image/codecs/
png.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
//! Decoding and Encoding of PNG Images
//!
//! PNG (Portable Network Graphics) is an image format that supports lossless compression.
//!
//! # Related Links
//! * <http://www.w3.org/TR/PNG/> - The PNG Specification
//!

use std::fmt;
use std::io::{self, Read, Write};

use png::{BlendOp, DisposeOp};

use crate::animation::{Delay, Frame, Frames, Ratio};
use crate::color::{Blend, ColorType, ExtendedColorType};
use crate::error::{
    DecodingError, EncodingError, ImageError, ImageResult, LimitError, LimitErrorKind,
    ParameterError, ParameterErrorKind, UnsupportedError, UnsupportedErrorKind,
};
use crate::image::{AnimationDecoder, ImageDecoder, ImageEncoder, ImageFormat};
use crate::io::Limits;
use crate::{DynamicImage, GenericImage, ImageBuffer, Luma, LumaA, Rgb, Rgba, RgbaImage};

// http://www.w3.org/TR/PNG-Structure.html
// The first eight bytes of a PNG file always contain the following (decimal) values:
pub(crate) const PNG_SIGNATURE: [u8; 8] = [137, 80, 78, 71, 13, 10, 26, 10];

/// Png Reader
///
/// This reader will try to read the png one row at a time,
/// however for interlaced png files this is not possible and
/// these are therefore read at once.
pub struct PngReader<R: Read> {
    reader: png::Reader<R>,
    buffer: Vec<u8>,
    index: usize,
}

impl<R: Read> PngReader<R> {
    fn new(mut reader: png::Reader<R>) -> ImageResult<PngReader<R>> {
        let len = reader.output_buffer_size();
        // Since interlaced images do not come in
        // scanline order it is almost impossible to
        // read them in a streaming fashion, however
        // this shouldn't be a too big of a problem
        // as most interlaced images should fit in memory.
        let buffer = if reader.info().interlaced {
            let mut buffer = vec![0; len];
            reader
                .next_frame(&mut buffer)
                .map_err(ImageError::from_png)?;
            buffer
        } else {
            Vec::new()
        };

        Ok(PngReader {
            reader,
            buffer,
            index: 0,
        })
    }
}

impl<R: Read> Read for PngReader<R> {
    fn read(&mut self, mut buf: &mut [u8]) -> io::Result<usize> {
        // io::Write::write for slice cannot fail
        let readed = buf.write(&self.buffer[self.index..]).unwrap();

        let mut bytes = readed;
        self.index += readed;

        while self.index >= self.buffer.len() {
            match self.reader.next_row()? {
                Some(row) => {
                    // Faster to copy directly to external buffer
                    let readed = buf.write(row.data()).unwrap();
                    bytes += readed;

                    self.buffer = row.data()[readed..].to_owned();
                    self.index = 0;
                }
                None => return Ok(bytes),
            }
        }

        Ok(bytes)
    }

    fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
        let mut bytes = self.buffer.len();
        if buf.is_empty() {
            std::mem::swap(&mut self.buffer, buf);
        } else {
            buf.extend_from_slice(&self.buffer);
            self.buffer.clear();
        }

        self.index = 0;

        while let Some(row) = self.reader.next_row()? {
            buf.extend_from_slice(row.data());
            bytes += row.data().len();
        }

        Ok(bytes)
    }
}

/// PNG decoder
pub struct PngDecoder<R: Read> {
    color_type: ColorType,
    reader: png::Reader<R>,
    limits: Limits,
}

impl<R: Read> PngDecoder<R> {
    /// Creates a new decoder that decodes from the stream ```r```
    pub fn new(r: R) -> ImageResult<PngDecoder<R>> {
        Self::with_limits(r, Limits::no_limits())
    }

    /// Creates a new decoder that decodes from the stream ```r``` with the given limits.
    pub fn with_limits(r: R, limits: Limits) -> ImageResult<PngDecoder<R>> {
        limits.check_support(&crate::io::LimitSupport::default())?;

        let max_bytes = usize::try_from(limits.max_alloc.unwrap_or(u64::MAX)).unwrap_or(usize::MAX);
        let mut decoder = png::Decoder::new_with_limits(r, png::Limits { bytes: max_bytes });
        decoder.set_ignore_text_chunk(true);

        let info = decoder.read_header_info().map_err(ImageError::from_png)?;
        limits.check_dimensions(info.width, info.height)?;

        // By default the PNG decoder will scale 16 bpc to 8 bpc, so custom
        // transformations must be set. EXPAND preserves the default behavior
        // expanding bpc < 8 to 8 bpc.
        decoder.set_transformations(png::Transformations::EXPAND);
        let reader = decoder.read_info().map_err(ImageError::from_png)?;
        let (color_type, bits) = reader.output_color_type();
        let color_type = match (color_type, bits) {
            (png::ColorType::Grayscale, png::BitDepth::Eight) => ColorType::L8,
            (png::ColorType::Grayscale, png::BitDepth::Sixteen) => ColorType::L16,
            (png::ColorType::GrayscaleAlpha, png::BitDepth::Eight) => ColorType::La8,
            (png::ColorType::GrayscaleAlpha, png::BitDepth::Sixteen) => ColorType::La16,
            (png::ColorType::Rgb, png::BitDepth::Eight) => ColorType::Rgb8,
            (png::ColorType::Rgb, png::BitDepth::Sixteen) => ColorType::Rgb16,
            (png::ColorType::Rgba, png::BitDepth::Eight) => ColorType::Rgba8,
            (png::ColorType::Rgba, png::BitDepth::Sixteen) => ColorType::Rgba16,

            (png::ColorType::Grayscale, png::BitDepth::One) => {
                return Err(unsupported_color(ExtendedColorType::L1))
            }
            (png::ColorType::GrayscaleAlpha, png::BitDepth::One) => {
                return Err(unsupported_color(ExtendedColorType::La1))
            }
            (png::ColorType::Rgb, png::BitDepth::One) => {
                return Err(unsupported_color(ExtendedColorType::Rgb1))
            }
            (png::ColorType::Rgba, png::BitDepth::One) => {
                return Err(unsupported_color(ExtendedColorType::Rgba1))
            }

            (png::ColorType::Grayscale, png::BitDepth::Two) => {
                return Err(unsupported_color(ExtendedColorType::L2))
            }
            (png::ColorType::GrayscaleAlpha, png::BitDepth::Two) => {
                return Err(unsupported_color(ExtendedColorType::La2))
            }
            (png::ColorType::Rgb, png::BitDepth::Two) => {
                return Err(unsupported_color(ExtendedColorType::Rgb2))
            }
            (png::ColorType::Rgba, png::BitDepth::Two) => {
                return Err(unsupported_color(ExtendedColorType::Rgba2))
            }

            (png::ColorType::Grayscale, png::BitDepth::Four) => {
                return Err(unsupported_color(ExtendedColorType::L4))
            }
            (png::ColorType::GrayscaleAlpha, png::BitDepth::Four) => {
                return Err(unsupported_color(ExtendedColorType::La4))
            }
            (png::ColorType::Rgb, png::BitDepth::Four) => {
                return Err(unsupported_color(ExtendedColorType::Rgb4))
            }
            (png::ColorType::Rgba, png::BitDepth::Four) => {
                return Err(unsupported_color(ExtendedColorType::Rgba4))
            }

            (png::ColorType::Indexed, bits) => {
                return Err(unsupported_color(ExtendedColorType::Unknown(bits as u8)))
            }
        };

        Ok(PngDecoder {
            color_type,
            reader,
            limits,
        })
    }

    /// Returns the gamma value of the image or None if no gamma value is indicated.
    ///
    /// If an sRGB chunk is present this method returns a gamma value of 0.45455 and ignores the
    /// value in the gAMA chunk. This is the recommended behavior according to the PNG standard:
    ///
    /// > When the sRGB chunk is present, [...] decoders that recognize the sRGB chunk but are not
    /// > capable of colour management are recommended to ignore the gAMA and cHRM chunks, and use
    /// > the values given above as if they had appeared in gAMA and cHRM chunks.
    pub fn gamma_value(&self) -> ImageResult<Option<f64>> {
        Ok(self
            .reader
            .info()
            .source_gamma
            .map(|x| x.into_scaled() as f64 / 100000.0))
    }

    /// Turn this into an iterator over the animation frames.
    ///
    /// Reading the complete animation requires more memory than reading the data from the IDAT
    /// frame–multiple frame buffers need to be reserved at the same time. We further do not
    /// support compositing 16-bit colors. In any case this would be lossy as the interface of
    /// animation decoders does not support 16-bit colors.
    ///
    /// If something is not supported or a limit is violated then the decoding step that requires
    /// them will fail and an error will be returned instead of the frame. No further frames will
    /// be returned.
    pub fn apng(self) -> ApngDecoder<R> {
        ApngDecoder::new(self)
    }

    /// Returns if the image contains an animation.
    ///
    /// Note that the file itself decides if the default image is considered to be part of the
    /// animation. When it is not the common interpretation is to use it as a thumbnail.
    ///
    /// If a non-animated image is converted into an `ApngDecoder` then its iterator is empty.
    pub fn is_apng(&self) -> bool {
        self.reader.info().animation_control.is_some()
    }
}

fn unsupported_color(ect: ExtendedColorType) -> ImageError {
    ImageError::Unsupported(UnsupportedError::from_format_and_kind(
        ImageFormat::Png.into(),
        UnsupportedErrorKind::Color(ect),
    ))
}

impl<'a, R: 'a + Read> ImageDecoder<'a> for PngDecoder<R> {
    type Reader = PngReader<R>;

    fn dimensions(&self) -> (u32, u32) {
        self.reader.info().size()
    }

    fn color_type(&self) -> ColorType {
        self.color_type
    }

    fn icc_profile(&mut self) -> Option<Vec<u8>> {
        self.reader.info().icc_profile.as_ref().map(|x| x.to_vec())
    }

    fn into_reader(self) -> ImageResult<Self::Reader> {
        PngReader::new(self.reader)
    }

    fn read_image(mut self, buf: &mut [u8]) -> ImageResult<()> {
        use byteorder::{BigEndian, ByteOrder, NativeEndian};

        assert_eq!(u64::try_from(buf.len()), Ok(self.total_bytes()));
        self.reader.next_frame(buf).map_err(ImageError::from_png)?;
        // PNG images are big endian. For 16 bit per channel and larger types,
        // the buffer may need to be reordered to native endianness per the
        // contract of `read_image`.
        // TODO: assumes equal channel bit depth.
        let bpc = self.color_type().bytes_per_pixel() / self.color_type().channel_count();

        match bpc {
            1 => (), // No reodering necessary for u8
            2 => buf.chunks_exact_mut(2).for_each(|c| {
                let v = BigEndian::read_u16(c);
                NativeEndian::write_u16(c, v)
            }),
            _ => unreachable!(),
        }
        Ok(())
    }

    fn scanline_bytes(&self) -> u64 {
        let width = self.reader.info().width;
        self.reader.output_line_size(width) as u64
    }

    fn set_limits(&mut self, limits: Limits) -> ImageResult<()> {
        limits.check_support(&crate::io::LimitSupport::default())?;
        let info = self.reader.info();
        limits.check_dimensions(info.width, info.height)?;
        self.limits = limits;
        // TODO: add `png::Reader::change_limits()` and call it here
        // to also constrain the internal buffer allocations in the PNG crate
        Ok(())
    }
}

/// An [`AnimationDecoder`] adapter of [`PngDecoder`].
///
/// See [`PngDecoder::apng`] for more information.
///
/// [`AnimationDecoder`]: ../trait.AnimationDecoder.html
/// [`PngDecoder`]: struct.PngDecoder.html
/// [`PngDecoder::apng`]: struct.PngDecoder.html#method.apng
pub struct ApngDecoder<R: Read> {
    inner: PngDecoder<R>,
    /// The current output buffer.
    current: Option<RgbaImage>,
    /// The previous output buffer, used for dispose op previous.
    previous: Option<RgbaImage>,
    /// The dispose op of the current frame.
    dispose: DisposeOp,
    /// The number of image still expected to be able to load.
    remaining: u32,
    /// The next (first) image is the thumbnail.
    has_thumbnail: bool,
}

impl<R: Read> ApngDecoder<R> {
    fn new(inner: PngDecoder<R>) -> Self {
        let info = inner.reader.info();
        let remaining = match info.animation_control() {
            // The expected number of fcTL in the remaining image.
            Some(actl) => actl.num_frames,
            None => 0,
        };
        // If the IDAT has no fcTL then it is not part of the animation counted by
        // num_frames. All following fdAT chunks must be preceded by an fcTL
        let has_thumbnail = info.frame_control.is_none();
        ApngDecoder {
            inner,
            current: None,
            previous: None,
            dispose: DisposeOp::Background,
            remaining,
            has_thumbnail,
        }
    }

    // TODO: thumbnail(&mut self) -> Option<impl ImageDecoder<'_>>

    /// Decode one subframe and overlay it on the canvas.
    fn mix_next_frame(&mut self) -> Result<Option<&RgbaImage>, ImageError> {
        // The iterator always produces RGBA8 images
        const COLOR_TYPE: ColorType = ColorType::Rgba8;

        // Allocate the buffers, honoring the memory limits
        let (width, height) = self.inner.dimensions();
        {
            let limits = &mut self.inner.limits;
            if self.previous.is_none() {
                limits.reserve_buffer(width, height, COLOR_TYPE)?;
                self.previous = Some(RgbaImage::new(width, height));
            }

            if self.current.is_none() {
                limits.reserve_buffer(width, height, COLOR_TYPE)?;
                self.current = Some(RgbaImage::new(width, height));
            }
        }

        // Remove this image from remaining.
        self.remaining = match self.remaining.checked_sub(1) {
            None => return Ok(None),
            Some(next) => next,
        };

        // Shorten ourselves to 0 in case of error.
        let remaining = self.remaining;
        self.remaining = 0;

        // Skip the thumbnail that is not part of the animation.
        if self.has_thumbnail {
            // Clone the limits so that our one-off allocation that's destroyed after this scope doesn't persist
            let mut limits = self.inner.limits.clone();
            limits.reserve_usize(self.inner.reader.output_buffer_size())?;
            let mut buffer = vec![0; self.inner.reader.output_buffer_size()];
            // TODO: add `png::Reader::change_limits()` and call it here
            // to also constrain the internal buffer allocations in the PNG crate
            self.inner
                .reader
                .next_frame(&mut buffer)
                .map_err(ImageError::from_png)?;
            self.has_thumbnail = false;
        }

        self.animatable_color_type()?;

        // We've initialized them earlier in this function
        let previous = self.previous.as_mut().unwrap();
        let current = self.current.as_mut().unwrap();

        // Dispose of the previous frame.
        match self.dispose {
            DisposeOp::None => {
                previous.clone_from(current);
            }
            DisposeOp::Background => {
                previous.clone_from(current);
                current
                    .pixels_mut()
                    .for_each(|pixel| *pixel = Rgba([0, 0, 0, 0]));
            }
            DisposeOp::Previous => {
                current.clone_from(previous);
            }
        }

        // The allocations from now on are not going to persist,
        // and will be destroyed at the end of the scope.
        // Clone the limits so that any changes to them die with the allocations.
        let mut limits = self.inner.limits.clone();

        // Read next frame data.
        let raw_frame_size = self.inner.reader.output_buffer_size();
        limits.reserve_usize(raw_frame_size)?;
        let mut buffer = vec![0; raw_frame_size];
        // TODO: add `png::Reader::change_limits()` and call it here
        // to also constrain the internal buffer allocations in the PNG crate
        self.inner
            .reader
            .next_frame(&mut buffer)
            .map_err(ImageError::from_png)?;
        let info = self.inner.reader.info();

        // Find out how to interpret the decoded frame.
        let (width, height, px, py, blend);
        match info.frame_control() {
            None => {
                width = info.width;
                height = info.height;
                px = 0;
                py = 0;
                blend = BlendOp::Source;
            }
            Some(fc) => {
                width = fc.width;
                height = fc.height;
                px = fc.x_offset;
                py = fc.y_offset;
                blend = fc.blend_op;
                self.dispose = fc.dispose_op;
            }
        };

        // Turn the data into an rgba image proper.
        limits.reserve_buffer(width, height, COLOR_TYPE)?;
        let source = match self.inner.color_type {
            ColorType::L8 => {
                let image = ImageBuffer::<Luma<_>, _>::from_raw(width, height, buffer).unwrap();
                DynamicImage::ImageLuma8(image).into_rgba8()
            }
            ColorType::La8 => {
                let image = ImageBuffer::<LumaA<_>, _>::from_raw(width, height, buffer).unwrap();
                DynamicImage::ImageLumaA8(image).into_rgba8()
            }
            ColorType::Rgb8 => {
                let image = ImageBuffer::<Rgb<_>, _>::from_raw(width, height, buffer).unwrap();
                DynamicImage::ImageRgb8(image).into_rgba8()
            }
            ColorType::Rgba8 => ImageBuffer::<Rgba<_>, _>::from_raw(width, height, buffer).unwrap(),
            ColorType::L16 | ColorType::Rgb16 | ColorType::La16 | ColorType::Rgba16 => {
                // TODO: to enable remove restriction in `animatable_color_type` method.
                unreachable!("16-bit apng not yet support")
            }
            _ => unreachable!("Invalid png color"),
        };
        // We've converted the raw frame to RGBA8 and disposed of the original allocation
        limits.free_usize(raw_frame_size);

        match blend {
            BlendOp::Source => {
                current
                    .copy_from(&source, px, py)
                    .expect("Invalid png image not detected in png");
            }
            BlendOp::Over => {
                // TODO: investigate speed, speed-ups, and bounds-checks.
                for (x, y, p) in source.enumerate_pixels() {
                    current.get_pixel_mut(x + px, y + py).blend(p);
                }
            }
        }

        // Ok, we can proceed with actually remaining images.
        self.remaining = remaining;
        // Return composited output buffer.
        Ok(Some(self.current.as_ref().unwrap()))
    }

    fn animatable_color_type(&self) -> Result<(), ImageError> {
        match self.inner.color_type {
            ColorType::L8 | ColorType::Rgb8 | ColorType::La8 | ColorType::Rgba8 => Ok(()),
            // TODO: do not handle multi-byte colors. Remember to implement it in `mix_next_frame`.
            ColorType::L16 | ColorType::Rgb16 | ColorType::La16 | ColorType::Rgba16 => {
                Err(unsupported_color(self.inner.color_type.into()))
            }
            _ => unreachable!("{:?} not a valid png color", self.inner.color_type),
        }
    }
}

impl<'a, R: Read + 'a> AnimationDecoder<'a> for ApngDecoder<R> {
    fn into_frames(self) -> Frames<'a> {
        struct FrameIterator<R: Read>(ApngDecoder<R>);

        impl<R: Read> Iterator for FrameIterator<R> {
            type Item = ImageResult<Frame>;

            fn next(&mut self) -> Option<Self::Item> {
                let image = match self.0.mix_next_frame() {
                    Ok(Some(image)) => image.clone(),
                    Ok(None) => return None,
                    Err(err) => return Some(Err(err)),
                };

                let info = self.0.inner.reader.info();
                let fc = info.frame_control().unwrap();
                // PNG delays are rations in seconds.
                let num = u32::from(fc.delay_num) * 1_000u32;
                let denom = match fc.delay_den {
                    // The standard dictates to replace by 100 when the denominator is 0.
                    0 => 100,
                    d => u32::from(d),
                };
                let delay = Delay::from_ratio(Ratio::new(num, denom));
                Some(Ok(Frame::from_parts(image, 0, 0, delay)))
            }
        }

        Frames::new(Box::new(FrameIterator(self)))
    }
}

/// PNG encoder
pub struct PngEncoder<W: Write> {
    w: W,
    compression: CompressionType,
    filter: FilterType,
}

/// Compression level of a PNG encoder. The default setting is `Fast`.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
#[non_exhaustive]
#[derive(Default)]
pub enum CompressionType {
    /// Default compression level
    Default,
    /// Fast, minimal compression
    #[default]
    Fast,
    /// High compression level
    Best,
    /// Huffman coding compression
    #[deprecated(note = "use one of the other compression levels instead, such as 'Fast'")]
    Huffman,
    /// Run-length encoding compression
    #[deprecated(note = "use one of the other compression levels instead, such as 'Fast'")]
    Rle,
}

/// Filter algorithms used to process image data to improve compression.
///
/// The default filter is `Adaptive`.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
#[non_exhaustive]
#[derive(Default)]
pub enum FilterType {
    /// No processing done, best used for low bit depth grayscale or data with a
    /// low color count
    NoFilter,
    /// Filters based on previous pixel in the same scanline
    Sub,
    /// Filters based on the scanline above
    Up,
    /// Filters based on the average of left and right neighbor pixels
    Avg,
    /// Algorithm that takes into account the left, upper left, and above pixels
    Paeth,
    /// Uses a heuristic to select one of the preceding filters for each
    /// scanline rather than one filter for the entire image
    #[default]
    Adaptive,
}

#[derive(Clone, Copy, Debug, Eq, PartialEq)]
#[non_exhaustive]
enum BadPngRepresentation {
    ColorType(ColorType),
}

impl<W: Write> PngEncoder<W> {
    /// Create a new encoder that writes its output to ```w```
    pub fn new(w: W) -> PngEncoder<W> {
        PngEncoder {
            w,
            compression: CompressionType::default(),
            filter: FilterType::default(),
        }
    }

    /// Create a new encoder that writes its output to `w` with `CompressionType` `compression` and
    /// `FilterType` `filter`.
    ///
    /// It is best to view the options as a _hint_ to the implementation on the smallest or fastest
    /// option for encoding a particular image. That is, using options that map directly to a PNG
    /// image parameter will use this parameter where possible. But variants that have no direct
    /// mapping may be interpreted differently in minor versions. The exact output is expressly
    /// __not__ part of the SemVer stability guarantee.
    ///
    /// Note that it is not optimal to use a single filter type, so an adaptive
    /// filter type is selected as the default. The filter which best minimizes
    /// file size may change with the type of compression used.
    pub fn new_with_quality(
        w: W,
        compression: CompressionType,
        filter: FilterType,
    ) -> PngEncoder<W> {
        PngEncoder {
            w,
            compression,
            filter,
        }
    }

    /// Encodes the image `data` that has dimensions `width` and `height` and `ColorType` `c`.
    ///
    /// Expects data in big endian.
    #[deprecated = "Use `PngEncoder::write_image` instead. Beware that `write_image` has a different endianness convention"]
    pub fn encode(self, data: &[u8], width: u32, height: u32, color: ColorType) -> ImageResult<()> {
        self.encode_inner(data, width, height, color)
    }

    fn encode_inner(
        self,
        data: &[u8],
        width: u32,
        height: u32,
        color: ColorType,
    ) -> ImageResult<()> {
        let (ct, bits) = match color {
            ColorType::L8 => (png::ColorType::Grayscale, png::BitDepth::Eight),
            ColorType::L16 => (png::ColorType::Grayscale, png::BitDepth::Sixteen),
            ColorType::La8 => (png::ColorType::GrayscaleAlpha, png::BitDepth::Eight),
            ColorType::La16 => (png::ColorType::GrayscaleAlpha, png::BitDepth::Sixteen),
            ColorType::Rgb8 => (png::ColorType::Rgb, png::BitDepth::Eight),
            ColorType::Rgb16 => (png::ColorType::Rgb, png::BitDepth::Sixteen),
            ColorType::Rgba8 => (png::ColorType::Rgba, png::BitDepth::Eight),
            ColorType::Rgba16 => (png::ColorType::Rgba, png::BitDepth::Sixteen),
            _ => {
                return Err(ImageError::Unsupported(
                    UnsupportedError::from_format_and_kind(
                        ImageFormat::Png.into(),
                        UnsupportedErrorKind::Color(color.into()),
                    ),
                ))
            }
        };
        let comp = match self.compression {
            CompressionType::Default => png::Compression::Default,
            CompressionType::Best => png::Compression::Best,
            _ => png::Compression::Fast,
        };
        let (filter, adaptive_filter) = match self.filter {
            FilterType::NoFilter => (
                png::FilterType::NoFilter,
                png::AdaptiveFilterType::NonAdaptive,
            ),
            FilterType::Sub => (png::FilterType::Sub, png::AdaptiveFilterType::NonAdaptive),
            FilterType::Up => (png::FilterType::Up, png::AdaptiveFilterType::NonAdaptive),
            FilterType::Avg => (png::FilterType::Avg, png::AdaptiveFilterType::NonAdaptive),
            FilterType::Paeth => (png::FilterType::Paeth, png::AdaptiveFilterType::NonAdaptive),
            FilterType::Adaptive => (png::FilterType::Sub, png::AdaptiveFilterType::Adaptive),
        };

        let mut encoder = png::Encoder::new(self.w, width, height);
        encoder.set_color(ct);
        encoder.set_depth(bits);
        encoder.set_compression(comp);
        encoder.set_filter(filter);
        encoder.set_adaptive_filter(adaptive_filter);
        let mut writer = encoder
            .write_header()
            .map_err(|e| ImageError::IoError(e.into()))?;
        writer
            .write_image_data(data)
            .map_err(|e| ImageError::IoError(e.into()))
    }
}

impl<W: Write> ImageEncoder for PngEncoder<W> {
    /// Write a PNG image with the specified width, height, and color type.
    ///
    /// For color types with 16-bit per channel or larger, the contents of `buf` should be in
    /// native endian. PngEncoder will automatically convert to big endian as required by the
    /// underlying PNG format.
    #[track_caller]
    fn write_image(
        self,
        buf: &[u8],
        width: u32,
        height: u32,
        color_type: ColorType,
    ) -> ImageResult<()> {
        use byteorder::{BigEndian, ByteOrder, NativeEndian};
        use ColorType::*;

        let expected_bufffer_len =
            (width as u64 * height as u64).saturating_mul(color_type.bytes_per_pixel() as u64);
        assert_eq!(
            expected_bufffer_len,
            buf.len() as u64,
            "Invalid buffer length: expected {expected_bufffer_len} got {} for {width}x{height} image",
            buf.len(),
        );

        // PNG images are big endian. For 16 bit per channel and larger types,
        // the buffer may need to be reordered to big endian per the
        // contract of `write_image`.
        // TODO: assumes equal channel bit depth.
        match color_type {
            L8 | La8 | Rgb8 | Rgba8 => {
                // No reodering necessary for u8
                self.encode_inner(buf, width, height, color_type)
            }
            L16 | La16 | Rgb16 | Rgba16 => {
                // Because the buffer is immutable and the PNG encoder does not
                // yet take Write/Read traits, create a temporary buffer for
                // big endian reordering.
                let mut reordered = vec![0; buf.len()];
                buf.chunks_exact(2)
                    .zip(reordered.chunks_exact_mut(2))
                    .for_each(|(b, r)| BigEndian::write_u16(r, NativeEndian::read_u16(b)));
                self.encode_inner(&reordered, width, height, color_type)
            }
            _ => Err(ImageError::Encoding(EncodingError::new(
                ImageFormat::Png.into(),
                BadPngRepresentation::ColorType(color_type),
            ))),
        }
    }
}

impl ImageError {
    fn from_png(err: png::DecodingError) -> ImageError {
        use png::DecodingError::*;
        match err {
            IoError(err) => ImageError::IoError(err),
            // The input image was not a valid PNG.
            err @ Format(_) => {
                ImageError::Decoding(DecodingError::new(ImageFormat::Png.into(), err))
            }
            // Other is used when:
            // - The decoder is polled for more animation frames despite being done (or not being animated
            //   in the first place).
            // - The output buffer does not have the required size.
            err @ Parameter(_) => ImageError::Parameter(ParameterError::from_kind(
                ParameterErrorKind::Generic(err.to_string()),
            )),
            LimitsExceeded => {
                ImageError::Limits(LimitError::from_kind(LimitErrorKind::InsufficientMemory))
            }
        }
    }
}

impl fmt::Display for BadPngRepresentation {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            Self::ColorType(color_type) => write!(
                f,
                "The color {:?} can not be represented in PNG.",
                color_type
            ),
        }
    }
}

impl std::error::Error for BadPngRepresentation {}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::ImageOutputFormat;

    use std::io::Cursor;

    #[test]
    fn ensure_no_decoder_off_by_one() {
        let dec = PngDecoder::new(
            std::fs::File::open("tests/images/png/bugfixes/debug_triangle_corners_widescreen.png")
                .unwrap(),
        )
        .expect("Unable to read PNG file (does it exist?)");

        assert_eq![(2000, 1000), dec.dimensions()];

        assert_eq![
            ColorType::Rgb8,
            dec.color_type(),
            "Image MUST have the Rgb8 format"
        ];

        #[allow(deprecated)]
        let correct_bytes = dec
            .into_reader()
            .expect("Unable to read file")
            .bytes()
            .map(|x| x.expect("Unable to read byte"))
            .collect::<Vec<u8>>();

        assert_eq![6_000_000, correct_bytes.len()];
    }

    #[test]
    fn underlying_error() {
        use std::error::Error;

        let mut not_png =
            std::fs::read("tests/images/png/bugfixes/debug_triangle_corners_widescreen.png")
                .unwrap();
        not_png[0] = 0;

        let error = PngDecoder::new(&not_png[..]).err().unwrap();
        let _ = error
            .source()
            .unwrap()
            .downcast_ref::<png::DecodingError>()
            .expect("Caused by a png error");
    }

    #[test]
    fn encode_bad_color_type() {
        // regression test for issue #1663
        let image = DynamicImage::new_rgb32f(1, 1);
        let mut target = Cursor::new(vec![]);
        let _ = image.write_to(&mut target, ImageOutputFormat::Png);
    }
}