new();

        let mut s = spawn(poll_fn(move || {
            gv.poll_want()
        }));

        // Register with t1 as the task::current()
        let t1 = n();
        assert!(s.poll_future_notify(&t1, 1).unwrap().is_not_ready());

        thread::spawn(move || {
            thread::sleep(::std::time::Duration::from_millis(100));
            tk.want();
        });

        // And now, move to a ThreadNotify task.
        s.into_inner().wait().expect("poll_want");
    }
    */

    #[test]
    fn cancel() {
        // explicit
        let (mut gv, mut tk) = new();

        assert!(!gv.is_canceled());

        tk.cancel();

        assert!(gv.is_canceled());
        block_on(gv.want()).unwrap_err();

        // implicit
        let (mut gv, tk) = new();

        assert!(!gv.is_canceled());

        drop(tk);

        assert!(gv.is_canceled());
        block_on(gv.want()).unwrap_err();

        // notifies
        let (mut gv, tk) = new();

        thread::spawn(move || {
            let _tk = tk;
            // and dropped
        });

        block_on(gv.want()).unwrap_err();
    }

    /*
    #[test]
    fn stress() {
        let nthreads = 5;
        let nwants = 100;

        for _ in 0..nthreads {
            let (mut gv, mut tk) = new();
            let (mut tx, mut rx) = mpsc::channel(0);

            // rx thread
            thread::spawn(move || {
                let mut cnt = 0;
                poll_fn(move || {
                    while cnt < nwants {
                        let n = match rx.poll().expect("rx poll") {
                            Async::Ready(n) => n.expect("rx opt"),
                            Async::NotReady => {
                                tk.want();
                                return Ok(Async::NotReady);
                            },
                        };
                        assert_eq!(cnt, n);
                        cnt += 1;
                    }
                    Ok::<_, ()>(Async::Ready(()))
                }).wait().expect("rx wait");
            });

            // tx thread
            thread::spawn(move || {
                let mut cnt = 0;
                let nsent = poll_fn(move || {
                    loop {
                        while let Ok(()) = tx.try_send(cnt) {
                            cnt += 1;
                        }
                        match gv.poll_want() {
                            Ok(Async::Ready(_)) => (),
                            Ok(Async::NotReady) => return Ok::<_, ()>(Async::NotReady),
                            Err(_) => return Ok(Async::Ready(cnt)),
                        }
                    }
                }).wait().expect("tx wait");

                assert_eq!(nsent, nwants);
            }).join().expect("thread join");
        }
    }
    */
}