regex_lite/hir/
parse.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
use core::cell::{Cell, RefCell};

use alloc::{
    boxed::Box,
    string::{String, ToString},
    vec,
    vec::Vec,
};

use crate::{
    error::Error,
    hir::{self, Config, Flags, Hir, HirKind},
};

// These are all of the errors that can occur while parsing a regex. Unlike
// regex-syntax, our errors are not particularly great. They are just enough
// to get a general sense of what went wrong. But in exchange, the error
// reporting mechanism is *much* simpler than what's in regex-syntax.
//
// By convention, we use each of these messages in exactly one place. That
// way, every branch that leads to an error has a unique message. This in turn
// means that given a message, one can precisely identify which part of the
// parser reported it.
//
// Finally, we give names to each message so that we can reference them in
// tests.
const ERR_TOO_MUCH_NESTING: &str = "pattern has too much nesting";
const ERR_TOO_MANY_CAPTURES: &str = "too many capture groups";
const ERR_DUPLICATE_CAPTURE_NAME: &str = "duplicate capture group name";
const ERR_UNCLOSED_GROUP: &str = "found open group without closing ')'";
const ERR_UNCLOSED_GROUP_QUESTION: &str =
    "expected closing ')', but got end of pattern";
const ERR_UNOPENED_GROUP: &str = "found closing ')' without matching '('";
const ERR_LOOK_UNSUPPORTED: &str = "look-around is not supported";
const ERR_EMPTY_FLAGS: &str = "empty flag directive '(?)' is not allowed";
const ERR_MISSING_GROUP_NAME: &str =
    "expected capture group name, but got end of pattern";
const ERR_INVALID_GROUP_NAME: &str = "invalid group name";
const ERR_UNCLOSED_GROUP_NAME: &str =
    "expected end of capture group name, but got end of pattern";
const ERR_EMPTY_GROUP_NAME: &str = "empty capture group names are not allowed";
const ERR_FLAG_UNRECOGNIZED: &str = "unrecognized inline flag";
const ERR_FLAG_REPEATED_NEGATION: &str =
    "inline flag negation cannot be repeated";
const ERR_FLAG_DUPLICATE: &str = "duplicate inline flag is not allowed";
const ERR_FLAG_UNEXPECTED_EOF: &str =
    "expected ':' or ')' to end inline flags, but got end of pattern";
const ERR_FLAG_DANGLING_NEGATION: &str =
    "inline flags cannot end with negation directive";
const ERR_DECIMAL_NO_DIGITS: &str =
    "expected decimal number, but found no digits";
const ERR_DECIMAL_INVALID: &str = "got invalid decimal number";
const ERR_HEX_BRACE_INVALID_DIGIT: &str =
    "expected hexadecimal number in braces, but got non-hex digit";
const ERR_HEX_BRACE_UNEXPECTED_EOF: &str =
    "expected hexadecimal number, but saw end of pattern before closing brace";
const ERR_HEX_BRACE_EMPTY: &str =
    "expected hexadecimal number in braces, but got no digits";
const ERR_HEX_BRACE_INVALID: &str = "got invalid hexadecimal number in braces";
const ERR_HEX_FIXED_UNEXPECTED_EOF: &str =
    "expected fixed length hexadecimal number, but saw end of pattern first";
const ERR_HEX_FIXED_INVALID_DIGIT: &str =
    "expected fixed length hexadecimal number, but got non-hex digit";
const ERR_HEX_FIXED_INVALID: &str =
    "got invalid fixed length hexadecimal number";
const ERR_HEX_UNEXPECTED_EOF: &str =
    "expected hexadecimal number, but saw end of pattern first";
const ERR_ESCAPE_UNEXPECTED_EOF: &str =
    "saw start of escape sequence, but saw end of pattern before it finished";
const ERR_BACKREF_UNSUPPORTED: &str = "backreferences are not supported";
const ERR_UNICODE_CLASS_UNSUPPORTED: &str =
    "Unicode character classes are not supported";
const ERR_ESCAPE_UNRECOGNIZED: &str = "unrecognized escape sequence";
const ERR_POSIX_CLASS_UNRECOGNIZED: &str =
    "unrecognized POSIX character class";
const ERR_UNCOUNTED_REP_SUB_MISSING: &str =
    "uncounted repetition operator must be applied to a sub-expression";
const ERR_COUNTED_REP_SUB_MISSING: &str =
    "counted repetition operator must be applied to a sub-expression";
const ERR_COUNTED_REP_UNCLOSED: &str =
    "found unclosed counted repetition operator";
const ERR_COUNTED_REP_MIN_UNCLOSED: &str =
    "found incomplete and unclosed counted repetition operator";
const ERR_COUNTED_REP_COMMA_UNCLOSED: &str =
    "found counted repetition operator with a comma that is unclosed";
const ERR_COUNTED_REP_MIN_MAX_UNCLOSED: &str =
    "found counted repetition with min and max that is unclosed";
const ERR_COUNTED_REP_INVALID: &str =
    "expected closing brace for counted repetition, but got something else";
const ERR_COUNTED_REP_INVALID_RANGE: &str =
    "found counted repetition with a min bigger than its max";
const ERR_CLASS_UNCLOSED_AFTER_ITEM: &str =
    "non-empty character class has no closing bracket";
const ERR_CLASS_INVALID_RANGE_ITEM: &str =
    "character class ranges must start and end with a single character";
const ERR_CLASS_INVALID_ITEM: &str =
    "invalid escape sequence in character class";
const ERR_CLASS_UNCLOSED_AFTER_DASH: &str =
    "non-empty character class has no closing bracket after dash";
const ERR_CLASS_UNCLOSED_AFTER_NEGATION: &str =
    "negated character class has no closing bracket";
const ERR_CLASS_UNCLOSED_AFTER_CLOSING: &str =
    "character class begins with literal ']' but has no closing bracket";
const ERR_CLASS_INVALID_RANGE: &str = "invalid range in character class";
const ERR_CLASS_UNCLOSED: &str = "found unclosed character class";
const ERR_CLASS_NEST_UNSUPPORTED: &str =
    "nested character classes are not supported";
const ERR_CLASS_INTERSECTION_UNSUPPORTED: &str =
    "character class intersection is not supported";
const ERR_CLASS_DIFFERENCE_UNSUPPORTED: &str =
    "character class difference is not supported";
const ERR_CLASS_SYMDIFFERENCE_UNSUPPORTED: &str =
    "character class symmetric difference is not supported";
const ERR_SPECIAL_WORD_BOUNDARY_UNCLOSED: &str =
    "special word boundary assertion is unclosed or has an invalid character";
const ERR_SPECIAL_WORD_BOUNDARY_UNRECOGNIZED: &str =
    "special word boundary assertion is unrecognized";
const ERR_SPECIAL_WORD_OR_REP_UNEXPECTED_EOF: &str =
    "found start of special word boundary or repetition without an end";

/// A regular expression parser.
///
/// This parses a string representation of a regular expression into an
/// abstract syntax tree. The size of the tree is proportional to the length
/// of the regular expression pattern.
///
/// A `Parser` can be configured in more detail via a [`ParserBuilder`].
#[derive(Clone, Debug)]
pub(super) struct Parser<'a> {
    /// The configuration of the parser as given by the caller.
    config: Config,
    /// The pattern we're parsing as given by the caller.
    pattern: &'a str,
    /// The call depth of the parser. This is incremented for each
    /// sub-expression parsed. Its peak value is the maximum nesting of the
    /// pattern.
    depth: Cell<u32>,
    /// The current position of the parser.
    pos: Cell<usize>,
    /// The current codepoint of the parser. The codepoint corresponds to the
    /// codepoint encoded in `pattern` beginning at `pos`.
    ///
    /// This is `None` if and only if `pos == pattern.len()`.
    char: Cell<Option<char>>,
    /// The current capture index.
    capture_index: Cell<u32>,
    /// The flags that are currently set.
    flags: RefCell<Flags>,
    /// A sorted sequence of capture names. This is used to detect duplicate
    /// capture names and report an error if one is detected.
    capture_names: RefCell<Vec<String>>,
}

/// The constructor and a variety of helper routines.
impl<'a> Parser<'a> {
    /// Build a parser from this configuration with the given pattern.
    pub(super) fn new(config: Config, pattern: &'a str) -> Parser<'a> {
        Parser {
            config,
            pattern,
            depth: Cell::new(0),
            pos: Cell::new(0),
            char: Cell::new(pattern.chars().next()),
            capture_index: Cell::new(0),
            flags: RefCell::new(config.flags),
            capture_names: RefCell::new(vec![]),
        }
    }

    /// Returns the full pattern string that we're parsing.
    fn pattern(&self) -> &str {
        self.pattern
    }

    /// Return the current byte offset of the parser.
    ///
    /// The offset starts at `0` from the beginning of the regular expression
    /// pattern string.
    fn pos(&self) -> usize {
        self.pos.get()
    }

    /// Increments the call depth of the parser.
    ///
    /// If the call depth would exceed the configured nest limit, then this
    /// returns an error.
    ///
    /// This returns the old depth.
    fn increment_depth(&self) -> Result<u32, Error> {
        let old = self.depth.get();
        if old > self.config.nest_limit {
            return Err(Error::new(ERR_TOO_MUCH_NESTING));
        }
        // OK because our depth starts at 0, and we return an error if it
        // ever reaches the limit. So the call depth can never exceed u32::MAX.
        let new = old.checked_add(1).unwrap();
        self.depth.set(new);
        Ok(old)
    }

    /// Decrements the call depth of the parser.
    ///
    /// This panics if the current depth is 0.
    fn decrement_depth(&self) {
        let old = self.depth.get();
        // If this fails then the caller has a bug in how they're incrementing
        // and decrementing the depth of the parser's call stack.
        let new = old.checked_sub(1).unwrap();
        self.depth.set(new);
    }

    /// Return the codepoint at the current position of the parser.
    ///
    /// This panics if the parser is positioned at the end of the pattern.
    fn char(&self) -> char {
        self.char.get().expect("codepoint, but parser is done")
    }

    /// Returns true if the next call to `bump` would return false.
    fn is_done(&self) -> bool {
        self.pos() == self.pattern.len()
    }

    /// Returns the flags that are current set for this regex.
    fn flags(&self) -> Flags {
        *self.flags.borrow()
    }

    /// Bump the parser to the next Unicode scalar value.
    ///
    /// If the end of the input has been reached, then `false` is returned.
    fn bump(&self) -> bool {
        if self.is_done() {
            return false;
        }
        self.pos.set(self.pos() + self.char().len_utf8());
        self.char.set(self.pattern()[self.pos()..].chars().next());
        self.char.get().is_some()
    }

    /// If the substring starting at the current position of the parser has
    /// the given prefix, then bump the parser to the character immediately
    /// following the prefix and return true. Otherwise, don't bump the parser
    /// and return false.
    fn bump_if(&self, prefix: &str) -> bool {
        if self.pattern()[self.pos()..].starts_with(prefix) {
            for _ in 0..prefix.chars().count() {
                self.bump();
            }
            true
        } else {
            false
        }
    }

    /// Bump the parser, and if the `x` flag is enabled, bump through any
    /// subsequent spaces. Return true if and only if the parser is not done.
    fn bump_and_bump_space(&self) -> bool {
        if !self.bump() {
            return false;
        }
        self.bump_space();
        !self.is_done()
    }

    /// If the `x` flag is enabled (i.e., whitespace insensitivity with
    /// comments), then this will advance the parser through all whitespace
    /// and comments to the next non-whitespace non-comment byte.
    ///
    /// If the `x` flag is disabled, then this is a no-op.
    ///
    /// This should be used selectively throughout the parser where
    /// arbitrary whitespace is permitted when the `x` flag is enabled. For
    /// example, `{   5  , 6}` is equivalent to `{5,6}`.
    fn bump_space(&self) {
        if !self.flags().ignore_whitespace {
            return;
        }
        while !self.is_done() {
            if self.char().is_whitespace() {
                self.bump();
            } else if self.char() == '#' {
                self.bump();
                while !self.is_done() {
                    let c = self.char();
                    self.bump();
                    if c == '\n' {
                        break;
                    }
                }
            } else {
                break;
            }
        }
    }

    /// Peek at the next character in the input without advancing the parser.
    ///
    /// If the input has been exhausted, then this returns `None`.
    fn peek(&self) -> Option<char> {
        if self.is_done() {
            return None;
        }
        self.pattern()[self.pos() + self.char().len_utf8()..].chars().next()
    }

    /// Peeks at the next character in the pattern from the current offset, and
    /// will ignore spaces when the parser is in whitespace insensitive mode.
    fn peek_space(&self) -> Option<char> {
        if !self.flags().ignore_whitespace {
            return self.peek();
        }
        if self.is_done() {
            return None;
        }
        let mut start = self.pos() + self.char().len_utf8();
        let mut in_comment = false;
        for (i, ch) in self.pattern()[start..].char_indices() {
            if ch.is_whitespace() {
                continue;
            } else if !in_comment && ch == '#' {
                in_comment = true;
            } else if in_comment && ch == '\n' {
                in_comment = false;
            } else {
                start += i;
                break;
            }
        }
        self.pattern()[start..].chars().next()
    }

    /// Return the next capturing index. Each subsequent call increments the
    /// internal index. Since the way capture indices are computed is a public
    /// API guarantee, use of this routine depends on the parser being depth
    /// first and left-to-right.
    ///
    /// If the capture limit is exceeded, then an error is returned.
    fn next_capture_index(&self) -> Result<u32, Error> {
        let current = self.capture_index.get();
        let next = current
            .checked_add(1)
            .ok_or_else(|| Error::new(ERR_TOO_MANY_CAPTURES))?;
        self.capture_index.set(next);
        Ok(next)
    }

    /// Adds the given capture name to this parser. If this capture name has
    /// already been used, then an error is returned.
    fn add_capture_name(&self, name: &str) -> Result<(), Error> {
        let mut names = self.capture_names.borrow_mut();
        match names.binary_search_by(|n| name.cmp(n)) {
            Ok(_) => Err(Error::new(ERR_DUPLICATE_CAPTURE_NAME)),
            Err(i) => {
                names.insert(i, name.to_string());
                Ok(())
            }
        }
    }

    /// Returns true if and only if the parser is positioned at a look-around
    /// prefix. The conditions under which this returns true must always
    /// correspond to a regular expression that would otherwise be consider
    /// invalid.
    ///
    /// This should only be called immediately after parsing the opening of
    /// a group or a set of flags.
    fn is_lookaround_prefix(&self) -> bool {
        self.bump_if("?=")
            || self.bump_if("?!")
            || self.bump_if("?<=")
            || self.bump_if("?<!")
    }
}

/// The actual parser. We try to break out each kind of regex syntax into its
/// own routine.
impl<'a> Parser<'a> {
    pub(super) fn parse(&self) -> Result<Hir, Error> {
        let hir = self.parse_inner()?;
        // While we also check nesting during parsing, that only checks the
        // number of recursive parse calls. It does not necessarily cover
        // all possible recursive nestings of the Hir itself. For example,
        // repetition operators don't require recursive parse calls. So one
        // can stack them arbitrarily without overflowing the stack in the
        // *parser*. But then if one recurses over the resulting Hir, a stack
        // overflow is possible. So here we check the Hir nesting level
        // thoroughly to ensure it isn't nested too deeply.
        //
        // Note that we do still need the nesting limit check in the parser as
        // well, since that will avoid overflowing the stack during parse time
        // before the complete Hir value is constructed.
        check_hir_nesting(&hir, self.config.nest_limit)?;
        Ok(hir)
    }

    fn parse_inner(&self) -> Result<Hir, Error> {
        let depth = self.increment_depth()?;
        let mut alternates = vec![];
        let mut concat = vec![];
        loop {
            self.bump_space();
            if self.is_done() {
                break;
            }
            match self.char() {
                '(' => {
                    // Save the old flags and reset them only when we close
                    // the group.
                    let oldflags = *self.flags.borrow();
                    if let Some(sub) = self.parse_group()? {
                        concat.push(sub);
                        // We only reset them here because if 'parse_group'
                        // returns None, then that means it handled a flag
                        // directive, e.g., '(?ism)'. And the whole point is
                        // that those flags remain active until either disabled
                        // or the end of the pattern or current group.
                        *self.flags.borrow_mut() = oldflags;
                    }
                    if self.char.get() != Some(')') {
                        return Err(Error::new(ERR_UNCLOSED_GROUP));
                    }
                    self.bump();
                }
                ')' => {
                    if depth == 0 {
                        return Err(Error::new(ERR_UNOPENED_GROUP));
                    }
                    break;
                }
                '|' => {
                    alternates.push(Hir::concat(core::mem::take(&mut concat)));
                    self.bump();
                }
                '[' => concat.push(self.parse_class()?),
                '?' | '*' | '+' => {
                    concat = self.parse_uncounted_repetition(concat)?;
                }
                '{' => {
                    concat = self.parse_counted_repetition(concat)?;
                }
                _ => concat.push(self.parse_primitive()?),
            }
        }
        self.decrement_depth();
        alternates.push(Hir::concat(concat));
        // N.B. This strips off the "alternation" if there's only one branch.
        Ok(Hir::alternation(alternates))
    }

    /// Parses a "primitive" pattern. A primitive is any expression that does
    /// not contain any sub-expressions.
    ///
    /// This assumes the parser is pointing at the beginning of the primitive.
    fn parse_primitive(&self) -> Result<Hir, Error> {
        let ch = self.char();
        self.bump();
        match ch {
            '\\' => self.parse_escape(),
            '.' => Ok(self.hir_dot()),
            '^' => Ok(self.hir_anchor_start()),
            '$' => Ok(self.hir_anchor_end()),
            ch => Ok(self.hir_char(ch)),
        }
    }

    /// Parse an escape sequence. This always results in a "primitive" HIR,
    /// that is, an HIR with no sub-expressions.
    ///
    /// This assumes the parser is positioned at the start of the sequence,
    /// immediately *after* the `\`. It advances the parser to the first
    /// position immediately following the escape sequence.
    fn parse_escape(&self) -> Result<Hir, Error> {
        if self.is_done() {
            return Err(Error::new(ERR_ESCAPE_UNEXPECTED_EOF));
        }
        let ch = self.char();
        // Put some of the more complicated routines into helpers.
        match ch {
            '0'..='9' => return Err(Error::new(ERR_BACKREF_UNSUPPORTED)),
            'p' | 'P' => {
                return Err(Error::new(ERR_UNICODE_CLASS_UNSUPPORTED))
            }
            'x' | 'u' | 'U' => return self.parse_hex(),
            'd' | 's' | 'w' | 'D' | 'S' | 'W' => {
                return Ok(self.parse_perl_class());
            }
            _ => {}
        }

        // Handle all of the one letter sequences inline.
        self.bump();
        if hir::is_meta_character(ch) || hir::is_escapeable_character(ch) {
            return Ok(self.hir_char(ch));
        }
        let special = |ch| Ok(self.hir_char(ch));
        match ch {
            'a' => special('\x07'),
            'f' => special('\x0C'),
            't' => special('\t'),
            'n' => special('\n'),
            'r' => special('\r'),
            'v' => special('\x0B'),
            'A' => Ok(Hir::look(hir::Look::Start)),
            'z' => Ok(Hir::look(hir::Look::End)),
            'b' => {
                let mut hir = Hir::look(hir::Look::Word);
                if !self.is_done() && self.char() == '{' {
                    if let Some(special) =
                        self.maybe_parse_special_word_boundary()?
                    {
                        hir = special;
                    }
                }
                Ok(hir)
            }
            'B' => Ok(Hir::look(hir::Look::WordNegate)),
            '<' => Ok(Hir::look(hir::Look::WordStart)),
            '>' => Ok(Hir::look(hir::Look::WordEnd)),
            _ => Err(Error::new(ERR_ESCAPE_UNRECOGNIZED)),
        }
    }

    /// Attempt to parse a specialty word boundary. That is, `\b{start}`,
    /// `\b{end}`, `\b{start-half}` or `\b{end-half}`.
    ///
    /// This is similar to `maybe_parse_ascii_class` in that, in most cases,
    /// if it fails it will just return `None` with no error. This is done
    /// because `\b{5}` is a valid expression and we want to let that be parsed
    /// by the existing counted repetition parsing code. (I thought about just
    /// invoking the counted repetition code from here, but it seemed a little
    /// ham-fisted.)
    ///
    /// Unlike `maybe_parse_ascii_class` though, this can return an error.
    /// Namely, if we definitely know it isn't a counted repetition, then we
    /// return an error specific to the specialty word boundaries.
    ///
    /// This assumes the parser is positioned at a `{` immediately following
    /// a `\b`. When `None` is returned, the parser is returned to the position
    /// at which it started: pointing at a `{`.
    ///
    /// The position given should correspond to the start of the `\b`.
    fn maybe_parse_special_word_boundary(&self) -> Result<Option<Hir>, Error> {
        assert_eq!(self.char(), '{');

        let is_valid_char = |c| match c {
            'A'..='Z' | 'a'..='z' | '-' => true,
            _ => false,
        };
        let start = self.pos();
        if !self.bump_and_bump_space() {
            return Err(Error::new(ERR_SPECIAL_WORD_OR_REP_UNEXPECTED_EOF));
        }
        // This is one of the critical bits: if the first non-whitespace
        // character isn't in [-A-Za-z] (i.e., this can't be a special word
        // boundary), then we bail and let the counted repetition parser deal
        // with this.
        if !is_valid_char(self.char()) {
            self.pos.set(start);
            self.char.set(Some('{'));
            return Ok(None);
        }

        // Now collect up our chars until we see a '}'.
        let mut scratch = String::new();
        while !self.is_done() && is_valid_char(self.char()) {
            scratch.push(self.char());
            self.bump_and_bump_space();
        }
        if self.is_done() || self.char() != '}' {
            return Err(Error::new(ERR_SPECIAL_WORD_BOUNDARY_UNCLOSED));
        }
        self.bump();
        let kind = match scratch.as_str() {
            "start" => hir::Look::WordStart,
            "end" => hir::Look::WordEnd,
            "start-half" => hir::Look::WordStartHalf,
            "end-half" => hir::Look::WordEndHalf,
            _ => {
                return Err(Error::new(ERR_SPECIAL_WORD_BOUNDARY_UNRECOGNIZED))
            }
        };
        Ok(Some(Hir::look(kind)))
    }

    /// Parse a hex representation of a Unicode codepoint. This handles both
    /// hex notations, i.e., `\xFF` and `\x{FFFF}`. This expects the parser to
    /// be positioned at the `x`, `u` or `U` prefix. The parser is advanced to
    /// the first character immediately following the hexadecimal literal.
    fn parse_hex(&self) -> Result<Hir, Error> {
        let digit_len = match self.char() {
            'x' => 2,
            'u' => 4,
            'U' => 8,
            unk => unreachable!(
                "invalid start of fixed length hexadecimal number {}",
                unk
            ),
        };
        if !self.bump_and_bump_space() {
            return Err(Error::new(ERR_HEX_UNEXPECTED_EOF));
        }
        if self.char() == '{' {
            self.parse_hex_brace()
        } else {
            self.parse_hex_digits(digit_len)
        }
    }

    /// Parse an N-digit hex representation of a Unicode codepoint. This
    /// expects the parser to be positioned at the first digit and will advance
    /// the parser to the first character immediately following the escape
    /// sequence.
    ///
    /// The number of digits given must be 2 (for `\xNN`), 4 (for `\uNNNN`)
    /// or 8 (for `\UNNNNNNNN`).
    fn parse_hex_digits(&self, digit_len: usize) -> Result<Hir, Error> {
        let mut scratch = String::new();
        for i in 0..digit_len {
            if i > 0 && !self.bump_and_bump_space() {
                return Err(Error::new(ERR_HEX_FIXED_UNEXPECTED_EOF));
            }
            if !is_hex(self.char()) {
                return Err(Error::new(ERR_HEX_FIXED_INVALID_DIGIT));
            }
            scratch.push(self.char());
        }
        // The final bump just moves the parser past the literal, which may
        // be EOF.
        self.bump_and_bump_space();
        match u32::from_str_radix(&scratch, 16).ok().and_then(char::from_u32) {
            None => Err(Error::new(ERR_HEX_FIXED_INVALID)),
            Some(ch) => Ok(self.hir_char(ch)),
        }
    }

    /// Parse a hex representation of any Unicode scalar value. This expects
    /// the parser to be positioned at the opening brace `{` and will advance
    /// the parser to the first character following the closing brace `}`.
    fn parse_hex_brace(&self) -> Result<Hir, Error> {
        let mut scratch = String::new();
        while self.bump_and_bump_space() && self.char() != '}' {
            if !is_hex(self.char()) {
                return Err(Error::new(ERR_HEX_BRACE_INVALID_DIGIT));
            }
            scratch.push(self.char());
        }
        if self.is_done() {
            return Err(Error::new(ERR_HEX_BRACE_UNEXPECTED_EOF));
        }
        assert_eq!(self.char(), '}');
        self.bump_and_bump_space();

        if scratch.is_empty() {
            return Err(Error::new(ERR_HEX_BRACE_EMPTY));
        }
        match u32::from_str_radix(&scratch, 16).ok().and_then(char::from_u32) {
            None => Err(Error::new(ERR_HEX_BRACE_INVALID)),
            Some(ch) => Ok(self.hir_char(ch)),
        }
    }

    /// Parse a decimal number into a u32 while trimming leading and trailing
    /// whitespace.
    ///
    /// This expects the parser to be positioned at the first position where
    /// a decimal digit could occur. This will advance the parser to the byte
    /// immediately following the last contiguous decimal digit.
    ///
    /// If no decimal digit could be found or if there was a problem parsing
    /// the complete set of digits into a u32, then an error is returned.
    fn parse_decimal(&self) -> Result<u32, Error> {
        let mut scratch = String::new();
        while !self.is_done() && self.char().is_whitespace() {
            self.bump();
        }
        while !self.is_done() && '0' <= self.char() && self.char() <= '9' {
            scratch.push(self.char());
            self.bump_and_bump_space();
        }
        while !self.is_done() && self.char().is_whitespace() {
            self.bump_and_bump_space();
        }
        let digits = scratch.as_str();
        if digits.is_empty() {
            return Err(Error::new(ERR_DECIMAL_NO_DIGITS));
        }
        match u32::from_str_radix(digits, 10).ok() {
            Some(n) => Ok(n),
            None => Err(Error::new(ERR_DECIMAL_INVALID)),
        }
    }

    /// Parses an uncounted repetition operator. An uncounted repetition
    /// operator includes `?`, `*` and `+`, but does not include the `{m,n}`
    /// syntax. The current character should be one of `?`, `*` or `+`. Any
    /// other character will result in a panic.
    ///
    /// This assumes that the parser is currently positioned at the repetition
    /// operator and advances the parser to the first character after the
    /// operator. (Note that the operator may include a single additional `?`,
    /// which makes the operator ungreedy.)
    ///
    /// The caller should include the concatenation that is being built. The
    /// concatenation returned includes the repetition operator applied to the
    /// last expression in the given concatenation.
    ///
    /// If the concatenation is empty, then this returns an error.
    fn parse_uncounted_repetition(
        &self,
        mut concat: Vec<Hir>,
    ) -> Result<Vec<Hir>, Error> {
        let sub = match concat.pop() {
            Some(hir) => Box::new(hir),
            None => {
                return Err(Error::new(ERR_UNCOUNTED_REP_SUB_MISSING));
            }
        };
        let (min, max) = match self.char() {
            '?' => (0, Some(1)),
            '*' => (0, None),
            '+' => (1, None),
            unk => unreachable!("unrecognized repetition operator '{}'", unk),
        };
        let mut greedy = true;
        if self.bump() && self.char() == '?' {
            greedy = false;
            self.bump();
        }
        if self.flags().swap_greed {
            greedy = !greedy;
        }
        concat.push(Hir::repetition(hir::Repetition {
            min,
            max,
            greedy,
            sub,
        }));
        Ok(concat)
    }

    /// Parses a counted repetition operation. A counted repetition operator
    /// corresponds to the `{m,n}` syntax, and does not include the `?`, `*` or
    /// `+` operators.
    ///
    /// This assumes that the parser is currently at the opening `{` and
    /// advances the parser to the first character after the operator. (Note
    /// that the operator may include a single additional `?`, which makes the
    /// operator ungreedy.)
    ///
    /// The caller should include the concatenation that is being built. The
    /// concatenation returned includes the repetition operator applied to the
    /// last expression in the given concatenation.
    ///
    /// If the concatenation is empty, then this returns an error.
    fn parse_counted_repetition(
        &self,
        mut concat: Vec<Hir>,
    ) -> Result<Vec<Hir>, Error> {
        assert_eq!(self.char(), '{', "expected opening brace");
        let sub = match concat.pop() {
            Some(hir) => Box::new(hir),
            None => {
                return Err(Error::new(ERR_COUNTED_REP_SUB_MISSING));
            }
        };
        if !self.bump_and_bump_space() {
            return Err(Error::new(ERR_COUNTED_REP_UNCLOSED));
        }
        let min = self.parse_decimal()?;
        let mut max = Some(min);
        if self.is_done() {
            return Err(Error::new(ERR_COUNTED_REP_MIN_UNCLOSED));
        }
        if self.char() == ',' {
            if !self.bump_and_bump_space() {
                return Err(Error::new(ERR_COUNTED_REP_COMMA_UNCLOSED));
            }
            if self.char() != '}' {
                max = Some(self.parse_decimal()?);
            } else {
                max = None;
            }
            if self.is_done() {
                return Err(Error::new(ERR_COUNTED_REP_MIN_MAX_UNCLOSED));
            }
        }
        if self.char() != '}' {
            return Err(Error::new(ERR_COUNTED_REP_INVALID));
        }

        let mut greedy = true;
        if self.bump_and_bump_space() && self.char() == '?' {
            greedy = false;
            self.bump();
        }
        if self.flags().swap_greed {
            greedy = !greedy;
        }

        if max.map_or(false, |max| min > max) {
            return Err(Error::new(ERR_COUNTED_REP_INVALID_RANGE));
        }
        concat.push(Hir::repetition(hir::Repetition {
            min,
            max,
            greedy,
            sub,
        }));
        Ok(concat)
    }

    /// Parses the part of a pattern that starts with a `(`. This is usually
    /// a group sub-expression, but might just be a directive that enables
    /// (or disables) certain flags.
    ///
    /// This assumes the parser is pointing at the opening `(`.
    fn parse_group(&self) -> Result<Option<Hir>, Error> {
        assert_eq!(self.char(), '(');
        self.bump_and_bump_space();
        if self.is_lookaround_prefix() {
            return Err(Error::new(ERR_LOOK_UNSUPPORTED));
        }
        if self.bump_if("?P<") || self.bump_if("?<") {
            let index = self.next_capture_index()?;
            let name = Some(Box::from(self.parse_capture_name()?));
            let sub = Box::new(self.parse_inner()?);
            let cap = hir::Capture { index, name, sub };
            Ok(Some(Hir::capture(cap)))
        } else if self.bump_if("?") {
            if self.is_done() {
                return Err(Error::new(ERR_UNCLOSED_GROUP_QUESTION));
            }
            let start = self.pos();
            // The flags get reset in the top-level 'parse' routine.
            *self.flags.borrow_mut() = self.parse_flags()?;
            let consumed = self.pos() - start;
            if self.char() == ')' {
                // We don't allow empty flags, e.g., `(?)`.
                if consumed == 0 {
                    return Err(Error::new(ERR_EMPTY_FLAGS));
                }
                Ok(None)
            } else {
                assert_eq!(':', self.char());
                self.bump();
                self.parse_inner().map(Some)
            }
        } else {
            let index = self.next_capture_index()?;
            let sub = Box::new(self.parse_inner()?);
            let cap = hir::Capture { index, name: None, sub };
            Ok(Some(Hir::capture(cap)))
        }
    }

    /// Parses a capture group name. Assumes that the parser is positioned at
    /// the first character in the name following the opening `<` (and may
    /// possibly be EOF). This advances the parser to the first character
    /// following the closing `>`.
    fn parse_capture_name(&self) -> Result<&str, Error> {
        if self.is_done() {
            return Err(Error::new(ERR_MISSING_GROUP_NAME));
        }
        let start = self.pos();
        loop {
            if self.char() == '>' {
                break;
            }
            if !is_capture_char(self.char(), self.pos() == start) {
                return Err(Error::new(ERR_INVALID_GROUP_NAME));
            }
            if !self.bump() {
                break;
            }
        }
        let end = self.pos();
        if self.is_done() {
            return Err(Error::new(ERR_UNCLOSED_GROUP_NAME));
        }
        assert_eq!(self.char(), '>');
        self.bump();
        let name = &self.pattern()[start..end];
        if name.is_empty() {
            return Err(Error::new(ERR_EMPTY_GROUP_NAME));
        }
        self.add_capture_name(name)?;
        Ok(name)
    }

    /// Parse a sequence of flags starting at the current character.
    ///
    /// This advances the parser to the character immediately following the
    /// flags, which is guaranteed to be either `:` or `)`.
    ///
    /// # Errors
    ///
    /// If any flags are duplicated, then an error is returned.
    ///
    /// If the negation operator is used more than once, then an error is
    /// returned.
    ///
    /// If no flags could be found or if the negation operation is not followed
    /// by any flags, then an error is returned.
    fn parse_flags(&self) -> Result<Flags, Error> {
        let mut flags = *self.flags.borrow();
        let mut negate = false;
        // Keeps track of whether the previous flag item was a '-'. We use this
        // to detect whether there is a dangling '-', which is invalid.
        let mut last_was_negation = false;
        // A set to keep track of the flags we've seen. Since all flags are
        // ASCII, we only need 128 bytes.
        let mut seen = [false; 128];
        while self.char() != ':' && self.char() != ')' {
            if self.char() == '-' {
                last_was_negation = true;
                if negate {
                    return Err(Error::new(ERR_FLAG_REPEATED_NEGATION));
                }
                negate = true;
            } else {
                last_was_negation = false;
                self.parse_flag(&mut flags, negate)?;
                // OK because every valid flag is ASCII, and we're only here if
                // the flag is valid.
                let flag_byte = u8::try_from(self.char()).unwrap();
                if seen[usize::from(flag_byte)] {
                    return Err(Error::new(ERR_FLAG_DUPLICATE));
                }
                seen[usize::from(flag_byte)] = true;
            }
            if !self.bump() {
                return Err(Error::new(ERR_FLAG_UNEXPECTED_EOF));
            }
        }
        if last_was_negation {
            return Err(Error::new(ERR_FLAG_DANGLING_NEGATION));
        }
        Ok(flags)
    }

    /// Parse the current character as a flag. Do not advance the parser.
    ///
    /// This sets the appropriate boolean value in place on the set of flags
    /// given. The boolean is inverted when `negate` is true.
    ///
    /// # Errors
    ///
    /// If the flag is not recognized, then an error is returned.
    fn parse_flag(
        &self,
        flags: &mut Flags,
        negate: bool,
    ) -> Result<(), Error> {
        let enabled = !negate;
        match self.char() {
            'i' => flags.case_insensitive = enabled,
            'm' => flags.multi_line = enabled,
            's' => flags.dot_matches_new_line = enabled,
            'U' => flags.swap_greed = enabled,
            'R' => flags.crlf = enabled,
            'x' => flags.ignore_whitespace = enabled,
            // We make a special exception for this flag where we let it
            // through as a recognized flag, but treat it as a no-op. This in
            // practice retains some compatibility with the regex crate. It is
            // a little suspect to do this, but for example, '(?-u:\b).+' in
            // the regex crate is equivalent to '\b.+' in regex-lite.
            'u' => {}
            _ => return Err(Error::new(ERR_FLAG_UNRECOGNIZED)),
        }
        Ok(())
    }

    /// Parse a standard character class consisting primarily of characters or
    /// character ranges.
    ///
    /// This assumes the parser is positioned at the opening `[`. If parsing
    /// is successful, then the parser is advanced to the position immediately
    /// following the closing `]`.
    fn parse_class(&self) -> Result<Hir, Error> {
        assert_eq!(self.char(), '[');

        let mut union = vec![];
        if !self.bump_and_bump_space() {
            return Err(Error::new(ERR_CLASS_UNCLOSED));
        }
        // Determine whether the class is negated or not.
        let negate = if self.char() != '^' {
            false
        } else {
            if !self.bump_and_bump_space() {
                return Err(Error::new(ERR_CLASS_UNCLOSED_AFTER_NEGATION));
            }
            true
        };
        // Accept any number of `-` as literal `-`.
        while self.char() == '-' {
            union.push(hir::ClassRange { start: '-', end: '-' });
            if !self.bump_and_bump_space() {
                return Err(Error::new(ERR_CLASS_UNCLOSED_AFTER_DASH));
            }
        }
        // If `]` is the *first* char in a set, then interpret it as a literal
        // `]`. That is, an empty class is impossible to write.
        if union.is_empty() && self.char() == ']' {
            union.push(hir::ClassRange { start: ']', end: ']' });
            if !self.bump_and_bump_space() {
                return Err(Error::new(ERR_CLASS_UNCLOSED_AFTER_CLOSING));
            }
        }
        loop {
            self.bump_space();
            if self.is_done() {
                return Err(Error::new(ERR_CLASS_UNCLOSED));
            }
            match self.char() {
                '[' => {
                    // Attempt to treat this as the beginning of a POSIX class.
                    // If POSIX class parsing fails, then the parser backs up
                    // to `[`.
                    if let Some(class) = self.maybe_parse_posix_class() {
                        union.extend_from_slice(&class.ranges);
                        continue;
                    }
                    // ... otherwise we don't support nested classes.
                    return Err(Error::new(ERR_CLASS_NEST_UNSUPPORTED));
                }
                ']' => {
                    self.bump();
                    let mut class = hir::Class::new(union);
                    // Note that we must apply case folding before negation!
                    // Consider `(?i)[^x]`. If we applied negation first, then
                    // the result would be the character class that matched any
                    // Unicode scalar value.
                    if self.flags().case_insensitive {
                        class.ascii_case_fold();
                    }
                    if negate {
                        class.negate();
                    }
                    return Ok(Hir::class(class));
                }
                '&' if self.peek() == Some('&') => {
                    return Err(Error::new(
                        ERR_CLASS_INTERSECTION_UNSUPPORTED,
                    ));
                }
                '-' if self.peek() == Some('-') => {
                    return Err(Error::new(ERR_CLASS_DIFFERENCE_UNSUPPORTED));
                }
                '~' if self.peek() == Some('~') => {
                    return Err(Error::new(
                        ERR_CLASS_SYMDIFFERENCE_UNSUPPORTED,
                    ));
                }
                _ => self.parse_class_range(&mut union)?,
            }
        }
    }

    /// Parse a single primitive item in a character class set. The item to
    /// be parsed can either be one of a simple literal character, a range
    /// between two simple literal characters or a "primitive" character
    /// class like `\w`.
    ///
    /// If an invalid escape is found, or if a character class is found where
    /// a simple literal is expected (e.g., in a range), then an error is
    /// returned.
    ///
    /// Otherwise, the range (or ranges) are appended to the given union of
    /// ranges.
    fn parse_class_range(
        &self,
        union: &mut Vec<hir::ClassRange>,
    ) -> Result<(), Error> {
        let prim1 = self.parse_class_item()?;
        self.bump_space();
        if self.is_done() {
            return Err(Error::new(ERR_CLASS_UNCLOSED_AFTER_ITEM));
        }
        // If the next char isn't a `-`, then we don't have a range.
        // There are two exceptions. If the char after a `-` is a `]`, then
        // `-` is interpreted as a literal `-`. Alternatively, if the char
        // after a `-` is a `-`, then `--` corresponds to a "difference"
        // operation. (Which we don't support in regex-lite, but error about
        // specifically in an effort to be loud about differences between the
        // main regex crate where possible.)
        if self.char() != '-'
            || self.peek_space() == Some(']')
            || self.peek_space() == Some('-')
        {
            union.extend_from_slice(&into_class_item_ranges(prim1)?);
            return Ok(());
        }
        // OK, now we're parsing a range, so bump past the `-` and parse the
        // second half of the range.
        if !self.bump_and_bump_space() {
            return Err(Error::new(ERR_CLASS_UNCLOSED_AFTER_DASH));
        }
        let prim2 = self.parse_class_item()?;
        let range = hir::ClassRange {
            start: into_class_item_range(prim1)?,
            end: into_class_item_range(prim2)?,
        };
        if range.start > range.end {
            return Err(Error::new(ERR_CLASS_INVALID_RANGE));
        }
        union.push(range);
        Ok(())
    }

    /// Parse a single item in a character class as a primitive, where the
    /// primitive either consists of a verbatim literal or a single escape
    /// sequence.
    ///
    /// This assumes the parser is positioned at the beginning of a primitive,
    /// and advances the parser to the first position after the primitive if
    /// successful.
    ///
    /// Note that it is the caller's responsibility to report an error if an
    /// illegal primitive was parsed.
    fn parse_class_item(&self) -> Result<Hir, Error> {
        let ch = self.char();
        self.bump();
        if ch == '\\' {
            self.parse_escape()
        } else {
            Ok(Hir::char(ch))
        }
    }

    /// Attempt to parse a POSIX character class, e.g., `[:alnum:]`.
    ///
    /// This assumes the parser is positioned at the opening `[`.
    ///
    /// If no valid POSIX character class could be found, then this does not
    /// advance the parser and `None` is returned. Otherwise, the parser is
    /// advanced to the first byte following the closing `]` and the
    /// corresponding POSIX class is returned.
    fn maybe_parse_posix_class(&self) -> Option<hir::Class> {
        // POSIX character classes are interesting from a parsing perspective
        // because parsing cannot fail with any interesting error. For example,
        // in order to use an POSIX character class, it must be enclosed in
        // double brackets, e.g., `[[:alnum:]]`. Alternatively, you might think
        // of it as "POSIX character classes have the syntax `[:NAME:]` which
        // can only appear within character brackets." This means that things
        // like `[[:lower:]A]` are legal constructs.
        //
        // However, if one types an incorrect POSIX character class, e.g.,
        // `[[:loower:]]`, then we treat that as if it were normal nested
        // character class containing the characters `:elorw`. (Which isn't
        // supported and results in an error in regex-lite.) One might argue
        // that we should return an error instead since the repeated colons
        // give away the intent to write an POSIX class. But what if the user
        // typed `[[:lower]]` instead? How can we tell that was intended to be
        // a POSXI class and not just a normal nested class?
        //
        // Reasonable people can probably disagree over this, but for better
        // or worse, we implement semantics that never fails at the expense of
        // better failure modes.
        assert_eq!(self.char(), '[');

        // If parsing fails, then we back up the parser to this starting point.
        let start_pos = self.pos();
        let start_char = self.char.get();
        let reset = || {
            self.pos.set(start_pos);
            self.char.set(start_char);
        };

        let mut negated = false;
        if !self.bump() || self.char() != ':' {
            reset();
            return None;
        }
        if !self.bump() {
            reset();
            return None;
        }
        if self.char() == '^' {
            negated = true;
            if !self.bump() {
                reset();
                return None;
            }
        }
        let name_start = self.pos();
        while self.char() != ':' && self.bump() {}
        if self.is_done() {
            reset();
            return None;
        }
        let name = &self.pattern()[name_start..self.pos()];
        if !self.bump_if(":]") {
            reset();
            return None;
        }
        if let Ok(ranges) = posix_class(name) {
            let mut class = hir::Class::new(ranges);
            if negated {
                class.negate();
            }
            return Some(class);
        }
        reset();
        None
    }

    /// Parse a Perl character class, e.g., `\d` or `\W`. This assumes the
    /// parser is currently at a valid character class name and will be
    /// advanced to the character immediately following the class.
    fn parse_perl_class(&self) -> Hir {
        let ch = self.char();
        self.bump();
        let mut class = hir::Class::new(match ch {
            'd' | 'D' => posix_class("digit").unwrap(),
            's' | 'S' => posix_class("space").unwrap(),
            'w' | 'W' => posix_class("word").unwrap(),
            unk => unreachable!("invalid Perl class \\{}", unk),
        });
        if ch.is_ascii_uppercase() {
            class.negate();
        }
        Hir::class(class)
    }

    fn hir_dot(&self) -> Hir {
        if self.flags().dot_matches_new_line {
            Hir::class(hir::Class::new([hir::ClassRange {
                start: '\x00',
                end: '\u{10FFFF}',
            }]))
        } else if self.flags().crlf {
            Hir::class(hir::Class::new([
                hir::ClassRange { start: '\x00', end: '\x09' },
                hir::ClassRange { start: '\x0B', end: '\x0C' },
                hir::ClassRange { start: '\x0E', end: '\u{10FFFF}' },
            ]))
        } else {
            Hir::class(hir::Class::new([
                hir::ClassRange { start: '\x00', end: '\x09' },
                hir::ClassRange { start: '\x0B', end: '\u{10FFFF}' },
            ]))
        }
    }

    fn hir_anchor_start(&self) -> Hir {
        let look = if self.flags().multi_line {
            if self.flags().crlf {
                hir::Look::StartCRLF
            } else {
                hir::Look::StartLF
            }
        } else {
            hir::Look::Start
        };
        Hir::look(look)
    }

    fn hir_anchor_end(&self) -> Hir {
        let look = if self.flags().multi_line {
            if self.flags().crlf {
                hir::Look::EndCRLF
            } else {
                hir::Look::EndLF
            }
        } else {
            hir::Look::End
        };
        Hir::look(look)
    }

    fn hir_char(&self, ch: char) -> Hir {
        if self.flags().case_insensitive {
            let this = hir::ClassRange { start: ch, end: ch };
            if let Some(folded) = this.ascii_case_fold() {
                return Hir::class(hir::Class::new([this, folded]));
            }
        }
        Hir::char(ch)
    }
}

/// This checks the depth of the given `Hir` value, and if it exceeds the given
/// limit, then an error is returned.
fn check_hir_nesting(hir: &Hir, limit: u32) -> Result<(), Error> {
    fn recurse(hir: &Hir, limit: u32, depth: u32) -> Result<(), Error> {
        if depth > limit {
            return Err(Error::new(ERR_TOO_MUCH_NESTING));
        }
        let Some(next_depth) = depth.checked_add(1) else {
            return Err(Error::new(ERR_TOO_MUCH_NESTING));
        };
        match *hir.kind() {
            HirKind::Empty
            | HirKind::Char(_)
            | HirKind::Class(_)
            | HirKind::Look(_) => Ok(()),
            HirKind::Repetition(hir::Repetition { ref sub, .. }) => {
                recurse(sub, limit, next_depth)
            }
            HirKind::Capture(hir::Capture { ref sub, .. }) => {
                recurse(sub, limit, next_depth)
            }
            HirKind::Concat(ref subs) | HirKind::Alternation(ref subs) => {
                for sub in subs.iter() {
                    recurse(sub, limit, next_depth)?;
                }
                Ok(())
            }
        }
    }
    recurse(hir, limit, 0)
}

/// Converts the given Hir to a literal char if the Hir is just a single
/// character. Otherwise this returns an error.
///
/// This is useful in contexts where you can only accept a single character,
/// but where it is convenient to parse something more general. For example,
/// parsing a single part of a character class range. It's useful to reuse
/// the literal parsing code, but that code can itself return entire classes
/// which can't be used as the start/end of a class range.
fn into_class_item_range(hir: Hir) -> Result<char, Error> {
    match hir.kind {
        HirKind::Char(ch) => Ok(ch),
        _ => Err(Error::new(ERR_CLASS_INVALID_RANGE_ITEM)),
    }
}

fn into_class_item_ranges(
    mut hir: Hir,
) -> Result<Vec<hir::ClassRange>, Error> {
    match core::mem::replace(&mut hir.kind, HirKind::Empty) {
        HirKind::Char(ch) => Ok(vec![hir::ClassRange { start: ch, end: ch }]),
        HirKind::Class(hir::Class { ranges }) => Ok(ranges),
        _ => Err(Error::new(ERR_CLASS_INVALID_ITEM)),
    }
}

/// Returns an iterator of character class ranges for the given named POSIX
/// character class. If no such character class exists for the name given, then
/// an error is returned.
fn posix_class(
    kind: &str,
) -> Result<impl Iterator<Item = hir::ClassRange>, Error> {
    let slice: &'static [(u8, u8)] = match kind {
        "alnum" => &[(b'0', b'9'), (b'A', b'Z'), (b'a', b'z')],
        "alpha" => &[(b'A', b'Z'), (b'a', b'z')],
        "ascii" => &[(b'\x00', b'\x7F')],
        "blank" => &[(b'\t', b'\t'), (b' ', b' ')],
        "cntrl" => &[(b'\x00', b'\x1F'), (b'\x7F', b'\x7F')],
        "digit" => &[(b'0', b'9')],
        "graph" => &[(b'!', b'~')],
        "lower" => &[(b'a', b'z')],
        "print" => &[(b' ', b'~')],
        "punct" => &[(b'!', b'/'), (b':', b'@'), (b'[', b'`'), (b'{', b'~')],
        "space" => &[
            (b'\t', b'\t'),
            (b'\n', b'\n'),
            (b'\x0B', b'\x0B'),
            (b'\x0C', b'\x0C'),
            (b'\r', b'\r'),
            (b' ', b' '),
        ],
        "upper" => &[(b'A', b'Z')],
        "word" => &[(b'0', b'9'), (b'A', b'Z'), (b'_', b'_'), (b'a', b'z')],
        "xdigit" => &[(b'0', b'9'), (b'A', b'F'), (b'a', b'f')],
        _ => return Err(Error::new(ERR_POSIX_CLASS_UNRECOGNIZED)),
    };
    Ok(slice.iter().map(|&(start, end)| hir::ClassRange {
        start: char::from(start),
        end: char::from(end),
    }))
}

/// Returns true if the given character is a hexadecimal digit.
fn is_hex(c: char) -> bool {
    ('0' <= c && c <= '9') || ('a' <= c && c <= 'f') || ('A' <= c && c <= 'F')
}

/// Returns true if the given character is a valid in a capture group name.
///
/// If `first` is true, then `c` is treated as the first character in the
/// group name (which must be alphabetic or underscore).
fn is_capture_char(c: char, first: bool) -> bool {
    if first {
        c == '_' || c.is_alphabetic()
    } else {
        c == '_' || c == '.' || c == '[' || c == ']' || c.is_alphanumeric()
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    fn p(pattern: &str) -> Hir {
        Parser::new(Config::default(), pattern).parse_inner().unwrap()
    }

    fn perr(pattern: &str) -> String {
        Parser::new(Config::default(), pattern)
            .parse_inner()
            .unwrap_err()
            .to_string()
    }

    fn class<I: IntoIterator<Item = (char, char)>>(it: I) -> Hir {
        Hir::class(hir::Class::new(
            it.into_iter().map(|(start, end)| hir::ClassRange { start, end }),
        ))
    }

    fn singles<I: IntoIterator<Item = char>>(it: I) -> Hir {
        Hir::class(hir::Class::new(
            it.into_iter().map(|ch| hir::ClassRange { start: ch, end: ch }),
        ))
    }

    fn posix(name: &str) -> Hir {
        Hir::class(hir::Class::new(posix_class(name).unwrap()))
    }

    fn cap(index: u32, sub: Hir) -> Hir {
        Hir::capture(hir::Capture { index, name: None, sub: Box::new(sub) })
    }

    fn named_cap(index: u32, name: &str, sub: Hir) -> Hir {
        Hir::capture(hir::Capture {
            index,
            name: Some(Box::from(name)),
            sub: Box::new(sub),
        })
    }

    #[test]
    fn ok_literal() {
        assert_eq!(p("a"), Hir::char('a'));
        assert_eq!(p("ab"), Hir::concat(vec![Hir::char('a'), Hir::char('b')]));
        assert_eq!(p("💩"), Hir::char('💩'));
    }

    #[test]
    fn ok_meta_escapes() {
        assert_eq!(p(r"\*"), Hir::char('*'));
        assert_eq!(p(r"\+"), Hir::char('+'));
        assert_eq!(p(r"\?"), Hir::char('?'));
        assert_eq!(p(r"\|"), Hir::char('|'));
        assert_eq!(p(r"\("), Hir::char('('));
        assert_eq!(p(r"\)"), Hir::char(')'));
        assert_eq!(p(r"\^"), Hir::char('^'));
        assert_eq!(p(r"\$"), Hir::char('$'));
        assert_eq!(p(r"\["), Hir::char('['));
        assert_eq!(p(r"\]"), Hir::char(']'));
    }

    #[test]
    fn ok_special_escapes() {
        assert_eq!(p(r"\a"), Hir::char('\x07'));
        assert_eq!(p(r"\f"), Hir::char('\x0C'));
        assert_eq!(p(r"\t"), Hir::char('\t'));
        assert_eq!(p(r"\n"), Hir::char('\n'));
        assert_eq!(p(r"\r"), Hir::char('\r'));
        assert_eq!(p(r"\v"), Hir::char('\x0B'));
        assert_eq!(p(r"\A"), Hir::look(hir::Look::Start));
        assert_eq!(p(r"\z"), Hir::look(hir::Look::End));
        assert_eq!(p(r"\b"), Hir::look(hir::Look::Word));
        assert_eq!(p(r"\B"), Hir::look(hir::Look::WordNegate));
    }

    #[test]
    fn ok_hex() {
        // fixed length
        assert_eq!(p(r"\x41"), Hir::char('A'));
        assert_eq!(p(r"\u2603"), Hir::char('☃'));
        assert_eq!(p(r"\U0001F4A9"), Hir::char('💩'));
        // braces
        assert_eq!(p(r"\x{1F4A9}"), Hir::char('💩'));
        assert_eq!(p(r"\u{1F4A9}"), Hir::char('💩'));
        assert_eq!(p(r"\U{1F4A9}"), Hir::char('💩'));
    }

    #[test]
    fn ok_perl() {
        assert_eq!(p(r"\d"), posix("digit"));
        assert_eq!(p(r"\s"), posix("space"));
        assert_eq!(p(r"\w"), posix("word"));

        let negated = |name| {
            let mut class = hir::Class::new(posix_class(name).unwrap());
            class.negate();
            Hir::class(class)
        };
        assert_eq!(p(r"\D"), negated("digit"));
        assert_eq!(p(r"\S"), negated("space"));
        assert_eq!(p(r"\W"), negated("word"));
    }

    #[test]
    fn ok_flags_and_primitives() {
        assert_eq!(p(r"a"), Hir::char('a'));
        assert_eq!(p(r"(?i:a)"), singles(['A', 'a']));

        assert_eq!(p(r"^"), Hir::look(hir::Look::Start));
        assert_eq!(p(r"(?m:^)"), Hir::look(hir::Look::StartLF));
        assert_eq!(p(r"(?mR:^)"), Hir::look(hir::Look::StartCRLF));

        assert_eq!(p(r"$"), Hir::look(hir::Look::End));
        assert_eq!(p(r"(?m:$)"), Hir::look(hir::Look::EndLF));
        assert_eq!(p(r"(?mR:$)"), Hir::look(hir::Look::EndCRLF));

        assert_eq!(p(r"."), class([('\x00', '\x09'), ('\x0B', '\u{10FFFF}')]));
        assert_eq!(
            p(r"(?R:.)"),
            class([
                ('\x00', '\x09'),
                ('\x0B', '\x0C'),
                ('\x0E', '\u{10FFFF}'),
            ])
        );
        assert_eq!(p(r"(?s:.)"), class([('\x00', '\u{10FFFF}')]));
        assert_eq!(p(r"(?sR:.)"), class([('\x00', '\u{10FFFF}')]));
    }

    #[test]
    fn ok_alternate() {
        assert_eq!(
            p(r"a|b"),
            Hir::alternation(vec![Hir::char('a'), Hir::char('b')])
        );
        assert_eq!(
            p(r"(?:a|b)"),
            Hir::alternation(vec![Hir::char('a'), Hir::char('b')])
        );

        assert_eq!(
            p(r"(a|b)"),
            cap(1, Hir::alternation(vec![Hir::char('a'), Hir::char('b')]))
        );
        assert_eq!(
            p(r"(?<foo>a|b)"),
            named_cap(
                1,
                "foo",
                Hir::alternation(vec![Hir::char('a'), Hir::char('b')])
            )
        );

        assert_eq!(
            p(r"a|b|c"),
            Hir::alternation(vec![
                Hir::char('a'),
                Hir::char('b'),
                Hir::char('c')
            ])
        );

        assert_eq!(
            p(r"ax|by|cz"),
            Hir::alternation(vec![
                Hir::concat(vec![Hir::char('a'), Hir::char('x')]),
                Hir::concat(vec![Hir::char('b'), Hir::char('y')]),
                Hir::concat(vec![Hir::char('c'), Hir::char('z')]),
            ])
        );
        assert_eq!(
            p(r"(ax|(by|(cz)))"),
            cap(
                1,
                Hir::alternation(vec![
                    Hir::concat(vec![Hir::char('a'), Hir::char('x')]),
                    cap(
                        2,
                        Hir::alternation(vec![
                            Hir::concat(vec![Hir::char('b'), Hir::char('y')]),
                            cap(
                                3,
                                Hir::concat(vec![
                                    Hir::char('c'),
                                    Hir::char('z')
                                ])
                            ),
                        ])
                    ),
                ])
            )
        );

        assert_eq!(
            p(r"|"),
            Hir::alternation(vec![Hir::empty(), Hir::empty()])
        );
        assert_eq!(
            p(r"||"),
            Hir::alternation(vec![Hir::empty(), Hir::empty(), Hir::empty()])
        );

        assert_eq!(
            p(r"a|"),
            Hir::alternation(vec![Hir::char('a'), Hir::empty()])
        );
        assert_eq!(
            p(r"|a"),
            Hir::alternation(vec![Hir::empty(), Hir::char('a')])
        );

        assert_eq!(
            p(r"(|)"),
            cap(1, Hir::alternation(vec![Hir::empty(), Hir::empty()]))
        );
        assert_eq!(
            p(r"(a|)"),
            cap(1, Hir::alternation(vec![Hir::char('a'), Hir::empty()]))
        );
        assert_eq!(
            p(r"(|a)"),
            cap(1, Hir::alternation(vec![Hir::empty(), Hir::char('a')]))
        );
    }

    #[test]
    fn ok_flag_group() {
        assert_eq!(
            p("a(?i:b)"),
            Hir::concat(vec![Hir::char('a'), singles(['B', 'b'])])
        );
    }

    #[test]
    fn ok_flag_directive() {
        assert_eq!(p("(?i)a"), singles(['A', 'a']));
        assert_eq!(p("a(?i)"), Hir::char('a'));
        assert_eq!(
            p("a(?i)b"),
            Hir::concat(vec![Hir::char('a'), singles(['B', 'b'])])
        );
        assert_eq!(
            p("a(?i)a(?-i)a"),
            Hir::concat(vec![
                Hir::char('a'),
                singles(['A', 'a']),
                Hir::char('a'),
            ])
        );
        assert_eq!(
            p("a(?:(?i)a)a"),
            Hir::concat(vec![
                Hir::char('a'),
                singles(['A', 'a']),
                Hir::char('a'),
            ])
        );
        assert_eq!(
            p("a((?i)a)a"),
            Hir::concat(vec![
                Hir::char('a'),
                cap(1, singles(['A', 'a'])),
                Hir::char('a'),
            ])
        );
    }

    #[test]
    fn ok_uncounted_repetition() {
        assert_eq!(
            p(r"a?"),
            Hir::repetition(hir::Repetition {
                min: 0,
                max: Some(1),
                greedy: true,
                sub: Box::new(Hir::char('a')),
            }),
        );
        assert_eq!(
            p(r"a*"),
            Hir::repetition(hir::Repetition {
                min: 0,
                max: None,
                greedy: true,
                sub: Box::new(Hir::char('a')),
            }),
        );
        assert_eq!(
            p(r"a+"),
            Hir::repetition(hir::Repetition {
                min: 1,
                max: None,
                greedy: true,
                sub: Box::new(Hir::char('a')),
            }),
        );

        assert_eq!(
            p(r"a??"),
            Hir::repetition(hir::Repetition {
                min: 0,
                max: Some(1),
                greedy: false,
                sub: Box::new(Hir::char('a')),
            }),
        );
        assert_eq!(
            p(r"a*?"),
            Hir::repetition(hir::Repetition {
                min: 0,
                max: None,
                greedy: false,
                sub: Box::new(Hir::char('a')),
            }),
        );
        assert_eq!(
            p(r"a+?"),
            Hir::repetition(hir::Repetition {
                min: 1,
                max: None,
                greedy: false,
                sub: Box::new(Hir::char('a')),
            }),
        );

        assert_eq!(
            p(r"a?b"),
            Hir::concat(vec![
                Hir::repetition(hir::Repetition {
                    min: 0,
                    max: Some(1),
                    greedy: true,
                    sub: Box::new(Hir::char('a')),
                }),
                Hir::char('b'),
            ]),
        );

        assert_eq!(
            p(r"ab?"),
            Hir::concat(vec![
                Hir::char('a'),
                Hir::repetition(hir::Repetition {
                    min: 0,
                    max: Some(1),
                    greedy: true,
                    sub: Box::new(Hir::char('b')),
                }),
            ]),
        );

        assert_eq!(
            p(r"(?:ab)?"),
            Hir::repetition(hir::Repetition {
                min: 0,
                max: Some(1),
                greedy: true,
                sub: Box::new(Hir::concat(vec![
                    Hir::char('a'),
                    Hir::char('b')
                ])),
            }),
        );

        assert_eq!(
            p(r"(ab)?"),
            Hir::repetition(hir::Repetition {
                min: 0,
                max: Some(1),
                greedy: true,
                sub: Box::new(cap(
                    1,
                    Hir::concat(vec![Hir::char('a'), Hir::char('b')])
                )),
            }),
        );

        assert_eq!(
            p(r"|a?"),
            Hir::alternation(vec![
                Hir::empty(),
                Hir::repetition(hir::Repetition {
                    min: 0,
                    max: Some(1),
                    greedy: true,
                    sub: Box::new(Hir::char('a')),
                })
            ]),
        );
    }

    #[test]
    fn ok_counted_repetition() {
        assert_eq!(
            p(r"a{5}"),
            Hir::repetition(hir::Repetition {
                min: 5,
                max: Some(5),
                greedy: true,
                sub: Box::new(Hir::char('a')),
            }),
        );
        assert_eq!(
            p(r"a{5}?"),
            Hir::repetition(hir::Repetition {
                min: 5,
                max: Some(5),
                greedy: false,
                sub: Box::new(Hir::char('a')),
            }),
        );

        assert_eq!(
            p(r"a{5,}"),
            Hir::repetition(hir::Repetition {
                min: 5,
                max: None,
                greedy: true,
                sub: Box::new(Hir::char('a')),
            }),
        );

        assert_eq!(
            p(r"a{5,9}"),
            Hir::repetition(hir::Repetition {
                min: 5,
                max: Some(9),
                greedy: true,
                sub: Box::new(Hir::char('a')),
            }),
        );

        assert_eq!(
            p(r"ab{5}c"),
            Hir::concat(vec![
                Hir::char('a'),
                Hir::repetition(hir::Repetition {
                    min: 5,
                    max: Some(5),
                    greedy: true,
                    sub: Box::new(Hir::char('b')),
                }),
                Hir::char('c'),
            ]),
        );

        assert_eq!(
            p(r"a{ 5 }"),
            Hir::repetition(hir::Repetition {
                min: 5,
                max: Some(5),
                greedy: true,
                sub: Box::new(Hir::char('a')),
            }),
        );
        assert_eq!(
            p(r"a{ 5 , 9 }"),
            Hir::repetition(hir::Repetition {
                min: 5,
                max: Some(9),
                greedy: true,
                sub: Box::new(Hir::char('a')),
            }),
        );
    }

    #[test]
    fn ok_group_unnamed() {
        assert_eq!(p("(a)"), cap(1, Hir::char('a')));
        assert_eq!(
            p("(ab)"),
            cap(1, Hir::concat(vec![Hir::char('a'), Hir::char('b')]))
        );
    }

    #[test]
    fn ok_group_named() {
        assert_eq!(p("(?P<foo>a)"), named_cap(1, "foo", Hir::char('a')));
        assert_eq!(p("(?<foo>a)"), named_cap(1, "foo", Hir::char('a')));

        assert_eq!(
            p("(?P<foo>ab)"),
            named_cap(
                1,
                "foo",
                Hir::concat(vec![Hir::char('a'), Hir::char('b')])
            )
        );
        assert_eq!(
            p("(?<foo>ab)"),
            named_cap(
                1,
                "foo",
                Hir::concat(vec![Hir::char('a'), Hir::char('b')])
            )
        );

        assert_eq!(p(r"(?<a>z)"), named_cap(1, "a", Hir::char('z')));
        assert_eq!(p(r"(?P<a>z)"), named_cap(1, "a", Hir::char('z')));

        assert_eq!(p(r"(?<a_1>z)"), named_cap(1, "a_1", Hir::char('z')));
        assert_eq!(p(r"(?P<a_1>z)"), named_cap(1, "a_1", Hir::char('z')));

        assert_eq!(p(r"(?<a.1>z)"), named_cap(1, "a.1", Hir::char('z')));
        assert_eq!(p(r"(?P<a.1>z)"), named_cap(1, "a.1", Hir::char('z')));

        assert_eq!(p(r"(?<a[1]>z)"), named_cap(1, "a[1]", Hir::char('z')));
        assert_eq!(p(r"(?P<a[1]>z)"), named_cap(1, "a[1]", Hir::char('z')));

        assert_eq!(p(r"(?<a¾>z)"), named_cap(1, "a¾", Hir::char('z')));
        assert_eq!(p(r"(?P<a¾>z)"), named_cap(1, "a¾", Hir::char('z')));

        assert_eq!(p(r"(?<名字>z)"), named_cap(1, "名字", Hir::char('z')));
        assert_eq!(p(r"(?P<名字>z)"), named_cap(1, "名字", Hir::char('z')));
    }

    #[test]
    fn ok_class() {
        assert_eq!(p(r"[a]"), singles(['a']));
        assert_eq!(p(r"[a\]]"), singles(['a', ']']));
        assert_eq!(p(r"[a\-z]"), singles(['a', '-', 'z']));
        assert_eq!(p(r"[ab]"), class([('a', 'b')]));
        assert_eq!(p(r"[a-]"), singles(['a', '-']));
        assert_eq!(p(r"[-a]"), singles(['a', '-']));
        assert_eq!(p(r"[--a]"), singles(['a', '-']));
        assert_eq!(p(r"[---a]"), singles(['a', '-']));
        assert_eq!(p(r"[[:alnum:]]"), posix("alnum"));
        assert_eq!(p(r"[\w]"), posix("word"));
        assert_eq!(p(r"[a\wz]"), posix("word"));
        assert_eq!(p(r"[\s\S]"), class([('\x00', '\u{10FFFF}')]));
        assert_eq!(p(r"[^\s\S]"), Hir::fail());
        assert_eq!(p(r"[a-cx-z]"), class([('a', 'c'), ('x', 'z')]));
        assert_eq!(p(r"[☃-⛄]"), class([('☃', '⛄')]));
        assert_eq!(p(r"[]]"), singles([']']));
        assert_eq!(p(r"[]a]"), singles([']', 'a']));
        assert_eq!(p(r"[]\[]"), singles(['[', ']']));
        assert_eq!(p(r"[\[]"), singles(['[']));

        assert_eq!(p(r"(?i)[a]"), singles(['A', 'a']));
        assert_eq!(p(r"(?i)[A]"), singles(['A', 'a']));
        assert_eq!(p(r"(?i)[k]"), singles(['K', 'k']));
        assert_eq!(p(r"(?i)[s]"), singles(['S', 's']));
        assert_eq!(p(r"(?i)[β]"), singles(['β']));

        assert_eq!(p(r"[^^]"), class([('\x00', ']'), ('_', '\u{10FFFF}')]));
        assert_eq!(
            p(r"[^-a]"),
            class([('\x00', ','), ('.', '`'), ('b', '\u{10FFFF}')])
        );

        assert_eq!(
            p(r"[-]a]"),
            Hir::concat(vec![singles(['-']), Hir::char('a'), Hir::char(']')])
        );
    }

    #[test]
    fn ok_verbatim() {
        assert_eq!(
            p(r"(?x)a{5,9} ?"),
            Hir::repetition(hir::Repetition {
                min: 5,
                max: Some(9),
                greedy: false,
                sub: Box::new(Hir::char('a')),
            })
        );
        assert_eq!(p(r"(?x)[   a]"), singles(['a']));
        assert_eq!(
            p(r"(?x)[ ^  a]"),
            class([('\x00', '`'), ('b', '\u{10FFFF}')])
        );
        assert_eq!(p(r"(?x)[ - a]"), singles(['a', '-']));
        assert_eq!(p(r"(?x)[ ] a]"), singles([']', 'a']));

        assert_eq!(
            p(r"(?x)a b"),
            Hir::concat(vec![Hir::char('a'), Hir::char('b')])
        );
        assert_eq!(
            p(r"(?x)a b(?-x)a b"),
            Hir::concat(vec![
                Hir::char('a'),
                Hir::char('b'),
                Hir::char('a'),
                Hir::char(' '),
                Hir::char('b'),
            ])
        );
        assert_eq!(
            p(r"a (?x:a )a "),
            Hir::concat(vec![
                Hir::char('a'),
                Hir::char(' '),
                Hir::char('a'),
                Hir::char('a'),
                Hir::char(' '),
            ])
        );
        assert_eq!(
            p(r"(?x)( ?P<foo> a )"),
            named_cap(1, "foo", Hir::char('a')),
        );
        assert_eq!(p(r"(?x)(  a )"), cap(1, Hir::char('a')));
        assert_eq!(p(r"(?x)(   ?:  a )"), Hir::char('a'));
        assert_eq!(p(r"(?x)\x { 53 }"), Hir::char('\x53'));
        assert_eq!(p(r"(?x)\ "), Hir::char(' '));
    }

    #[test]
    fn ok_comments() {
        let pat = "(?x)
# This is comment 1.
foo # This is comment 2.
  # This is comment 3.
bar
# This is comment 4.";
        assert_eq!(
            p(pat),
            Hir::concat(vec![
                Hir::char('f'),
                Hir::char('o'),
                Hir::char('o'),
                Hir::char('b'),
                Hir::char('a'),
                Hir::char('r'),
            ])
        );
    }

    #[test]
    fn err_standard() {
        assert_eq!(
            ERR_TOO_MUCH_NESTING,
            perr("(((((((((((((((((((((((((((((((((((((((((((((((((((a)))))))))))))))))))))))))))))))))))))))))))))))))))"),
        );
        // This one is tricky, because the only way it can happen is if the
        // number of captures overflows u32. Perhaps we should allow setting a
        // lower limit?
        // assert_eq!(ERR_TOO_MANY_CAPTURES, perr(""));
        assert_eq!(ERR_DUPLICATE_CAPTURE_NAME, perr(r"(?P<a>y)(?P<a>z)"));
        assert_eq!(ERR_UNCLOSED_GROUP, perr("("));
        assert_eq!(ERR_UNCLOSED_GROUP_QUESTION, perr("(?"));
        assert_eq!(ERR_UNOPENED_GROUP, perr(")"));
        assert_eq!(ERR_LOOK_UNSUPPORTED, perr(r"(?=a)"));
        assert_eq!(ERR_LOOK_UNSUPPORTED, perr(r"(?!a)"));
        assert_eq!(ERR_LOOK_UNSUPPORTED, perr(r"(?<=a)"));
        assert_eq!(ERR_LOOK_UNSUPPORTED, perr(r"(?<!a)"));
        assert_eq!(ERR_EMPTY_FLAGS, perr(r"(?)"));
        assert_eq!(ERR_MISSING_GROUP_NAME, perr(r"(?P<"));
        assert_eq!(ERR_MISSING_GROUP_NAME, perr(r"(?<"));
        assert_eq!(ERR_INVALID_GROUP_NAME, perr(r"(?P<1abc>z)"));
        assert_eq!(ERR_INVALID_GROUP_NAME, perr(r"(?<1abc>z)"));
        assert_eq!(ERR_INVALID_GROUP_NAME, perr(r"(?<¾>z)"));
        assert_eq!(ERR_INVALID_GROUP_NAME, perr(r"(?<¾a>z)"));
        assert_eq!(ERR_INVALID_GROUP_NAME, perr(r"(?<☃>z)"));
        assert_eq!(ERR_INVALID_GROUP_NAME, perr(r"(?<a☃>z)"));
        assert_eq!(ERR_UNCLOSED_GROUP_NAME, perr(r"(?P<foo"));
        assert_eq!(ERR_UNCLOSED_GROUP_NAME, perr(r"(?<foo"));
        assert_eq!(ERR_EMPTY_GROUP_NAME, perr(r"(?P<>z)"));
        assert_eq!(ERR_EMPTY_GROUP_NAME, perr(r"(?<>z)"));
        assert_eq!(ERR_FLAG_UNRECOGNIZED, perr(r"(?z:foo)"));
        assert_eq!(ERR_FLAG_REPEATED_NEGATION, perr(r"(?s-i-R)"));
        assert_eq!(ERR_FLAG_DUPLICATE, perr(r"(?isi)"));
        assert_eq!(ERR_FLAG_DUPLICATE, perr(r"(?is-i)"));
        assert_eq!(ERR_FLAG_UNEXPECTED_EOF, perr(r"(?is"));
        assert_eq!(ERR_FLAG_DANGLING_NEGATION, perr(r"(?is-:foo)"));
        assert_eq!(ERR_HEX_BRACE_INVALID_DIGIT, perr(r"\x{Z}"));
        assert_eq!(ERR_HEX_BRACE_UNEXPECTED_EOF, perr(r"\x{"));
        assert_eq!(ERR_HEX_BRACE_UNEXPECTED_EOF, perr(r"\x{A"));
        assert_eq!(ERR_HEX_BRACE_EMPTY, perr(r"\x{}"));
        assert_eq!(ERR_HEX_BRACE_INVALID, perr(r"\x{FFFFFFFFFFFFFFFFF}"));
        assert_eq!(ERR_HEX_FIXED_UNEXPECTED_EOF, perr(r"\xA"));
        assert_eq!(ERR_HEX_FIXED_INVALID_DIGIT, perr(r"\xZ"));
        assert_eq!(ERR_HEX_FIXED_INVALID_DIGIT, perr(r"\xZA"));
        assert_eq!(ERR_HEX_FIXED_INVALID_DIGIT, perr(r"\xAZ"));
        assert_eq!(ERR_HEX_FIXED_INVALID, perr(r"\uD800"));
        assert_eq!(ERR_HEX_FIXED_INVALID, perr(r"\UFFFFFFFF"));
        assert_eq!(ERR_HEX_UNEXPECTED_EOF, perr(r"\x"));
        assert_eq!(ERR_ESCAPE_UNEXPECTED_EOF, perr(r"\"));
        assert_eq!(ERR_BACKREF_UNSUPPORTED, perr(r"\0"));
        assert_eq!(ERR_BACKREF_UNSUPPORTED, perr(r"\1"));
        assert_eq!(ERR_BACKREF_UNSUPPORTED, perr(r"\8"));
        assert_eq!(ERR_UNICODE_CLASS_UNSUPPORTED, perr(r"\pL"));
        assert_eq!(ERR_UNICODE_CLASS_UNSUPPORTED, perr(r"\p{L}"));
        assert_eq!(ERR_ESCAPE_UNRECOGNIZED, perr(r"\i"));
        assert_eq!(ERR_UNCOUNTED_REP_SUB_MISSING, perr(r"?"));
        assert_eq!(ERR_UNCOUNTED_REP_SUB_MISSING, perr(r"*"));
        assert_eq!(ERR_UNCOUNTED_REP_SUB_MISSING, perr(r"+"));
        assert_eq!(ERR_UNCOUNTED_REP_SUB_MISSING, perr(r"(+)"));
        assert_eq!(ERR_UNCOUNTED_REP_SUB_MISSING, perr(r"|?"));
        assert_eq!(ERR_UNCOUNTED_REP_SUB_MISSING, perr(r"(?i)?"));
        assert_eq!(ERR_COUNTED_REP_SUB_MISSING, perr(r"{5}"));
        assert_eq!(ERR_COUNTED_REP_SUB_MISSING, perr(r"({5})"));
        assert_eq!(ERR_COUNTED_REP_SUB_MISSING, perr(r"(?i){5}"));
        assert_eq!(ERR_COUNTED_REP_UNCLOSED, perr(r"a{"));
        assert_eq!(ERR_COUNTED_REP_MIN_UNCLOSED, perr(r"a{5"));
        assert_eq!(ERR_COUNTED_REP_COMMA_UNCLOSED, perr(r"a{5,"));
        assert_eq!(ERR_COUNTED_REP_MIN_MAX_UNCLOSED, perr(r"a{5,6"));
        assert_eq!(ERR_COUNTED_REP_INVALID, perr(r"a{5,6Z"));
        assert_eq!(ERR_COUNTED_REP_INVALID_RANGE, perr(r"a{6,5}"));
        assert_eq!(ERR_DECIMAL_NO_DIGITS, perr(r"a{}"));
        assert_eq!(ERR_DECIMAL_NO_DIGITS, perr(r"a{]}"));
        assert_eq!(ERR_DECIMAL_INVALID, perr(r"a{999999999999999}"));
        assert_eq!(ERR_CLASS_UNCLOSED_AFTER_ITEM, perr(r"[a"));
        assert_eq!(ERR_CLASS_INVALID_RANGE_ITEM, perr(r"[\w-a]"));
        assert_eq!(ERR_CLASS_INVALID_RANGE_ITEM, perr(r"[a-\w]"));
        assert_eq!(ERR_CLASS_INVALID_ITEM, perr(r"[\b]"));
        assert_eq!(ERR_CLASS_UNCLOSED_AFTER_DASH, perr(r"[a-"));
        assert_eq!(ERR_CLASS_UNCLOSED_AFTER_NEGATION, perr(r"[^"));
        assert_eq!(ERR_CLASS_UNCLOSED_AFTER_CLOSING, perr(r"[]"));
        assert_eq!(ERR_CLASS_INVALID_RANGE, perr(r"[z-a]"));
        assert_eq!(ERR_CLASS_UNCLOSED, perr(r"["));
        assert_eq!(ERR_CLASS_UNCLOSED, perr(r"[a-z"));
        assert_eq!(ERR_CLASS_NEST_UNSUPPORTED, perr(r"[a-z[A-Z]]"));
        assert_eq!(ERR_CLASS_NEST_UNSUPPORTED, perr(r"[[:alnum]]"));
        assert_eq!(ERR_CLASS_INTERSECTION_UNSUPPORTED, perr(r"[a&&b]"));
        assert_eq!(ERR_CLASS_DIFFERENCE_UNSUPPORTED, perr(r"[a--b]"));
        assert_eq!(ERR_CLASS_SYMDIFFERENCE_UNSUPPORTED, perr(r"[a~~b]"));
        assert_eq!(ERR_SPECIAL_WORD_BOUNDARY_UNCLOSED, perr(r"\b{foo"));
        assert_eq!(ERR_SPECIAL_WORD_BOUNDARY_UNCLOSED, perr(r"\b{foo!}"));
        assert_eq!(ERR_SPECIAL_WORD_BOUNDARY_UNRECOGNIZED, perr(r"\b{foo}"));
        assert_eq!(ERR_SPECIAL_WORD_OR_REP_UNEXPECTED_EOF, perr(r"\b{"));
        assert_eq!(ERR_SPECIAL_WORD_OR_REP_UNEXPECTED_EOF, perr(r"(?x)\b{ "));
    }

    #[test]
    fn err_verbatim() {
        // See: https://github.com/rust-lang/regex/issues/792
        assert_eq!(ERR_CLASS_UNCLOSED_AFTER_DASH, perr(r"(?x)[-#]"));
        assert_eq!(ERR_CLASS_UNCLOSED_AFTER_ITEM, perr(r"(?x)[a "));
        assert_eq!(ERR_CLASS_UNCLOSED_AFTER_DASH, perr(r"(?x)[a- "));
        assert_eq!(ERR_CLASS_UNCLOSED, perr(r"(?x)[         "));
    }

    // This tests a bug fix where the nest limit checker wasn't decrementing
    // its depth during post-traversal, which causes long regexes to trip
    // the default limit too aggressively.
    #[test]
    fn regression_454_nest_too_big() {
        let pattern = r#"
        2(?:
          [45]\d{3}|
          7(?:
            1[0-267]|
            2[0-289]|
            3[0-29]|
            4[01]|
            5[1-3]|
            6[013]|
            7[0178]|
            91
          )|
          8(?:
            0[125]|
            [139][1-6]|
            2[0157-9]|
            41|
            6[1-35]|
            7[1-5]|
            8[1-8]|
            90
          )|
          9(?:
            0[0-2]|
            1[0-4]|
            2[568]|
            3[3-6]|
            5[5-7]|
            6[0167]|
            7[15]|
            8[0146-9]
          )
        )\d{4}
        "#;
        p(pattern);
    }

    // This tests that we treat a trailing `-` in a character class as a
    // literal `-` even when whitespace mode is enabled and there is whitespace
    // after the trailing `-`.
    #[test]
    fn regression_455_trailing_dash_ignore_whitespace() {
        p("(?x)[ / - ]");
        p("(?x)[ a - ]");
        p("(?x)[
            a
            - ]
        ");
        p("(?x)[
            a # wat
            - ]
        ");

        perr("(?x)[ / -");
        perr("(?x)[ / - ");
        perr(
            "(?x)[
            / -
        ",
        );
        perr(
            "(?x)[
            / - # wat
        ",
        );
    }

    #[test]
    fn regression_capture_indices() {
        let got = p(r"(a|ab|c|bcd){4,10}(d*)");
        assert_eq!(
            got,
            Hir::concat(vec![
                Hir::repetition(hir::Repetition {
                    min: 4,
                    max: Some(10),
                    greedy: true,
                    sub: Box::new(cap(
                        1,
                        Hir::alternation(vec![
                            Hir::char('a'),
                            Hir::concat(vec![Hir::char('a'), Hir::char('b')]),
                            Hir::char('c'),
                            Hir::concat(vec![
                                Hir::char('b'),
                                Hir::char('c'),
                                Hir::char('d')
                            ]),
                        ])
                    ))
                }),
                cap(
                    2,
                    Hir::repetition(hir::Repetition {
                        min: 0,
                        max: None,
                        greedy: true,
                        sub: Box::new(Hir::char('d')),
                    })
                ),
            ])
        );
    }
}