regex_lite/hir/parse.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
use core::cell::{Cell, RefCell};
use alloc::{
boxed::Box,
string::{String, ToString},
vec,
vec::Vec,
};
use crate::{
error::Error,
hir::{self, Config, Flags, Hir, HirKind},
};
// These are all of the errors that can occur while parsing a regex. Unlike
// regex-syntax, our errors are not particularly great. They are just enough
// to get a general sense of what went wrong. But in exchange, the error
// reporting mechanism is *much* simpler than what's in regex-syntax.
//
// By convention, we use each of these messages in exactly one place. That
// way, every branch that leads to an error has a unique message. This in turn
// means that given a message, one can precisely identify which part of the
// parser reported it.
//
// Finally, we give names to each message so that we can reference them in
// tests.
const ERR_TOO_MUCH_NESTING: &str = "pattern has too much nesting";
const ERR_TOO_MANY_CAPTURES: &str = "too many capture groups";
const ERR_DUPLICATE_CAPTURE_NAME: &str = "duplicate capture group name";
const ERR_UNCLOSED_GROUP: &str = "found open group without closing ')'";
const ERR_UNCLOSED_GROUP_QUESTION: &str =
"expected closing ')', but got end of pattern";
const ERR_UNOPENED_GROUP: &str = "found closing ')' without matching '('";
const ERR_LOOK_UNSUPPORTED: &str = "look-around is not supported";
const ERR_EMPTY_FLAGS: &str = "empty flag directive '(?)' is not allowed";
const ERR_MISSING_GROUP_NAME: &str =
"expected capture group name, but got end of pattern";
const ERR_INVALID_GROUP_NAME: &str = "invalid group name";
const ERR_UNCLOSED_GROUP_NAME: &str =
"expected end of capture group name, but got end of pattern";
const ERR_EMPTY_GROUP_NAME: &str = "empty capture group names are not allowed";
const ERR_FLAG_UNRECOGNIZED: &str = "unrecognized inline flag";
const ERR_FLAG_REPEATED_NEGATION: &str =
"inline flag negation cannot be repeated";
const ERR_FLAG_DUPLICATE: &str = "duplicate inline flag is not allowed";
const ERR_FLAG_UNEXPECTED_EOF: &str =
"expected ':' or ')' to end inline flags, but got end of pattern";
const ERR_FLAG_DANGLING_NEGATION: &str =
"inline flags cannot end with negation directive";
const ERR_DECIMAL_NO_DIGITS: &str =
"expected decimal number, but found no digits";
const ERR_DECIMAL_INVALID: &str = "got invalid decimal number";
const ERR_HEX_BRACE_INVALID_DIGIT: &str =
"expected hexadecimal number in braces, but got non-hex digit";
const ERR_HEX_BRACE_UNEXPECTED_EOF: &str =
"expected hexadecimal number, but saw end of pattern before closing brace";
const ERR_HEX_BRACE_EMPTY: &str =
"expected hexadecimal number in braces, but got no digits";
const ERR_HEX_BRACE_INVALID: &str = "got invalid hexadecimal number in braces";
const ERR_HEX_FIXED_UNEXPECTED_EOF: &str =
"expected fixed length hexadecimal number, but saw end of pattern first";
const ERR_HEX_FIXED_INVALID_DIGIT: &str =
"expected fixed length hexadecimal number, but got non-hex digit";
const ERR_HEX_FIXED_INVALID: &str =
"got invalid fixed length hexadecimal number";
const ERR_HEX_UNEXPECTED_EOF: &str =
"expected hexadecimal number, but saw end of pattern first";
const ERR_ESCAPE_UNEXPECTED_EOF: &str =
"saw start of escape sequence, but saw end of pattern before it finished";
const ERR_BACKREF_UNSUPPORTED: &str = "backreferences are not supported";
const ERR_UNICODE_CLASS_UNSUPPORTED: &str =
"Unicode character classes are not supported";
const ERR_ESCAPE_UNRECOGNIZED: &str = "unrecognized escape sequence";
const ERR_POSIX_CLASS_UNRECOGNIZED: &str =
"unrecognized POSIX character class";
const ERR_UNCOUNTED_REP_SUB_MISSING: &str =
"uncounted repetition operator must be applied to a sub-expression";
const ERR_COUNTED_REP_SUB_MISSING: &str =
"counted repetition operator must be applied to a sub-expression";
const ERR_COUNTED_REP_UNCLOSED: &str =
"found unclosed counted repetition operator";
const ERR_COUNTED_REP_MIN_UNCLOSED: &str =
"found incomplete and unclosed counted repetition operator";
const ERR_COUNTED_REP_COMMA_UNCLOSED: &str =
"found counted repetition operator with a comma that is unclosed";
const ERR_COUNTED_REP_MIN_MAX_UNCLOSED: &str =
"found counted repetition with min and max that is unclosed";
const ERR_COUNTED_REP_INVALID: &str =
"expected closing brace for counted repetition, but got something else";
const ERR_COUNTED_REP_INVALID_RANGE: &str =
"found counted repetition with a min bigger than its max";
const ERR_CLASS_UNCLOSED_AFTER_ITEM: &str =
"non-empty character class has no closing bracket";
const ERR_CLASS_INVALID_RANGE_ITEM: &str =
"character class ranges must start and end with a single character";
const ERR_CLASS_INVALID_ITEM: &str =
"invalid escape sequence in character class";
const ERR_CLASS_UNCLOSED_AFTER_DASH: &str =
"non-empty character class has no closing bracket after dash";
const ERR_CLASS_UNCLOSED_AFTER_NEGATION: &str =
"negated character class has no closing bracket";
const ERR_CLASS_UNCLOSED_AFTER_CLOSING: &str =
"character class begins with literal ']' but has no closing bracket";
const ERR_CLASS_INVALID_RANGE: &str = "invalid range in character class";
const ERR_CLASS_UNCLOSED: &str = "found unclosed character class";
const ERR_CLASS_NEST_UNSUPPORTED: &str =
"nested character classes are not supported";
const ERR_CLASS_INTERSECTION_UNSUPPORTED: &str =
"character class intersection is not supported";
const ERR_CLASS_DIFFERENCE_UNSUPPORTED: &str =
"character class difference is not supported";
const ERR_CLASS_SYMDIFFERENCE_UNSUPPORTED: &str =
"character class symmetric difference is not supported";
const ERR_SPECIAL_WORD_BOUNDARY_UNCLOSED: &str =
"special word boundary assertion is unclosed or has an invalid character";
const ERR_SPECIAL_WORD_BOUNDARY_UNRECOGNIZED: &str =
"special word boundary assertion is unrecognized";
const ERR_SPECIAL_WORD_OR_REP_UNEXPECTED_EOF: &str =
"found start of special word boundary or repetition without an end";
/// A regular expression parser.
///
/// This parses a string representation of a regular expression into an
/// abstract syntax tree. The size of the tree is proportional to the length
/// of the regular expression pattern.
///
/// A `Parser` can be configured in more detail via a [`ParserBuilder`].
#[derive(Clone, Debug)]
pub(super) struct Parser<'a> {
/// The configuration of the parser as given by the caller.
config: Config,
/// The pattern we're parsing as given by the caller.
pattern: &'a str,
/// The call depth of the parser. This is incremented for each
/// sub-expression parsed. Its peak value is the maximum nesting of the
/// pattern.
depth: Cell<u32>,
/// The current position of the parser.
pos: Cell<usize>,
/// The current codepoint of the parser. The codepoint corresponds to the
/// codepoint encoded in `pattern` beginning at `pos`.
///
/// This is `None` if and only if `pos == pattern.len()`.
char: Cell<Option<char>>,
/// The current capture index.
capture_index: Cell<u32>,
/// The flags that are currently set.
flags: RefCell<Flags>,
/// A sorted sequence of capture names. This is used to detect duplicate
/// capture names and report an error if one is detected.
capture_names: RefCell<Vec<String>>,
}
/// The constructor and a variety of helper routines.
impl<'a> Parser<'a> {
/// Build a parser from this configuration with the given pattern.
pub(super) fn new(config: Config, pattern: &'a str) -> Parser<'a> {
Parser {
config,
pattern,
depth: Cell::new(0),
pos: Cell::new(0),
char: Cell::new(pattern.chars().next()),
capture_index: Cell::new(0),
flags: RefCell::new(config.flags),
capture_names: RefCell::new(vec![]),
}
}
/// Returns the full pattern string that we're parsing.
fn pattern(&self) -> &str {
self.pattern
}
/// Return the current byte offset of the parser.
///
/// The offset starts at `0` from the beginning of the regular expression
/// pattern string.
fn pos(&self) -> usize {
self.pos.get()
}
/// Increments the call depth of the parser.
///
/// If the call depth would exceed the configured nest limit, then this
/// returns an error.
///
/// This returns the old depth.
fn increment_depth(&self) -> Result<u32, Error> {
let old = self.depth.get();
if old > self.config.nest_limit {
return Err(Error::new(ERR_TOO_MUCH_NESTING));
}
// OK because our depth starts at 0, and we return an error if it
// ever reaches the limit. So the call depth can never exceed u32::MAX.
let new = old.checked_add(1).unwrap();
self.depth.set(new);
Ok(old)
}
/// Decrements the call depth of the parser.
///
/// This panics if the current depth is 0.
fn decrement_depth(&self) {
let old = self.depth.get();
// If this fails then the caller has a bug in how they're incrementing
// and decrementing the depth of the parser's call stack.
let new = old.checked_sub(1).unwrap();
self.depth.set(new);
}
/// Return the codepoint at the current position of the parser.
///
/// This panics if the parser is positioned at the end of the pattern.
fn char(&self) -> char {
self.char.get().expect("codepoint, but parser is done")
}
/// Returns true if the next call to `bump` would return false.
fn is_done(&self) -> bool {
self.pos() == self.pattern.len()
}
/// Returns the flags that are current set for this regex.
fn flags(&self) -> Flags {
*self.flags.borrow()
}
/// Bump the parser to the next Unicode scalar value.
///
/// If the end of the input has been reached, then `false` is returned.
fn bump(&self) -> bool {
if self.is_done() {
return false;
}
self.pos.set(self.pos() + self.char().len_utf8());
self.char.set(self.pattern()[self.pos()..].chars().next());
self.char.get().is_some()
}
/// If the substring starting at the current position of the parser has
/// the given prefix, then bump the parser to the character immediately
/// following the prefix and return true. Otherwise, don't bump the parser
/// and return false.
fn bump_if(&self, prefix: &str) -> bool {
if self.pattern()[self.pos()..].starts_with(prefix) {
for _ in 0..prefix.chars().count() {
self.bump();
}
true
} else {
false
}
}
/// Bump the parser, and if the `x` flag is enabled, bump through any
/// subsequent spaces. Return true if and only if the parser is not done.
fn bump_and_bump_space(&self) -> bool {
if !self.bump() {
return false;
}
self.bump_space();
!self.is_done()
}
/// If the `x` flag is enabled (i.e., whitespace insensitivity with
/// comments), then this will advance the parser through all whitespace
/// and comments to the next non-whitespace non-comment byte.
///
/// If the `x` flag is disabled, then this is a no-op.
///
/// This should be used selectively throughout the parser where
/// arbitrary whitespace is permitted when the `x` flag is enabled. For
/// example, `{ 5 , 6}` is equivalent to `{5,6}`.
fn bump_space(&self) {
if !self.flags().ignore_whitespace {
return;
}
while !self.is_done() {
if self.char().is_whitespace() {
self.bump();
} else if self.char() == '#' {
self.bump();
while !self.is_done() {
let c = self.char();
self.bump();
if c == '\n' {
break;
}
}
} else {
break;
}
}
}
/// Peek at the next character in the input without advancing the parser.
///
/// If the input has been exhausted, then this returns `None`.
fn peek(&self) -> Option<char> {
if self.is_done() {
return None;
}
self.pattern()[self.pos() + self.char().len_utf8()..].chars().next()
}
/// Peeks at the next character in the pattern from the current offset, and
/// will ignore spaces when the parser is in whitespace insensitive mode.
fn peek_space(&self) -> Option<char> {
if !self.flags().ignore_whitespace {
return self.peek();
}
if self.is_done() {
return None;
}
let mut start = self.pos() + self.char().len_utf8();
let mut in_comment = false;
for (i, ch) in self.pattern()[start..].char_indices() {
if ch.is_whitespace() {
continue;
} else if !in_comment && ch == '#' {
in_comment = true;
} else if in_comment && ch == '\n' {
in_comment = false;
} else {
start += i;
break;
}
}
self.pattern()[start..].chars().next()
}
/// Return the next capturing index. Each subsequent call increments the
/// internal index. Since the way capture indices are computed is a public
/// API guarantee, use of this routine depends on the parser being depth
/// first and left-to-right.
///
/// If the capture limit is exceeded, then an error is returned.
fn next_capture_index(&self) -> Result<u32, Error> {
let current = self.capture_index.get();
let next = current
.checked_add(1)
.ok_or_else(|| Error::new(ERR_TOO_MANY_CAPTURES))?;
self.capture_index.set(next);
Ok(next)
}
/// Adds the given capture name to this parser. If this capture name has
/// already been used, then an error is returned.
fn add_capture_name(&self, name: &str) -> Result<(), Error> {
let mut names = self.capture_names.borrow_mut();
match names.binary_search_by(|n| name.cmp(n)) {
Ok(_) => Err(Error::new(ERR_DUPLICATE_CAPTURE_NAME)),
Err(i) => {
names.insert(i, name.to_string());
Ok(())
}
}
}
/// Returns true if and only if the parser is positioned at a look-around
/// prefix. The conditions under which this returns true must always
/// correspond to a regular expression that would otherwise be consider
/// invalid.
///
/// This should only be called immediately after parsing the opening of
/// a group or a set of flags.
fn is_lookaround_prefix(&self) -> bool {
self.bump_if("?=")
|| self.bump_if("?!")
|| self.bump_if("?<=")
|| self.bump_if("?<!")
}
}
/// The actual parser. We try to break out each kind of regex syntax into its
/// own routine.
impl<'a> Parser<'a> {
pub(super) fn parse(&self) -> Result<Hir, Error> {
let hir = self.parse_inner()?;
// While we also check nesting during parsing, that only checks the
// number of recursive parse calls. It does not necessarily cover
// all possible recursive nestings of the Hir itself. For example,
// repetition operators don't require recursive parse calls. So one
// can stack them arbitrarily without overflowing the stack in the
// *parser*. But then if one recurses over the resulting Hir, a stack
// overflow is possible. So here we check the Hir nesting level
// thoroughly to ensure it isn't nested too deeply.
//
// Note that we do still need the nesting limit check in the parser as
// well, since that will avoid overflowing the stack during parse time
// before the complete Hir value is constructed.
check_hir_nesting(&hir, self.config.nest_limit)?;
Ok(hir)
}
fn parse_inner(&self) -> Result<Hir, Error> {
let depth = self.increment_depth()?;
let mut alternates = vec![];
let mut concat = vec![];
loop {
self.bump_space();
if self.is_done() {
break;
}
match self.char() {
'(' => {
// Save the old flags and reset them only when we close
// the group.
let oldflags = *self.flags.borrow();
if let Some(sub) = self.parse_group()? {
concat.push(sub);
// We only reset them here because if 'parse_group'
// returns None, then that means it handled a flag
// directive, e.g., '(?ism)'. And the whole point is
// that those flags remain active until either disabled
// or the end of the pattern or current group.
*self.flags.borrow_mut() = oldflags;
}
if self.char.get() != Some(')') {
return Err(Error::new(ERR_UNCLOSED_GROUP));
}
self.bump();
}
')' => {
if depth == 0 {
return Err(Error::new(ERR_UNOPENED_GROUP));
}
break;
}
'|' => {
alternates.push(Hir::concat(core::mem::take(&mut concat)));
self.bump();
}
'[' => concat.push(self.parse_class()?),
'?' | '*' | '+' => {
concat = self.parse_uncounted_repetition(concat)?;
}
'{' => {
concat = self.parse_counted_repetition(concat)?;
}
_ => concat.push(self.parse_primitive()?),
}
}
self.decrement_depth();
alternates.push(Hir::concat(concat));
// N.B. This strips off the "alternation" if there's only one branch.
Ok(Hir::alternation(alternates))
}
/// Parses a "primitive" pattern. A primitive is any expression that does
/// not contain any sub-expressions.
///
/// This assumes the parser is pointing at the beginning of the primitive.
fn parse_primitive(&self) -> Result<Hir, Error> {
let ch = self.char();
self.bump();
match ch {
'\\' => self.parse_escape(),
'.' => Ok(self.hir_dot()),
'^' => Ok(self.hir_anchor_start()),
'$' => Ok(self.hir_anchor_end()),
ch => Ok(self.hir_char(ch)),
}
}
/// Parse an escape sequence. This always results in a "primitive" HIR,
/// that is, an HIR with no sub-expressions.
///
/// This assumes the parser is positioned at the start of the sequence,
/// immediately *after* the `\`. It advances the parser to the first
/// position immediately following the escape sequence.
fn parse_escape(&self) -> Result<Hir, Error> {
if self.is_done() {
return Err(Error::new(ERR_ESCAPE_UNEXPECTED_EOF));
}
let ch = self.char();
// Put some of the more complicated routines into helpers.
match ch {
'0'..='9' => return Err(Error::new(ERR_BACKREF_UNSUPPORTED)),
'p' | 'P' => {
return Err(Error::new(ERR_UNICODE_CLASS_UNSUPPORTED))
}
'x' | 'u' | 'U' => return self.parse_hex(),
'd' | 's' | 'w' | 'D' | 'S' | 'W' => {
return Ok(self.parse_perl_class());
}
_ => {}
}
// Handle all of the one letter sequences inline.
self.bump();
if hir::is_meta_character(ch) || hir::is_escapeable_character(ch) {
return Ok(self.hir_char(ch));
}
let special = |ch| Ok(self.hir_char(ch));
match ch {
'a' => special('\x07'),
'f' => special('\x0C'),
't' => special('\t'),
'n' => special('\n'),
'r' => special('\r'),
'v' => special('\x0B'),
'A' => Ok(Hir::look(hir::Look::Start)),
'z' => Ok(Hir::look(hir::Look::End)),
'b' => {
let mut hir = Hir::look(hir::Look::Word);
if !self.is_done() && self.char() == '{' {
if let Some(special) =
self.maybe_parse_special_word_boundary()?
{
hir = special;
}
}
Ok(hir)
}
'B' => Ok(Hir::look(hir::Look::WordNegate)),
'<' => Ok(Hir::look(hir::Look::WordStart)),
'>' => Ok(Hir::look(hir::Look::WordEnd)),
_ => Err(Error::new(ERR_ESCAPE_UNRECOGNIZED)),
}
}
/// Attempt to parse a specialty word boundary. That is, `\b{start}`,
/// `\b{end}`, `\b{start-half}` or `\b{end-half}`.
///
/// This is similar to `maybe_parse_ascii_class` in that, in most cases,
/// if it fails it will just return `None` with no error. This is done
/// because `\b{5}` is a valid expression and we want to let that be parsed
/// by the existing counted repetition parsing code. (I thought about just
/// invoking the counted repetition code from here, but it seemed a little
/// ham-fisted.)
///
/// Unlike `maybe_parse_ascii_class` though, this can return an error.
/// Namely, if we definitely know it isn't a counted repetition, then we
/// return an error specific to the specialty word boundaries.
///
/// This assumes the parser is positioned at a `{` immediately following
/// a `\b`. When `None` is returned, the parser is returned to the position
/// at which it started: pointing at a `{`.
///
/// The position given should correspond to the start of the `\b`.
fn maybe_parse_special_word_boundary(&self) -> Result<Option<Hir>, Error> {
assert_eq!(self.char(), '{');
let is_valid_char = |c| match c {
'A'..='Z' | 'a'..='z' | '-' => true,
_ => false,
};
let start = self.pos();
if !self.bump_and_bump_space() {
return Err(Error::new(ERR_SPECIAL_WORD_OR_REP_UNEXPECTED_EOF));
}
// This is one of the critical bits: if the first non-whitespace
// character isn't in [-A-Za-z] (i.e., this can't be a special word
// boundary), then we bail and let the counted repetition parser deal
// with this.
if !is_valid_char(self.char()) {
self.pos.set(start);
self.char.set(Some('{'));
return Ok(None);
}
// Now collect up our chars until we see a '}'.
let mut scratch = String::new();
while !self.is_done() && is_valid_char(self.char()) {
scratch.push(self.char());
self.bump_and_bump_space();
}
if self.is_done() || self.char() != '}' {
return Err(Error::new(ERR_SPECIAL_WORD_BOUNDARY_UNCLOSED));
}
self.bump();
let kind = match scratch.as_str() {
"start" => hir::Look::WordStart,
"end" => hir::Look::WordEnd,
"start-half" => hir::Look::WordStartHalf,
"end-half" => hir::Look::WordEndHalf,
_ => {
return Err(Error::new(ERR_SPECIAL_WORD_BOUNDARY_UNRECOGNIZED))
}
};
Ok(Some(Hir::look(kind)))
}
/// Parse a hex representation of a Unicode codepoint. This handles both
/// hex notations, i.e., `\xFF` and `\x{FFFF}`. This expects the parser to
/// be positioned at the `x`, `u` or `U` prefix. The parser is advanced to
/// the first character immediately following the hexadecimal literal.
fn parse_hex(&self) -> Result<Hir, Error> {
let digit_len = match self.char() {
'x' => 2,
'u' => 4,
'U' => 8,
unk => unreachable!(
"invalid start of fixed length hexadecimal number {}",
unk
),
};
if !self.bump_and_bump_space() {
return Err(Error::new(ERR_HEX_UNEXPECTED_EOF));
}
if self.char() == '{' {
self.parse_hex_brace()
} else {
self.parse_hex_digits(digit_len)
}
}
/// Parse an N-digit hex representation of a Unicode codepoint. This
/// expects the parser to be positioned at the first digit and will advance
/// the parser to the first character immediately following the escape
/// sequence.
///
/// The number of digits given must be 2 (for `\xNN`), 4 (for `\uNNNN`)
/// or 8 (for `\UNNNNNNNN`).
fn parse_hex_digits(&self, digit_len: usize) -> Result<Hir, Error> {
let mut scratch = String::new();
for i in 0..digit_len {
if i > 0 && !self.bump_and_bump_space() {
return Err(Error::new(ERR_HEX_FIXED_UNEXPECTED_EOF));
}
if !is_hex(self.char()) {
return Err(Error::new(ERR_HEX_FIXED_INVALID_DIGIT));
}
scratch.push(self.char());
}
// The final bump just moves the parser past the literal, which may
// be EOF.
self.bump_and_bump_space();
match u32::from_str_radix(&scratch, 16).ok().and_then(char::from_u32) {
None => Err(Error::new(ERR_HEX_FIXED_INVALID)),
Some(ch) => Ok(self.hir_char(ch)),
}
}
/// Parse a hex representation of any Unicode scalar value. This expects
/// the parser to be positioned at the opening brace `{` and will advance
/// the parser to the first character following the closing brace `}`.
fn parse_hex_brace(&self) -> Result<Hir, Error> {
let mut scratch = String::new();
while self.bump_and_bump_space() && self.char() != '}' {
if !is_hex(self.char()) {
return Err(Error::new(ERR_HEX_BRACE_INVALID_DIGIT));
}
scratch.push(self.char());
}
if self.is_done() {
return Err(Error::new(ERR_HEX_BRACE_UNEXPECTED_EOF));
}
assert_eq!(self.char(), '}');
self.bump_and_bump_space();
if scratch.is_empty() {
return Err(Error::new(ERR_HEX_BRACE_EMPTY));
}
match u32::from_str_radix(&scratch, 16).ok().and_then(char::from_u32) {
None => Err(Error::new(ERR_HEX_BRACE_INVALID)),
Some(ch) => Ok(self.hir_char(ch)),
}
}
/// Parse a decimal number into a u32 while trimming leading and trailing
/// whitespace.
///
/// This expects the parser to be positioned at the first position where
/// a decimal digit could occur. This will advance the parser to the byte
/// immediately following the last contiguous decimal digit.
///
/// If no decimal digit could be found or if there was a problem parsing
/// the complete set of digits into a u32, then an error is returned.
fn parse_decimal(&self) -> Result<u32, Error> {
let mut scratch = String::new();
while !self.is_done() && self.char().is_whitespace() {
self.bump();
}
while !self.is_done() && '0' <= self.char() && self.char() <= '9' {
scratch.push(self.char());
self.bump_and_bump_space();
}
while !self.is_done() && self.char().is_whitespace() {
self.bump_and_bump_space();
}
let digits = scratch.as_str();
if digits.is_empty() {
return Err(Error::new(ERR_DECIMAL_NO_DIGITS));
}
match u32::from_str_radix(digits, 10).ok() {
Some(n) => Ok(n),
None => Err(Error::new(ERR_DECIMAL_INVALID)),
}
}
/// Parses an uncounted repetition operator. An uncounted repetition
/// operator includes `?`, `*` and `+`, but does not include the `{m,n}`
/// syntax. The current character should be one of `?`, `*` or `+`. Any
/// other character will result in a panic.
///
/// This assumes that the parser is currently positioned at the repetition
/// operator and advances the parser to the first character after the
/// operator. (Note that the operator may include a single additional `?`,
/// which makes the operator ungreedy.)
///
/// The caller should include the concatenation that is being built. The
/// concatenation returned includes the repetition operator applied to the
/// last expression in the given concatenation.
///
/// If the concatenation is empty, then this returns an error.
fn parse_uncounted_repetition(
&self,
mut concat: Vec<Hir>,
) -> Result<Vec<Hir>, Error> {
let sub = match concat.pop() {
Some(hir) => Box::new(hir),
None => {
return Err(Error::new(ERR_UNCOUNTED_REP_SUB_MISSING));
}
};
let (min, max) = match self.char() {
'?' => (0, Some(1)),
'*' => (0, None),
'+' => (1, None),
unk => unreachable!("unrecognized repetition operator '{}'", unk),
};
let mut greedy = true;
if self.bump() && self.char() == '?' {
greedy = false;
self.bump();
}
if self.flags().swap_greed {
greedy = !greedy;
}
concat.push(Hir::repetition(hir::Repetition {
min,
max,
greedy,
sub,
}));
Ok(concat)
}
/// Parses a counted repetition operation. A counted repetition operator
/// corresponds to the `{m,n}` syntax, and does not include the `?`, `*` or
/// `+` operators.
///
/// This assumes that the parser is currently at the opening `{` and
/// advances the parser to the first character after the operator. (Note
/// that the operator may include a single additional `?`, which makes the
/// operator ungreedy.)
///
/// The caller should include the concatenation that is being built. The
/// concatenation returned includes the repetition operator applied to the
/// last expression in the given concatenation.
///
/// If the concatenation is empty, then this returns an error.
fn parse_counted_repetition(
&self,
mut concat: Vec<Hir>,
) -> Result<Vec<Hir>, Error> {
assert_eq!(self.char(), '{', "expected opening brace");
let sub = match concat.pop() {
Some(hir) => Box::new(hir),
None => {
return Err(Error::new(ERR_COUNTED_REP_SUB_MISSING));
}
};
if !self.bump_and_bump_space() {
return Err(Error::new(ERR_COUNTED_REP_UNCLOSED));
}
let min = self.parse_decimal()?;
let mut max = Some(min);
if self.is_done() {
return Err(Error::new(ERR_COUNTED_REP_MIN_UNCLOSED));
}
if self.char() == ',' {
if !self.bump_and_bump_space() {
return Err(Error::new(ERR_COUNTED_REP_COMMA_UNCLOSED));
}
if self.char() != '}' {
max = Some(self.parse_decimal()?);
} else {
max = None;
}
if self.is_done() {
return Err(Error::new(ERR_COUNTED_REP_MIN_MAX_UNCLOSED));
}
}
if self.char() != '}' {
return Err(Error::new(ERR_COUNTED_REP_INVALID));
}
let mut greedy = true;
if self.bump_and_bump_space() && self.char() == '?' {
greedy = false;
self.bump();
}
if self.flags().swap_greed {
greedy = !greedy;
}
if max.map_or(false, |max| min > max) {
return Err(Error::new(ERR_COUNTED_REP_INVALID_RANGE));
}
concat.push(Hir::repetition(hir::Repetition {
min,
max,
greedy,
sub,
}));
Ok(concat)
}
/// Parses the part of a pattern that starts with a `(`. This is usually
/// a group sub-expression, but might just be a directive that enables
/// (or disables) certain flags.
///
/// This assumes the parser is pointing at the opening `(`.
fn parse_group(&self) -> Result<Option<Hir>, Error> {
assert_eq!(self.char(), '(');
self.bump_and_bump_space();
if self.is_lookaround_prefix() {
return Err(Error::new(ERR_LOOK_UNSUPPORTED));
}
if self.bump_if("?P<") || self.bump_if("?<") {
let index = self.next_capture_index()?;
let name = Some(Box::from(self.parse_capture_name()?));
let sub = Box::new(self.parse_inner()?);
let cap = hir::Capture { index, name, sub };
Ok(Some(Hir::capture(cap)))
} else if self.bump_if("?") {
if self.is_done() {
return Err(Error::new(ERR_UNCLOSED_GROUP_QUESTION));
}
let start = self.pos();
// The flags get reset in the top-level 'parse' routine.
*self.flags.borrow_mut() = self.parse_flags()?;
let consumed = self.pos() - start;
if self.char() == ')' {
// We don't allow empty flags, e.g., `(?)`.
if consumed == 0 {
return Err(Error::new(ERR_EMPTY_FLAGS));
}
Ok(None)
} else {
assert_eq!(':', self.char());
self.bump();
self.parse_inner().map(Some)
}
} else {
let index = self.next_capture_index()?;
let sub = Box::new(self.parse_inner()?);
let cap = hir::Capture { index, name: None, sub };
Ok(Some(Hir::capture(cap)))
}
}
/// Parses a capture group name. Assumes that the parser is positioned at
/// the first character in the name following the opening `<` (and may
/// possibly be EOF). This advances the parser to the first character
/// following the closing `>`.
fn parse_capture_name(&self) -> Result<&str, Error> {
if self.is_done() {
return Err(Error::new(ERR_MISSING_GROUP_NAME));
}
let start = self.pos();
loop {
if self.char() == '>' {
break;
}
if !is_capture_char(self.char(), self.pos() == start) {
return Err(Error::new(ERR_INVALID_GROUP_NAME));
}
if !self.bump() {
break;
}
}
let end = self.pos();
if self.is_done() {
return Err(Error::new(ERR_UNCLOSED_GROUP_NAME));
}
assert_eq!(self.char(), '>');
self.bump();
let name = &self.pattern()[start..end];
if name.is_empty() {
return Err(Error::new(ERR_EMPTY_GROUP_NAME));
}
self.add_capture_name(name)?;
Ok(name)
}
/// Parse a sequence of flags starting at the current character.
///
/// This advances the parser to the character immediately following the
/// flags, which is guaranteed to be either `:` or `)`.
///
/// # Errors
///
/// If any flags are duplicated, then an error is returned.
///
/// If the negation operator is used more than once, then an error is
/// returned.
///
/// If no flags could be found or if the negation operation is not followed
/// by any flags, then an error is returned.
fn parse_flags(&self) -> Result<Flags, Error> {
let mut flags = *self.flags.borrow();
let mut negate = false;
// Keeps track of whether the previous flag item was a '-'. We use this
// to detect whether there is a dangling '-', which is invalid.
let mut last_was_negation = false;
// A set to keep track of the flags we've seen. Since all flags are
// ASCII, we only need 128 bytes.
let mut seen = [false; 128];
while self.char() != ':' && self.char() != ')' {
if self.char() == '-' {
last_was_negation = true;
if negate {
return Err(Error::new(ERR_FLAG_REPEATED_NEGATION));
}
negate = true;
} else {
last_was_negation = false;
self.parse_flag(&mut flags, negate)?;
// OK because every valid flag is ASCII, and we're only here if
// the flag is valid.
let flag_byte = u8::try_from(self.char()).unwrap();
if seen[usize::from(flag_byte)] {
return Err(Error::new(ERR_FLAG_DUPLICATE));
}
seen[usize::from(flag_byte)] = true;
}
if !self.bump() {
return Err(Error::new(ERR_FLAG_UNEXPECTED_EOF));
}
}
if last_was_negation {
return Err(Error::new(ERR_FLAG_DANGLING_NEGATION));
}
Ok(flags)
}
/// Parse the current character as a flag. Do not advance the parser.
///
/// This sets the appropriate boolean value in place on the set of flags
/// given. The boolean is inverted when `negate` is true.
///
/// # Errors
///
/// If the flag is not recognized, then an error is returned.
fn parse_flag(
&self,
flags: &mut Flags,
negate: bool,
) -> Result<(), Error> {
let enabled = !negate;
match self.char() {
'i' => flags.case_insensitive = enabled,
'm' => flags.multi_line = enabled,
's' => flags.dot_matches_new_line = enabled,
'U' => flags.swap_greed = enabled,
'R' => flags.crlf = enabled,
'x' => flags.ignore_whitespace = enabled,
// We make a special exception for this flag where we let it
// through as a recognized flag, but treat it as a no-op. This in
// practice retains some compatibility with the regex crate. It is
// a little suspect to do this, but for example, '(?-u:\b).+' in
// the regex crate is equivalent to '\b.+' in regex-lite.
'u' => {}
_ => return Err(Error::new(ERR_FLAG_UNRECOGNIZED)),
}
Ok(())
}
/// Parse a standard character class consisting primarily of characters or
/// character ranges.
///
/// This assumes the parser is positioned at the opening `[`. If parsing
/// is successful, then the parser is advanced to the position immediately
/// following the closing `]`.
fn parse_class(&self) -> Result<Hir, Error> {
assert_eq!(self.char(), '[');
let mut union = vec![];
if !self.bump_and_bump_space() {
return Err(Error::new(ERR_CLASS_UNCLOSED));
}
// Determine whether the class is negated or not.
let negate = if self.char() != '^' {
false
} else {
if !self.bump_and_bump_space() {
return Err(Error::new(ERR_CLASS_UNCLOSED_AFTER_NEGATION));
}
true
};
// Accept any number of `-` as literal `-`.
while self.char() == '-' {
union.push(hir::ClassRange { start: '-', end: '-' });
if !self.bump_and_bump_space() {
return Err(Error::new(ERR_CLASS_UNCLOSED_AFTER_DASH));
}
}
// If `]` is the *first* char in a set, then interpret it as a literal
// `]`. That is, an empty class is impossible to write.
if union.is_empty() && self.char() == ']' {
union.push(hir::ClassRange { start: ']', end: ']' });
if !self.bump_and_bump_space() {
return Err(Error::new(ERR_CLASS_UNCLOSED_AFTER_CLOSING));
}
}
loop {
self.bump_space();
if self.is_done() {
return Err(Error::new(ERR_CLASS_UNCLOSED));
}
match self.char() {
'[' => {
// Attempt to treat this as the beginning of a POSIX class.
// If POSIX class parsing fails, then the parser backs up
// to `[`.
if let Some(class) = self.maybe_parse_posix_class() {
union.extend_from_slice(&class.ranges);
continue;
}
// ... otherwise we don't support nested classes.
return Err(Error::new(ERR_CLASS_NEST_UNSUPPORTED));
}
']' => {
self.bump();
let mut class = hir::Class::new(union);
// Note that we must apply case folding before negation!
// Consider `(?i)[^x]`. If we applied negation first, then
// the result would be the character class that matched any
// Unicode scalar value.
if self.flags().case_insensitive {
class.ascii_case_fold();
}
if negate {
class.negate();
}
return Ok(Hir::class(class));
}
'&' if self.peek() == Some('&') => {
return Err(Error::new(
ERR_CLASS_INTERSECTION_UNSUPPORTED,
));
}
'-' if self.peek() == Some('-') => {
return Err(Error::new(ERR_CLASS_DIFFERENCE_UNSUPPORTED));
}
'~' if self.peek() == Some('~') => {
return Err(Error::new(
ERR_CLASS_SYMDIFFERENCE_UNSUPPORTED,
));
}
_ => self.parse_class_range(&mut union)?,
}
}
}
/// Parse a single primitive item in a character class set. The item to
/// be parsed can either be one of a simple literal character, a range
/// between two simple literal characters or a "primitive" character
/// class like `\w`.
///
/// If an invalid escape is found, or if a character class is found where
/// a simple literal is expected (e.g., in a range), then an error is
/// returned.
///
/// Otherwise, the range (or ranges) are appended to the given union of
/// ranges.
fn parse_class_range(
&self,
union: &mut Vec<hir::ClassRange>,
) -> Result<(), Error> {
let prim1 = self.parse_class_item()?;
self.bump_space();
if self.is_done() {
return Err(Error::new(ERR_CLASS_UNCLOSED_AFTER_ITEM));
}
// If the next char isn't a `-`, then we don't have a range.
// There are two exceptions. If the char after a `-` is a `]`, then
// `-` is interpreted as a literal `-`. Alternatively, if the char
// after a `-` is a `-`, then `--` corresponds to a "difference"
// operation. (Which we don't support in regex-lite, but error about
// specifically in an effort to be loud about differences between the
// main regex crate where possible.)
if self.char() != '-'
|| self.peek_space() == Some(']')
|| self.peek_space() == Some('-')
{
union.extend_from_slice(&into_class_item_ranges(prim1)?);
return Ok(());
}
// OK, now we're parsing a range, so bump past the `-` and parse the
// second half of the range.
if !self.bump_and_bump_space() {
return Err(Error::new(ERR_CLASS_UNCLOSED_AFTER_DASH));
}
let prim2 = self.parse_class_item()?;
let range = hir::ClassRange {
start: into_class_item_range(prim1)?,
end: into_class_item_range(prim2)?,
};
if range.start > range.end {
return Err(Error::new(ERR_CLASS_INVALID_RANGE));
}
union.push(range);
Ok(())
}
/// Parse a single item in a character class as a primitive, where the
/// primitive either consists of a verbatim literal or a single escape
/// sequence.
///
/// This assumes the parser is positioned at the beginning of a primitive,
/// and advances the parser to the first position after the primitive if
/// successful.
///
/// Note that it is the caller's responsibility to report an error if an
/// illegal primitive was parsed.
fn parse_class_item(&self) -> Result<Hir, Error> {
let ch = self.char();
self.bump();
if ch == '\\' {
self.parse_escape()
} else {
Ok(Hir::char(ch))
}
}
/// Attempt to parse a POSIX character class, e.g., `[:alnum:]`.
///
/// This assumes the parser is positioned at the opening `[`.
///
/// If no valid POSIX character class could be found, then this does not
/// advance the parser and `None` is returned. Otherwise, the parser is
/// advanced to the first byte following the closing `]` and the
/// corresponding POSIX class is returned.
fn maybe_parse_posix_class(&self) -> Option<hir::Class> {
// POSIX character classes are interesting from a parsing perspective
// because parsing cannot fail with any interesting error. For example,
// in order to use an POSIX character class, it must be enclosed in
// double brackets, e.g., `[[:alnum:]]`. Alternatively, you might think
// of it as "POSIX character classes have the syntax `[:NAME:]` which
// can only appear within character brackets." This means that things
// like `[[:lower:]A]` are legal constructs.
//
// However, if one types an incorrect POSIX character class, e.g.,
// `[[:loower:]]`, then we treat that as if it were normal nested
// character class containing the characters `:elorw`. (Which isn't
// supported and results in an error in regex-lite.) One might argue
// that we should return an error instead since the repeated colons
// give away the intent to write an POSIX class. But what if the user
// typed `[[:lower]]` instead? How can we tell that was intended to be
// a POSXI class and not just a normal nested class?
//
// Reasonable people can probably disagree over this, but for better
// or worse, we implement semantics that never fails at the expense of
// better failure modes.
assert_eq!(self.char(), '[');
// If parsing fails, then we back up the parser to this starting point.
let start_pos = self.pos();
let start_char = self.char.get();
let reset = || {
self.pos.set(start_pos);
self.char.set(start_char);
};
let mut negated = false;
if !self.bump() || self.char() != ':' {
reset();
return None;
}
if !self.bump() {
reset();
return None;
}
if self.char() == '^' {
negated = true;
if !self.bump() {
reset();
return None;
}
}
let name_start = self.pos();
while self.char() != ':' && self.bump() {}
if self.is_done() {
reset();
return None;
}
let name = &self.pattern()[name_start..self.pos()];
if !self.bump_if(":]") {
reset();
return None;
}
if let Ok(ranges) = posix_class(name) {
let mut class = hir::Class::new(ranges);
if negated {
class.negate();
}
return Some(class);
}
reset();
None
}
/// Parse a Perl character class, e.g., `\d` or `\W`. This assumes the
/// parser is currently at a valid character class name and will be
/// advanced to the character immediately following the class.
fn parse_perl_class(&self) -> Hir {
let ch = self.char();
self.bump();
let mut class = hir::Class::new(match ch {
'd' | 'D' => posix_class("digit").unwrap(),
's' | 'S' => posix_class("space").unwrap(),
'w' | 'W' => posix_class("word").unwrap(),
unk => unreachable!("invalid Perl class \\{}", unk),
});
if ch.is_ascii_uppercase() {
class.negate();
}
Hir::class(class)
}
fn hir_dot(&self) -> Hir {
if self.flags().dot_matches_new_line {
Hir::class(hir::Class::new([hir::ClassRange {
start: '\x00',
end: '\u{10FFFF}',
}]))
} else if self.flags().crlf {
Hir::class(hir::Class::new([
hir::ClassRange { start: '\x00', end: '\x09' },
hir::ClassRange { start: '\x0B', end: '\x0C' },
hir::ClassRange { start: '\x0E', end: '\u{10FFFF}' },
]))
} else {
Hir::class(hir::Class::new([
hir::ClassRange { start: '\x00', end: '\x09' },
hir::ClassRange { start: '\x0B', end: '\u{10FFFF}' },
]))
}
}
fn hir_anchor_start(&self) -> Hir {
let look = if self.flags().multi_line {
if self.flags().crlf {
hir::Look::StartCRLF
} else {
hir::Look::StartLF
}
} else {
hir::Look::Start
};
Hir::look(look)
}
fn hir_anchor_end(&self) -> Hir {
let look = if self.flags().multi_line {
if self.flags().crlf {
hir::Look::EndCRLF
} else {
hir::Look::EndLF
}
} else {
hir::Look::End
};
Hir::look(look)
}
fn hir_char(&self, ch: char) -> Hir {
if self.flags().case_insensitive {
let this = hir::ClassRange { start: ch, end: ch };
if let Some(folded) = this.ascii_case_fold() {
return Hir::class(hir::Class::new([this, folded]));
}
}
Hir::char(ch)
}
}
/// This checks the depth of the given `Hir` value, and if it exceeds the given
/// limit, then an error is returned.
fn check_hir_nesting(hir: &Hir, limit: u32) -> Result<(), Error> {
fn recurse(hir: &Hir, limit: u32, depth: u32) -> Result<(), Error> {
if depth > limit {
return Err(Error::new(ERR_TOO_MUCH_NESTING));
}
let Some(next_depth) = depth.checked_add(1) else {
return Err(Error::new(ERR_TOO_MUCH_NESTING));
};
match *hir.kind() {
HirKind::Empty
| HirKind::Char(_)
| HirKind::Class(_)
| HirKind::Look(_) => Ok(()),
HirKind::Repetition(hir::Repetition { ref sub, .. }) => {
recurse(sub, limit, next_depth)
}
HirKind::Capture(hir::Capture { ref sub, .. }) => {
recurse(sub, limit, next_depth)
}
HirKind::Concat(ref subs) | HirKind::Alternation(ref subs) => {
for sub in subs.iter() {
recurse(sub, limit, next_depth)?;
}
Ok(())
}
}
}
recurse(hir, limit, 0)
}
/// Converts the given Hir to a literal char if the Hir is just a single
/// character. Otherwise this returns an error.
///
/// This is useful in contexts where you can only accept a single character,
/// but where it is convenient to parse something more general. For example,
/// parsing a single part of a character class range. It's useful to reuse
/// the literal parsing code, but that code can itself return entire classes
/// which can't be used as the start/end of a class range.
fn into_class_item_range(hir: Hir) -> Result<char, Error> {
match hir.kind {
HirKind::Char(ch) => Ok(ch),
_ => Err(Error::new(ERR_CLASS_INVALID_RANGE_ITEM)),
}
}
fn into_class_item_ranges(
mut hir: Hir,
) -> Result<Vec<hir::ClassRange>, Error> {
match core::mem::replace(&mut hir.kind, HirKind::Empty) {
HirKind::Char(ch) => Ok(vec![hir::ClassRange { start: ch, end: ch }]),
HirKind::Class(hir::Class { ranges }) => Ok(ranges),
_ => Err(Error::new(ERR_CLASS_INVALID_ITEM)),
}
}
/// Returns an iterator of character class ranges for the given named POSIX
/// character class. If no such character class exists for the name given, then
/// an error is returned.
fn posix_class(
kind: &str,
) -> Result<impl Iterator<Item = hir::ClassRange>, Error> {
let slice: &'static [(u8, u8)] = match kind {
"alnum" => &[(b'0', b'9'), (b'A', b'Z'), (b'a', b'z')],
"alpha" => &[(b'A', b'Z'), (b'a', b'z')],
"ascii" => &[(b'\x00', b'\x7F')],
"blank" => &[(b'\t', b'\t'), (b' ', b' ')],
"cntrl" => &[(b'\x00', b'\x1F'), (b'\x7F', b'\x7F')],
"digit" => &[(b'0', b'9')],
"graph" => &[(b'!', b'~')],
"lower" => &[(b'a', b'z')],
"print" => &[(b' ', b'~')],
"punct" => &[(b'!', b'/'), (b':', b'@'), (b'[', b'`'), (b'{', b'~')],
"space" => &[
(b'\t', b'\t'),
(b'\n', b'\n'),
(b'\x0B', b'\x0B'),
(b'\x0C', b'\x0C'),
(b'\r', b'\r'),
(b' ', b' '),
],
"upper" => &[(b'A', b'Z')],
"word" => &[(b'0', b'9'), (b'A', b'Z'), (b'_', b'_'), (b'a', b'z')],
"xdigit" => &[(b'0', b'9'), (b'A', b'F'), (b'a', b'f')],
_ => return Err(Error::new(ERR_POSIX_CLASS_UNRECOGNIZED)),
};
Ok(slice.iter().map(|&(start, end)| hir::ClassRange {
start: char::from(start),
end: char::from(end),
}))
}
/// Returns true if the given character is a hexadecimal digit.
fn is_hex(c: char) -> bool {
('0' <= c && c <= '9') || ('a' <= c && c <= 'f') || ('A' <= c && c <= 'F')
}
/// Returns true if the given character is a valid in a capture group name.
///
/// If `first` is true, then `c` is treated as the first character in the
/// group name (which must be alphabetic or underscore).
fn is_capture_char(c: char, first: bool) -> bool {
if first {
c == '_' || c.is_alphabetic()
} else {
c == '_' || c == '.' || c == '[' || c == ']' || c.is_alphanumeric()
}
}
#[cfg(test)]
mod tests {
use super::*;
fn p(pattern: &str) -> Hir {
Parser::new(Config::default(), pattern).parse_inner().unwrap()
}
fn perr(pattern: &str) -> String {
Parser::new(Config::default(), pattern)
.parse_inner()
.unwrap_err()
.to_string()
}
fn class<I: IntoIterator<Item = (char, char)>>(it: I) -> Hir {
Hir::class(hir::Class::new(
it.into_iter().map(|(start, end)| hir::ClassRange { start, end }),
))
}
fn singles<I: IntoIterator<Item = char>>(it: I) -> Hir {
Hir::class(hir::Class::new(
it.into_iter().map(|ch| hir::ClassRange { start: ch, end: ch }),
))
}
fn posix(name: &str) -> Hir {
Hir::class(hir::Class::new(posix_class(name).unwrap()))
}
fn cap(index: u32, sub: Hir) -> Hir {
Hir::capture(hir::Capture { index, name: None, sub: Box::new(sub) })
}
fn named_cap(index: u32, name: &str, sub: Hir) -> Hir {
Hir::capture(hir::Capture {
index,
name: Some(Box::from(name)),
sub: Box::new(sub),
})
}
#[test]
fn ok_literal() {
assert_eq!(p("a"), Hir::char('a'));
assert_eq!(p("ab"), Hir::concat(vec![Hir::char('a'), Hir::char('b')]));
assert_eq!(p("💩"), Hir::char('💩'));
}
#[test]
fn ok_meta_escapes() {
assert_eq!(p(r"\*"), Hir::char('*'));
assert_eq!(p(r"\+"), Hir::char('+'));
assert_eq!(p(r"\?"), Hir::char('?'));
assert_eq!(p(r"\|"), Hir::char('|'));
assert_eq!(p(r"\("), Hir::char('('));
assert_eq!(p(r"\)"), Hir::char(')'));
assert_eq!(p(r"\^"), Hir::char('^'));
assert_eq!(p(r"\$"), Hir::char('$'));
assert_eq!(p(r"\["), Hir::char('['));
assert_eq!(p(r"\]"), Hir::char(']'));
}
#[test]
fn ok_special_escapes() {
assert_eq!(p(r"\a"), Hir::char('\x07'));
assert_eq!(p(r"\f"), Hir::char('\x0C'));
assert_eq!(p(r"\t"), Hir::char('\t'));
assert_eq!(p(r"\n"), Hir::char('\n'));
assert_eq!(p(r"\r"), Hir::char('\r'));
assert_eq!(p(r"\v"), Hir::char('\x0B'));
assert_eq!(p(r"\A"), Hir::look(hir::Look::Start));
assert_eq!(p(r"\z"), Hir::look(hir::Look::End));
assert_eq!(p(r"\b"), Hir::look(hir::Look::Word));
assert_eq!(p(r"\B"), Hir::look(hir::Look::WordNegate));
}
#[test]
fn ok_hex() {
// fixed length
assert_eq!(p(r"\x41"), Hir::char('A'));
assert_eq!(p(r"\u2603"), Hir::char('☃'));
assert_eq!(p(r"\U0001F4A9"), Hir::char('💩'));
// braces
assert_eq!(p(r"\x{1F4A9}"), Hir::char('💩'));
assert_eq!(p(r"\u{1F4A9}"), Hir::char('💩'));
assert_eq!(p(r"\U{1F4A9}"), Hir::char('💩'));
}
#[test]
fn ok_perl() {
assert_eq!(p(r"\d"), posix("digit"));
assert_eq!(p(r"\s"), posix("space"));
assert_eq!(p(r"\w"), posix("word"));
let negated = |name| {
let mut class = hir::Class::new(posix_class(name).unwrap());
class.negate();
Hir::class(class)
};
assert_eq!(p(r"\D"), negated("digit"));
assert_eq!(p(r"\S"), negated("space"));
assert_eq!(p(r"\W"), negated("word"));
}
#[test]
fn ok_flags_and_primitives() {
assert_eq!(p(r"a"), Hir::char('a'));
assert_eq!(p(r"(?i:a)"), singles(['A', 'a']));
assert_eq!(p(r"^"), Hir::look(hir::Look::Start));
assert_eq!(p(r"(?m:^)"), Hir::look(hir::Look::StartLF));
assert_eq!(p(r"(?mR:^)"), Hir::look(hir::Look::StartCRLF));
assert_eq!(p(r"$"), Hir::look(hir::Look::End));
assert_eq!(p(r"(?m:$)"), Hir::look(hir::Look::EndLF));
assert_eq!(p(r"(?mR:$)"), Hir::look(hir::Look::EndCRLF));
assert_eq!(p(r"."), class([('\x00', '\x09'), ('\x0B', '\u{10FFFF}')]));
assert_eq!(
p(r"(?R:.)"),
class([
('\x00', '\x09'),
('\x0B', '\x0C'),
('\x0E', '\u{10FFFF}'),
])
);
assert_eq!(p(r"(?s:.)"), class([('\x00', '\u{10FFFF}')]));
assert_eq!(p(r"(?sR:.)"), class([('\x00', '\u{10FFFF}')]));
}
#[test]
fn ok_alternate() {
assert_eq!(
p(r"a|b"),
Hir::alternation(vec![Hir::char('a'), Hir::char('b')])
);
assert_eq!(
p(r"(?:a|b)"),
Hir::alternation(vec![Hir::char('a'), Hir::char('b')])
);
assert_eq!(
p(r"(a|b)"),
cap(1, Hir::alternation(vec![Hir::char('a'), Hir::char('b')]))
);
assert_eq!(
p(r"(?<foo>a|b)"),
named_cap(
1,
"foo",
Hir::alternation(vec![Hir::char('a'), Hir::char('b')])
)
);
assert_eq!(
p(r"a|b|c"),
Hir::alternation(vec![
Hir::char('a'),
Hir::char('b'),
Hir::char('c')
])
);
assert_eq!(
p(r"ax|by|cz"),
Hir::alternation(vec![
Hir::concat(vec![Hir::char('a'), Hir::char('x')]),
Hir::concat(vec![Hir::char('b'), Hir::char('y')]),
Hir::concat(vec![Hir::char('c'), Hir::char('z')]),
])
);
assert_eq!(
p(r"(ax|(by|(cz)))"),
cap(
1,
Hir::alternation(vec![
Hir::concat(vec![Hir::char('a'), Hir::char('x')]),
cap(
2,
Hir::alternation(vec![
Hir::concat(vec![Hir::char('b'), Hir::char('y')]),
cap(
3,
Hir::concat(vec![
Hir::char('c'),
Hir::char('z')
])
),
])
),
])
)
);
assert_eq!(
p(r"|"),
Hir::alternation(vec![Hir::empty(), Hir::empty()])
);
assert_eq!(
p(r"||"),
Hir::alternation(vec![Hir::empty(), Hir::empty(), Hir::empty()])
);
assert_eq!(
p(r"a|"),
Hir::alternation(vec![Hir::char('a'), Hir::empty()])
);
assert_eq!(
p(r"|a"),
Hir::alternation(vec![Hir::empty(), Hir::char('a')])
);
assert_eq!(
p(r"(|)"),
cap(1, Hir::alternation(vec![Hir::empty(), Hir::empty()]))
);
assert_eq!(
p(r"(a|)"),
cap(1, Hir::alternation(vec![Hir::char('a'), Hir::empty()]))
);
assert_eq!(
p(r"(|a)"),
cap(1, Hir::alternation(vec![Hir::empty(), Hir::char('a')]))
);
}
#[test]
fn ok_flag_group() {
assert_eq!(
p("a(?i:b)"),
Hir::concat(vec![Hir::char('a'), singles(['B', 'b'])])
);
}
#[test]
fn ok_flag_directive() {
assert_eq!(p("(?i)a"), singles(['A', 'a']));
assert_eq!(p("a(?i)"), Hir::char('a'));
assert_eq!(
p("a(?i)b"),
Hir::concat(vec![Hir::char('a'), singles(['B', 'b'])])
);
assert_eq!(
p("a(?i)a(?-i)a"),
Hir::concat(vec![
Hir::char('a'),
singles(['A', 'a']),
Hir::char('a'),
])
);
assert_eq!(
p("a(?:(?i)a)a"),
Hir::concat(vec![
Hir::char('a'),
singles(['A', 'a']),
Hir::char('a'),
])
);
assert_eq!(
p("a((?i)a)a"),
Hir::concat(vec![
Hir::char('a'),
cap(1, singles(['A', 'a'])),
Hir::char('a'),
])
);
}
#[test]
fn ok_uncounted_repetition() {
assert_eq!(
p(r"a?"),
Hir::repetition(hir::Repetition {
min: 0,
max: Some(1),
greedy: true,
sub: Box::new(Hir::char('a')),
}),
);
assert_eq!(
p(r"a*"),
Hir::repetition(hir::Repetition {
min: 0,
max: None,
greedy: true,
sub: Box::new(Hir::char('a')),
}),
);
assert_eq!(
p(r"a+"),
Hir::repetition(hir::Repetition {
min: 1,
max: None,
greedy: true,
sub: Box::new(Hir::char('a')),
}),
);
assert_eq!(
p(r"a??"),
Hir::repetition(hir::Repetition {
min: 0,
max: Some(1),
greedy: false,
sub: Box::new(Hir::char('a')),
}),
);
assert_eq!(
p(r"a*?"),
Hir::repetition(hir::Repetition {
min: 0,
max: None,
greedy: false,
sub: Box::new(Hir::char('a')),
}),
);
assert_eq!(
p(r"a+?"),
Hir::repetition(hir::Repetition {
min: 1,
max: None,
greedy: false,
sub: Box::new(Hir::char('a')),
}),
);
assert_eq!(
p(r"a?b"),
Hir::concat(vec![
Hir::repetition(hir::Repetition {
min: 0,
max: Some(1),
greedy: true,
sub: Box::new(Hir::char('a')),
}),
Hir::char('b'),
]),
);
assert_eq!(
p(r"ab?"),
Hir::concat(vec![
Hir::char('a'),
Hir::repetition(hir::Repetition {
min: 0,
max: Some(1),
greedy: true,
sub: Box::new(Hir::char('b')),
}),
]),
);
assert_eq!(
p(r"(?:ab)?"),
Hir::repetition(hir::Repetition {
min: 0,
max: Some(1),
greedy: true,
sub: Box::new(Hir::concat(vec![
Hir::char('a'),
Hir::char('b')
])),
}),
);
assert_eq!(
p(r"(ab)?"),
Hir::repetition(hir::Repetition {
min: 0,
max: Some(1),
greedy: true,
sub: Box::new(cap(
1,
Hir::concat(vec![Hir::char('a'), Hir::char('b')])
)),
}),
);
assert_eq!(
p(r"|a?"),
Hir::alternation(vec![
Hir::empty(),
Hir::repetition(hir::Repetition {
min: 0,
max: Some(1),
greedy: true,
sub: Box::new(Hir::char('a')),
})
]),
);
}
#[test]
fn ok_counted_repetition() {
assert_eq!(
p(r"a{5}"),
Hir::repetition(hir::Repetition {
min: 5,
max: Some(5),
greedy: true,
sub: Box::new(Hir::char('a')),
}),
);
assert_eq!(
p(r"a{5}?"),
Hir::repetition(hir::Repetition {
min: 5,
max: Some(5),
greedy: false,
sub: Box::new(Hir::char('a')),
}),
);
assert_eq!(
p(r"a{5,}"),
Hir::repetition(hir::Repetition {
min: 5,
max: None,
greedy: true,
sub: Box::new(Hir::char('a')),
}),
);
assert_eq!(
p(r"a{5,9}"),
Hir::repetition(hir::Repetition {
min: 5,
max: Some(9),
greedy: true,
sub: Box::new(Hir::char('a')),
}),
);
assert_eq!(
p(r"ab{5}c"),
Hir::concat(vec![
Hir::char('a'),
Hir::repetition(hir::Repetition {
min: 5,
max: Some(5),
greedy: true,
sub: Box::new(Hir::char('b')),
}),
Hir::char('c'),
]),
);
assert_eq!(
p(r"a{ 5 }"),
Hir::repetition(hir::Repetition {
min: 5,
max: Some(5),
greedy: true,
sub: Box::new(Hir::char('a')),
}),
);
assert_eq!(
p(r"a{ 5 , 9 }"),
Hir::repetition(hir::Repetition {
min: 5,
max: Some(9),
greedy: true,
sub: Box::new(Hir::char('a')),
}),
);
}
#[test]
fn ok_group_unnamed() {
assert_eq!(p("(a)"), cap(1, Hir::char('a')));
assert_eq!(
p("(ab)"),
cap(1, Hir::concat(vec![Hir::char('a'), Hir::char('b')]))
);
}
#[test]
fn ok_group_named() {
assert_eq!(p("(?P<foo>a)"), named_cap(1, "foo", Hir::char('a')));
assert_eq!(p("(?<foo>a)"), named_cap(1, "foo", Hir::char('a')));
assert_eq!(
p("(?P<foo>ab)"),
named_cap(
1,
"foo",
Hir::concat(vec![Hir::char('a'), Hir::char('b')])
)
);
assert_eq!(
p("(?<foo>ab)"),
named_cap(
1,
"foo",
Hir::concat(vec![Hir::char('a'), Hir::char('b')])
)
);
assert_eq!(p(r"(?<a>z)"), named_cap(1, "a", Hir::char('z')));
assert_eq!(p(r"(?P<a>z)"), named_cap(1, "a", Hir::char('z')));
assert_eq!(p(r"(?<a_1>z)"), named_cap(1, "a_1", Hir::char('z')));
assert_eq!(p(r"(?P<a_1>z)"), named_cap(1, "a_1", Hir::char('z')));
assert_eq!(p(r"(?<a.1>z)"), named_cap(1, "a.1", Hir::char('z')));
assert_eq!(p(r"(?P<a.1>z)"), named_cap(1, "a.1", Hir::char('z')));
assert_eq!(p(r"(?<a[1]>z)"), named_cap(1, "a[1]", Hir::char('z')));
assert_eq!(p(r"(?P<a[1]>z)"), named_cap(1, "a[1]", Hir::char('z')));
assert_eq!(p(r"(?<a¾>z)"), named_cap(1, "a¾", Hir::char('z')));
assert_eq!(p(r"(?P<a¾>z)"), named_cap(1, "a¾", Hir::char('z')));
assert_eq!(p(r"(?<名字>z)"), named_cap(1, "名字", Hir::char('z')));
assert_eq!(p(r"(?P<名字>z)"), named_cap(1, "名字", Hir::char('z')));
}
#[test]
fn ok_class() {
assert_eq!(p(r"[a]"), singles(['a']));
assert_eq!(p(r"[a\]]"), singles(['a', ']']));
assert_eq!(p(r"[a\-z]"), singles(['a', '-', 'z']));
assert_eq!(p(r"[ab]"), class([('a', 'b')]));
assert_eq!(p(r"[a-]"), singles(['a', '-']));
assert_eq!(p(r"[-a]"), singles(['a', '-']));
assert_eq!(p(r"[--a]"), singles(['a', '-']));
assert_eq!(p(r"[---a]"), singles(['a', '-']));
assert_eq!(p(r"[[:alnum:]]"), posix("alnum"));
assert_eq!(p(r"[\w]"), posix("word"));
assert_eq!(p(r"[a\wz]"), posix("word"));
assert_eq!(p(r"[\s\S]"), class([('\x00', '\u{10FFFF}')]));
assert_eq!(p(r"[^\s\S]"), Hir::fail());
assert_eq!(p(r"[a-cx-z]"), class([('a', 'c'), ('x', 'z')]));
assert_eq!(p(r"[☃-⛄]"), class([('☃', '⛄')]));
assert_eq!(p(r"[]]"), singles([']']));
assert_eq!(p(r"[]a]"), singles([']', 'a']));
assert_eq!(p(r"[]\[]"), singles(['[', ']']));
assert_eq!(p(r"[\[]"), singles(['[']));
assert_eq!(p(r"(?i)[a]"), singles(['A', 'a']));
assert_eq!(p(r"(?i)[A]"), singles(['A', 'a']));
assert_eq!(p(r"(?i)[k]"), singles(['K', 'k']));
assert_eq!(p(r"(?i)[s]"), singles(['S', 's']));
assert_eq!(p(r"(?i)[β]"), singles(['β']));
assert_eq!(p(r"[^^]"), class([('\x00', ']'), ('_', '\u{10FFFF}')]));
assert_eq!(
p(r"[^-a]"),
class([('\x00', ','), ('.', '`'), ('b', '\u{10FFFF}')])
);
assert_eq!(
p(r"[-]a]"),
Hir::concat(vec![singles(['-']), Hir::char('a'), Hir::char(']')])
);
}
#[test]
fn ok_verbatim() {
assert_eq!(
p(r"(?x)a{5,9} ?"),
Hir::repetition(hir::Repetition {
min: 5,
max: Some(9),
greedy: false,
sub: Box::new(Hir::char('a')),
})
);
assert_eq!(p(r"(?x)[ a]"), singles(['a']));
assert_eq!(
p(r"(?x)[ ^ a]"),
class([('\x00', '`'), ('b', '\u{10FFFF}')])
);
assert_eq!(p(r"(?x)[ - a]"), singles(['a', '-']));
assert_eq!(p(r"(?x)[ ] a]"), singles([']', 'a']));
assert_eq!(
p(r"(?x)a b"),
Hir::concat(vec![Hir::char('a'), Hir::char('b')])
);
assert_eq!(
p(r"(?x)a b(?-x)a b"),
Hir::concat(vec![
Hir::char('a'),
Hir::char('b'),
Hir::char('a'),
Hir::char(' '),
Hir::char('b'),
])
);
assert_eq!(
p(r"a (?x:a )a "),
Hir::concat(vec![
Hir::char('a'),
Hir::char(' '),
Hir::char('a'),
Hir::char('a'),
Hir::char(' '),
])
);
assert_eq!(
p(r"(?x)( ?P<foo> a )"),
named_cap(1, "foo", Hir::char('a')),
);
assert_eq!(p(r"(?x)( a )"), cap(1, Hir::char('a')));
assert_eq!(p(r"(?x)( ?: a )"), Hir::char('a'));
assert_eq!(p(r"(?x)\x { 53 }"), Hir::char('\x53'));
assert_eq!(p(r"(?x)\ "), Hir::char(' '));
}
#[test]
fn ok_comments() {
let pat = "(?x)
# This is comment 1.
foo # This is comment 2.
# This is comment 3.
bar
# This is comment 4.";
assert_eq!(
p(pat),
Hir::concat(vec![
Hir::char('f'),
Hir::char('o'),
Hir::char('o'),
Hir::char('b'),
Hir::char('a'),
Hir::char('r'),
])
);
}
#[test]
fn err_standard() {
assert_eq!(
ERR_TOO_MUCH_NESTING,
perr("(((((((((((((((((((((((((((((((((((((((((((((((((((a)))))))))))))))))))))))))))))))))))))))))))))))))))"),
);
// This one is tricky, because the only way it can happen is if the
// number of captures overflows u32. Perhaps we should allow setting a
// lower limit?
// assert_eq!(ERR_TOO_MANY_CAPTURES, perr(""));
assert_eq!(ERR_DUPLICATE_CAPTURE_NAME, perr(r"(?P<a>y)(?P<a>z)"));
assert_eq!(ERR_UNCLOSED_GROUP, perr("("));
assert_eq!(ERR_UNCLOSED_GROUP_QUESTION, perr("(?"));
assert_eq!(ERR_UNOPENED_GROUP, perr(")"));
assert_eq!(ERR_LOOK_UNSUPPORTED, perr(r"(?=a)"));
assert_eq!(ERR_LOOK_UNSUPPORTED, perr(r"(?!a)"));
assert_eq!(ERR_LOOK_UNSUPPORTED, perr(r"(?<=a)"));
assert_eq!(ERR_LOOK_UNSUPPORTED, perr(r"(?<!a)"));
assert_eq!(ERR_EMPTY_FLAGS, perr(r"(?)"));
assert_eq!(ERR_MISSING_GROUP_NAME, perr(r"(?P<"));
assert_eq!(ERR_MISSING_GROUP_NAME, perr(r"(?<"));
assert_eq!(ERR_INVALID_GROUP_NAME, perr(r"(?P<1abc>z)"));
assert_eq!(ERR_INVALID_GROUP_NAME, perr(r"(?<1abc>z)"));
assert_eq!(ERR_INVALID_GROUP_NAME, perr(r"(?<¾>z)"));
assert_eq!(ERR_INVALID_GROUP_NAME, perr(r"(?<¾a>z)"));
assert_eq!(ERR_INVALID_GROUP_NAME, perr(r"(?<☃>z)"));
assert_eq!(ERR_INVALID_GROUP_NAME, perr(r"(?<a☃>z)"));
assert_eq!(ERR_UNCLOSED_GROUP_NAME, perr(r"(?P<foo"));
assert_eq!(ERR_UNCLOSED_GROUP_NAME, perr(r"(?<foo"));
assert_eq!(ERR_EMPTY_GROUP_NAME, perr(r"(?P<>z)"));
assert_eq!(ERR_EMPTY_GROUP_NAME, perr(r"(?<>z)"));
assert_eq!(ERR_FLAG_UNRECOGNIZED, perr(r"(?z:foo)"));
assert_eq!(ERR_FLAG_REPEATED_NEGATION, perr(r"(?s-i-R)"));
assert_eq!(ERR_FLAG_DUPLICATE, perr(r"(?isi)"));
assert_eq!(ERR_FLAG_DUPLICATE, perr(r"(?is-i)"));
assert_eq!(ERR_FLAG_UNEXPECTED_EOF, perr(r"(?is"));
assert_eq!(ERR_FLAG_DANGLING_NEGATION, perr(r"(?is-:foo)"));
assert_eq!(ERR_HEX_BRACE_INVALID_DIGIT, perr(r"\x{Z}"));
assert_eq!(ERR_HEX_BRACE_UNEXPECTED_EOF, perr(r"\x{"));
assert_eq!(ERR_HEX_BRACE_UNEXPECTED_EOF, perr(r"\x{A"));
assert_eq!(ERR_HEX_BRACE_EMPTY, perr(r"\x{}"));
assert_eq!(ERR_HEX_BRACE_INVALID, perr(r"\x{FFFFFFFFFFFFFFFFF}"));
assert_eq!(ERR_HEX_FIXED_UNEXPECTED_EOF, perr(r"\xA"));
assert_eq!(ERR_HEX_FIXED_INVALID_DIGIT, perr(r"\xZ"));
assert_eq!(ERR_HEX_FIXED_INVALID_DIGIT, perr(r"\xZA"));
assert_eq!(ERR_HEX_FIXED_INVALID_DIGIT, perr(r"\xAZ"));
assert_eq!(ERR_HEX_FIXED_INVALID, perr(r"\uD800"));
assert_eq!(ERR_HEX_FIXED_INVALID, perr(r"\UFFFFFFFF"));
assert_eq!(ERR_HEX_UNEXPECTED_EOF, perr(r"\x"));
assert_eq!(ERR_ESCAPE_UNEXPECTED_EOF, perr(r"\"));
assert_eq!(ERR_BACKREF_UNSUPPORTED, perr(r"\0"));
assert_eq!(ERR_BACKREF_UNSUPPORTED, perr(r"\1"));
assert_eq!(ERR_BACKREF_UNSUPPORTED, perr(r"\8"));
assert_eq!(ERR_UNICODE_CLASS_UNSUPPORTED, perr(r"\pL"));
assert_eq!(ERR_UNICODE_CLASS_UNSUPPORTED, perr(r"\p{L}"));
assert_eq!(ERR_ESCAPE_UNRECOGNIZED, perr(r"\i"));
assert_eq!(ERR_UNCOUNTED_REP_SUB_MISSING, perr(r"?"));
assert_eq!(ERR_UNCOUNTED_REP_SUB_MISSING, perr(r"*"));
assert_eq!(ERR_UNCOUNTED_REP_SUB_MISSING, perr(r"+"));
assert_eq!(ERR_UNCOUNTED_REP_SUB_MISSING, perr(r"(+)"));
assert_eq!(ERR_UNCOUNTED_REP_SUB_MISSING, perr(r"|?"));
assert_eq!(ERR_UNCOUNTED_REP_SUB_MISSING, perr(r"(?i)?"));
assert_eq!(ERR_COUNTED_REP_SUB_MISSING, perr(r"{5}"));
assert_eq!(ERR_COUNTED_REP_SUB_MISSING, perr(r"({5})"));
assert_eq!(ERR_COUNTED_REP_SUB_MISSING, perr(r"(?i){5}"));
assert_eq!(ERR_COUNTED_REP_UNCLOSED, perr(r"a{"));
assert_eq!(ERR_COUNTED_REP_MIN_UNCLOSED, perr(r"a{5"));
assert_eq!(ERR_COUNTED_REP_COMMA_UNCLOSED, perr(r"a{5,"));
assert_eq!(ERR_COUNTED_REP_MIN_MAX_UNCLOSED, perr(r"a{5,6"));
assert_eq!(ERR_COUNTED_REP_INVALID, perr(r"a{5,6Z"));
assert_eq!(ERR_COUNTED_REP_INVALID_RANGE, perr(r"a{6,5}"));
assert_eq!(ERR_DECIMAL_NO_DIGITS, perr(r"a{}"));
assert_eq!(ERR_DECIMAL_NO_DIGITS, perr(r"a{]}"));
assert_eq!(ERR_DECIMAL_INVALID, perr(r"a{999999999999999}"));
assert_eq!(ERR_CLASS_UNCLOSED_AFTER_ITEM, perr(r"[a"));
assert_eq!(ERR_CLASS_INVALID_RANGE_ITEM, perr(r"[\w-a]"));
assert_eq!(ERR_CLASS_INVALID_RANGE_ITEM, perr(r"[a-\w]"));
assert_eq!(ERR_CLASS_INVALID_ITEM, perr(r"[\b]"));
assert_eq!(ERR_CLASS_UNCLOSED_AFTER_DASH, perr(r"[a-"));
assert_eq!(ERR_CLASS_UNCLOSED_AFTER_NEGATION, perr(r"[^"));
assert_eq!(ERR_CLASS_UNCLOSED_AFTER_CLOSING, perr(r"[]"));
assert_eq!(ERR_CLASS_INVALID_RANGE, perr(r"[z-a]"));
assert_eq!(ERR_CLASS_UNCLOSED, perr(r"["));
assert_eq!(ERR_CLASS_UNCLOSED, perr(r"[a-z"));
assert_eq!(ERR_CLASS_NEST_UNSUPPORTED, perr(r"[a-z[A-Z]]"));
assert_eq!(ERR_CLASS_NEST_UNSUPPORTED, perr(r"[[:alnum]]"));
assert_eq!(ERR_CLASS_INTERSECTION_UNSUPPORTED, perr(r"[a&&b]"));
assert_eq!(ERR_CLASS_DIFFERENCE_UNSUPPORTED, perr(r"[a--b]"));
assert_eq!(ERR_CLASS_SYMDIFFERENCE_UNSUPPORTED, perr(r"[a~~b]"));
assert_eq!(ERR_SPECIAL_WORD_BOUNDARY_UNCLOSED, perr(r"\b{foo"));
assert_eq!(ERR_SPECIAL_WORD_BOUNDARY_UNCLOSED, perr(r"\b{foo!}"));
assert_eq!(ERR_SPECIAL_WORD_BOUNDARY_UNRECOGNIZED, perr(r"\b{foo}"));
assert_eq!(ERR_SPECIAL_WORD_OR_REP_UNEXPECTED_EOF, perr(r"\b{"));
assert_eq!(ERR_SPECIAL_WORD_OR_REP_UNEXPECTED_EOF, perr(r"(?x)\b{ "));
}
#[test]
fn err_verbatim() {
// See: https://github.com/rust-lang/regex/issues/792
assert_eq!(ERR_CLASS_UNCLOSED_AFTER_DASH, perr(r"(?x)[-#]"));
assert_eq!(ERR_CLASS_UNCLOSED_AFTER_ITEM, perr(r"(?x)[a "));
assert_eq!(ERR_CLASS_UNCLOSED_AFTER_DASH, perr(r"(?x)[a- "));
assert_eq!(ERR_CLASS_UNCLOSED, perr(r"(?x)[ "));
}
// This tests a bug fix where the nest limit checker wasn't decrementing
// its depth during post-traversal, which causes long regexes to trip
// the default limit too aggressively.
#[test]
fn regression_454_nest_too_big() {
let pattern = r#"
2(?:
[45]\d{3}|
7(?:
1[0-267]|
2[0-289]|
3[0-29]|
4[01]|
5[1-3]|
6[013]|
7[0178]|
91
)|
8(?:
0[125]|
[139][1-6]|
2[0157-9]|
41|
6[1-35]|
7[1-5]|
8[1-8]|
90
)|
9(?:
0[0-2]|
1[0-4]|
2[568]|
3[3-6]|
5[5-7]|
6[0167]|
7[15]|
8[0146-9]
)
)\d{4}
"#;
p(pattern);
}
// This tests that we treat a trailing `-` in a character class as a
// literal `-` even when whitespace mode is enabled and there is whitespace
// after the trailing `-`.
#[test]
fn regression_455_trailing_dash_ignore_whitespace() {
p("(?x)[ / - ]");
p("(?x)[ a - ]");
p("(?x)[
a
- ]
");
p("(?x)[
a # wat
- ]
");
perr("(?x)[ / -");
perr("(?x)[ / - ");
perr(
"(?x)[
/ -
",
);
perr(
"(?x)[
/ - # wat
",
);
}
#[test]
fn regression_capture_indices() {
let got = p(r"(a|ab|c|bcd){4,10}(d*)");
assert_eq!(
got,
Hir::concat(vec![
Hir::repetition(hir::Repetition {
min: 4,
max: Some(10),
greedy: true,
sub: Box::new(cap(
1,
Hir::alternation(vec![
Hir::char('a'),
Hir::concat(vec![Hir::char('a'), Hir::char('b')]),
Hir::char('c'),
Hir::concat(vec![
Hir::char('b'),
Hir::char('c'),
Hir::char('d')
]),
])
))
}),
cap(
2,
Hir::repetition(hir::Repetition {
min: 0,
max: None,
greedy: true,
sub: Box::new(Hir::char('d')),
})
),
])
);
}
}