regex_lite/hir/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
use alloc::{boxed::Box, string::String, vec, vec::Vec};

use crate::{error::Error, utf8};

mod parse;

/// Escapes all regular expression meta characters in `pattern`.
///
/// The string returned may be safely used as a literal in a regular
/// expression.
pub fn escape(pattern: &str) -> String {
    let mut buf = String::new();
    buf.reserve(pattern.len());
    for ch in pattern.chars() {
        if is_meta_character(ch) {
            buf.push('\\');
        }
        buf.push(ch);
    }
    buf
}

/// Returns true if the given character has significance in a regex.
///
/// Generally speaking, these are the only characters which _must_ be escaped
/// in order to match their literal meaning. For example, to match a literal
/// `|`, one could write `\|`. Sometimes escaping isn't always necessary. For
/// example, `-` is treated as a meta character because of its significance
/// for writing ranges inside of character classes, but the regex `-` will
/// match a literal `-` because `-` has no special meaning outside of character
/// classes.
///
/// In order to determine whether a character may be escaped at all, the
/// [`is_escapeable_character`] routine should be used. The difference between
/// `is_meta_character` and `is_escapeable_character` is that the latter will
/// return true for some characters that are _not_ meta characters. For
/// example, `%` and `\%` both match a literal `%` in all contexts. In other
/// words, `is_escapeable_character` includes "superfluous" escapes.
///
/// Note that the set of characters for which this function returns `true` or
/// `false` is fixed and won't change in a semver compatible release. (In this
/// case, "semver compatible release" actually refers to the `regex` crate
/// itself, since reducing or expanding the set of meta characters would be a
/// breaking change for not just `regex-syntax` but also `regex` itself.)
fn is_meta_character(c: char) -> bool {
    match c {
        '\\' | '.' | '+' | '*' | '?' | '(' | ')' | '|' | '[' | ']' | '{'
        | '}' | '^' | '$' | '#' | '&' | '-' | '~' => true,
        _ => false,
    }
}

/// Returns true if the given character can be escaped in a regex.
///
/// This returns true in all cases that `is_meta_character` returns true, but
/// also returns true in some cases where `is_meta_character` returns false.
/// For example, `%` is not a meta character, but it is escapeable. That is,
/// `%` and `\%` both match a literal `%` in all contexts.
///
/// The purpose of this routine is to provide knowledge about what characters
/// may be escaped. Namely, most regex engines permit "superfluous" escapes
/// where characters without any special significance may be escaped even
/// though there is no actual _need_ to do so.
///
/// This will return false for some characters. For example, `e` is not
/// escapeable. Therefore, `\e` will either result in a parse error (which is
/// true today), or it could backwards compatibly evolve into a new construct
/// with its own meaning. Indeed, that is the purpose of banning _some_
/// superfluous escapes: it provides a way to evolve the syntax in a compatible
/// manner.
fn is_escapeable_character(c: char) -> bool {
    // Certainly escapeable if it's a meta character.
    if is_meta_character(c) {
        return true;
    }
    // Any character that isn't ASCII is definitely not escapeable. There's
    // no real need to allow things like \☃ right?
    if !c.is_ascii() {
        return false;
    }
    // Otherwise, we basically say that everything is escapeable unless it's a
    // letter or digit. Things like \3 are either octal (when enabled) or an
    // error, and we should keep it that way. Otherwise, letters are reserved
    // for adding new syntax in a backwards compatible way.
    match c {
        '0'..='9' | 'A'..='Z' | 'a'..='z' => false,
        // While not currently supported, we keep these as not escapeable to
        // give us some flexibility with respect to supporting the \< and
        // \> word boundary assertions in the future. By rejecting them as
        // escapeable, \< and \> will result in a parse error. Thus, we can
        // turn them into something else in the future without it being a
        // backwards incompatible change.
        '<' | '>' => false,
        _ => true,
    }
}

/// The configuration for a regex parser.
#[derive(Clone, Copy, Debug)]
pub(crate) struct Config {
    /// The maximum number of times we're allowed to recurse.
    ///
    /// Note that unlike the regex-syntax parser, we actually use recursion in
    /// this parser for simplicity. My hope is that by setting a conservative
    /// default call limit and providing a way to configure it, that we can
    /// keep this simplification. But if we must, we can re-work the parser to
    /// put the call stack on the heap like regex-syntax does.
    pub(crate) nest_limit: u32,
    /// Various flags that control how a pattern is interpreted.
    pub(crate) flags: Flags,
}

impl Default for Config {
    fn default() -> Config {
        Config { nest_limit: 50, flags: Flags::default() }
    }
}

/// Various flags that control the interpretation of the pattern.
///
/// These can be set via explicit configuration in code, or change dynamically
/// during parsing via inline flags. For example, `foo(?i:bar)baz` will match
/// `foo` and `baz` case sensitiviely and `bar` case insensitively (assuming a
/// default configuration).
#[derive(Clone, Copy, Debug, Default)]
pub(crate) struct Flags {
    /// Whether to match case insensitively.
    ///
    /// This is the `i` flag.
    pub(crate) case_insensitive: bool,
    /// Whether `^` and `$` should be treated as line anchors or not.
    ///
    /// This is the `m` flag.
    pub(crate) multi_line: bool,
    /// Whether `.` should match line terminators or not.
    ///
    /// This is the `s` flag.
    pub(crate) dot_matches_new_line: bool,
    /// Whether to swap the meaning of greedy and non-greedy operators.
    ///
    /// This is the `U` flag.
    pub(crate) swap_greed: bool,
    /// Whether to enable CRLF mode.
    ///
    /// This is the `R` flag.
    pub(crate) crlf: bool,
    /// Whether to ignore whitespace. i.e., verbose mode.
    ///
    /// This is the `x` flag.
    pub(crate) ignore_whitespace: bool,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub(crate) struct Hir {
    kind: HirKind,
    is_start_anchored: bool,
    is_match_empty: bool,
    static_explicit_captures_len: Option<usize>,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub(crate) enum HirKind {
    Empty,
    Char(char),
    Class(Class),
    Look(Look),
    Repetition(Repetition),
    Capture(Capture),
    Concat(Vec<Hir>),
    Alternation(Vec<Hir>),
}

impl Hir {
    /// Parses the given pattern string with the given configuration into a
    /// structured representation. If the pattern is invalid, then an error
    /// is returned.
    pub(crate) fn parse(config: Config, pattern: &str) -> Result<Hir, Error> {
        self::parse::Parser::new(config, pattern).parse()
    }

    /// Returns the underlying kind of this high-level intermediate
    /// representation.
    ///
    /// Note that there is explicitly no way to build an `Hir` directly from
    /// an `HirKind`. If you need to do that, then you must do case analysis
    /// on the `HirKind` and call the appropriate smart constructor on `Hir`.
    pub(crate) fn kind(&self) -> &HirKind {
        &self.kind
    }

    /// Returns true if and only if this Hir expression can only match at the
    /// beginning of a haystack.
    pub(crate) fn is_start_anchored(&self) -> bool {
        self.is_start_anchored
    }

    /// Returns true if and only if this Hir expression can match the empty
    /// string.
    pub(crate) fn is_match_empty(&self) -> bool {
        self.is_match_empty
    }

    /// If the pattern always reports the same number of matching capture groups
    /// for every match, then this returns the number of those groups. This
    /// doesn't include the implicit group found in every pattern.
    pub(crate) fn static_explicit_captures_len(&self) -> Option<usize> {
        self.static_explicit_captures_len
    }

    fn fail() -> Hir {
        let kind = HirKind::Class(Class { ranges: vec![] });
        Hir {
            kind,
            is_start_anchored: false,
            is_match_empty: false,
            static_explicit_captures_len: Some(0),
        }
    }

    fn empty() -> Hir {
        let kind = HirKind::Empty;
        Hir {
            kind,
            is_start_anchored: false,
            is_match_empty: true,
            static_explicit_captures_len: Some(0),
        }
    }

    fn char(ch: char) -> Hir {
        let kind = HirKind::Char(ch);
        Hir {
            kind,
            is_start_anchored: false,
            is_match_empty: false,
            static_explicit_captures_len: Some(0),
        }
    }

    fn class(class: Class) -> Hir {
        let kind = HirKind::Class(class);
        Hir {
            kind,
            is_start_anchored: false,
            is_match_empty: false,
            static_explicit_captures_len: Some(0),
        }
    }

    fn look(look: Look) -> Hir {
        let kind = HirKind::Look(look);
        Hir {
            kind,
            is_start_anchored: matches!(look, Look::Start),
            is_match_empty: true,
            static_explicit_captures_len: Some(0),
        }
    }

    fn repetition(rep: Repetition) -> Hir {
        if rep.min == 0 && rep.max == Some(0) {
            return Hir::empty();
        } else if rep.min == 1 && rep.max == Some(1) {
            return *rep.sub;
        }
        let is_start_anchored = rep.min > 0 && rep.sub.is_start_anchored;
        let is_match_empty = rep.min == 0 || rep.sub.is_match_empty;
        let mut static_explicit_captures_len =
            rep.sub.static_explicit_captures_len;
        // If the static captures len of the sub-expression is not known or
        // is greater than zero, then it automatically propagates to the
        // repetition, regardless of the repetition. Otherwise, it might
        // change, but only when the repetition can match 0 times.
        if rep.min == 0
            && static_explicit_captures_len.map_or(false, |len| len > 0)
        {
            // If we require a match 0 times, then our captures len is
            // guaranteed to be zero. Otherwise, if we *can* match the empty
            // string, then it's impossible to know how many captures will be
            // in the resulting match.
            if rep.max == Some(0) {
                static_explicit_captures_len = Some(0);
            } else {
                static_explicit_captures_len = None;
            }
        }
        Hir {
            kind: HirKind::Repetition(rep),
            is_start_anchored,
            is_match_empty,
            static_explicit_captures_len,
        }
    }

    fn capture(cap: Capture) -> Hir {
        let is_start_anchored = cap.sub.is_start_anchored;
        let is_match_empty = cap.sub.is_match_empty;
        let static_explicit_captures_len = cap
            .sub
            .static_explicit_captures_len
            .map(|len| len.saturating_add(1));
        let kind = HirKind::Capture(cap);
        Hir {
            kind,
            is_start_anchored,
            is_match_empty,
            static_explicit_captures_len,
        }
    }

    fn concat(mut subs: Vec<Hir>) -> Hir {
        if subs.is_empty() {
            Hir::empty()
        } else if subs.len() == 1 {
            subs.pop().unwrap()
        } else {
            let is_start_anchored = subs[0].is_start_anchored;
            let mut is_match_empty = true;
            let mut static_explicit_captures_len = Some(0usize);
            for sub in subs.iter() {
                is_match_empty = is_match_empty && sub.is_match_empty;
                static_explicit_captures_len = static_explicit_captures_len
                    .and_then(|len1| {
                        Some((len1, sub.static_explicit_captures_len?))
                    })
                    .and_then(|(len1, len2)| Some(len1.saturating_add(len2)));
            }
            Hir {
                kind: HirKind::Concat(subs),
                is_start_anchored,
                is_match_empty,
                static_explicit_captures_len,
            }
        }
    }

    fn alternation(mut subs: Vec<Hir>) -> Hir {
        if subs.is_empty() {
            Hir::fail()
        } else if subs.len() == 1 {
            subs.pop().unwrap()
        } else {
            let mut it = subs.iter().peekable();
            let mut is_start_anchored =
                it.peek().map_or(false, |sub| sub.is_start_anchored);
            let mut is_match_empty =
                it.peek().map_or(false, |sub| sub.is_match_empty);
            let mut static_explicit_captures_len =
                it.peek().and_then(|sub| sub.static_explicit_captures_len);
            for sub in it {
                is_start_anchored = is_start_anchored && sub.is_start_anchored;
                is_match_empty = is_match_empty || sub.is_match_empty;
                if static_explicit_captures_len
                    != sub.static_explicit_captures_len
                {
                    static_explicit_captures_len = None;
                }
            }
            Hir {
                kind: HirKind::Alternation(subs),
                is_start_anchored,
                is_match_empty,
                static_explicit_captures_len,
            }
        }
    }
}

impl HirKind {
    /// Returns a slice of this kind's sub-expressions, if any.
    fn subs(&self) -> &[Hir] {
        use core::slice::from_ref;

        match *self {
            HirKind::Empty
            | HirKind::Char(_)
            | HirKind::Class(_)
            | HirKind::Look(_) => &[],
            HirKind::Repetition(Repetition { ref sub, .. }) => from_ref(sub),
            HirKind::Capture(Capture { ref sub, .. }) => from_ref(sub),
            HirKind::Concat(ref subs) => subs,
            HirKind::Alternation(ref subs) => subs,
        }
    }
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub(crate) struct Class {
    pub(crate) ranges: Vec<ClassRange>,
}

impl Class {
    /// Create a new class from the given ranges. The ranges may be provided
    /// in any order or may even overlap. They will be automatically
    /// canonicalized.
    fn new<I: IntoIterator<Item = ClassRange>>(ranges: I) -> Class {
        let mut class = Class { ranges: ranges.into_iter().collect() };
        class.canonicalize();
        class
    }

    /// Expand this class such that it matches the ASCII codepoints in this set
    /// case insensitively.
    fn ascii_case_fold(&mut self) {
        let len = self.ranges.len();
        for i in 0..len {
            if let Some(folded) = self.ranges[i].ascii_case_fold() {
                self.ranges.push(folded);
            }
        }
        self.canonicalize();
    }

    /// Negate this set.
    ///
    /// For all `x` where `x` is any element, if `x` was in this set, then it
    /// will not be in this set after negation.
    fn negate(&mut self) {
        const MIN: char = '\x00';
        const MAX: char = char::MAX;

        if self.ranges.is_empty() {
            self.ranges.push(ClassRange { start: MIN, end: MAX });
            return;
        }

        // There should be a way to do this in-place with constant memory,
        // but I couldn't figure out a simple way to do it. So just append
        // the negation to the end of this range, and then drain it before
        // we're done.
        let drain_end = self.ranges.len();

        // If our class doesn't start the minimum possible char, then negation
        // needs to include all codepoints up to the minimum in this set.
        if self.ranges[0].start > MIN {
            self.ranges.push(ClassRange {
                start: MIN,
                // OK because we know it's bigger than MIN.
                end: prev_char(self.ranges[0].start).unwrap(),
            });
        }
        for i in 1..drain_end {
            // let lower = self.ranges[i - 1].upper().increment();
            // let upper = self.ranges[i].lower().decrement();
            // self.ranges.push(I::create(lower, upper));
            self.ranges.push(ClassRange {
                // OK because we know i-1 is never the last range and therefore
                // there must be a range greater than it. It therefore follows
                // that 'end' can never be char::MAX, and thus there must be
                // a next char.
                start: next_char(self.ranges[i - 1].end).unwrap(),
                // Since 'i' is guaranteed to never be the first range, it
                // follows that there is always a range before this and thus
                // 'start' can never be '\x00'. Thus, there must be a previous
                // char.
                end: prev_char(self.ranges[i].start).unwrap(),
            });
        }
        if self.ranges[drain_end - 1].end < MAX {
            // let lower = self.ranges[drain_end - 1].upper().increment();
            // self.ranges.push(I::create(lower, I::Bound::max_value()));
            self.ranges.push(ClassRange {
                // OK because we know 'end' is less than char::MAX, and thus
                // there is a next char.
                start: next_char(self.ranges[drain_end - 1].end).unwrap(),
                end: MAX,
            });
        }
        self.ranges.drain(..drain_end);
        // We don't need to canonicalize because we processed the ranges above
        // in canonical order and the new ranges we added based on those are
        // also necessarily in canonical order.
    }

    /// Converts this set into a canonical ordering.
    fn canonicalize(&mut self) {
        if self.is_canonical() {
            return;
        }
        self.ranges.sort();
        assert!(!self.ranges.is_empty());

        // Is there a way to do this in-place with constant memory? I couldn't
        // figure out a way to do it. So just append the canonicalization to
        // the end of this range, and then drain it before we're done.
        let drain_end = self.ranges.len();
        for oldi in 0..drain_end {
            // If we've added at least one new range, then check if we can
            // merge this range in the previously added range.
            if self.ranges.len() > drain_end {
                let (last, rest) = self.ranges.split_last_mut().unwrap();
                if let Some(union) = last.union(&rest[oldi]) {
                    *last = union;
                    continue;
                }
            }
            self.ranges.push(self.ranges[oldi]);
        }
        self.ranges.drain(..drain_end);
    }

    /// Returns true if and only if this class is in a canonical ordering.
    fn is_canonical(&self) -> bool {
        for pair in self.ranges.windows(2) {
            if pair[0] >= pair[1] {
                return false;
            }
            if pair[0].is_contiguous(&pair[1]) {
                return false;
            }
        }
        true
    }
}

#[derive(Clone, Copy, Debug, Eq, PartialEq, PartialOrd, Ord)]
pub(crate) struct ClassRange {
    pub(crate) start: char,
    pub(crate) end: char,
}

impl ClassRange {
    /// Apply simple case folding to this byte range. Only ASCII case mappings
    /// (for A-Za-z) are applied.
    ///
    /// Additional ranges are appended to the given vector. Canonical ordering
    /// is *not* maintained in the given vector.
    fn ascii_case_fold(&self) -> Option<ClassRange> {
        if !(ClassRange { start: 'a', end: 'z' }).is_intersection_empty(self) {
            let start = core::cmp::max(self.start, 'a');
            let end = core::cmp::min(self.end, 'z');
            return Some(ClassRange {
                start: char::try_from(u32::from(start) - 32).unwrap(),
                end: char::try_from(u32::from(end) - 32).unwrap(),
            });
        }
        if !(ClassRange { start: 'A', end: 'Z' }).is_intersection_empty(self) {
            let start = core::cmp::max(self.start, 'A');
            let end = core::cmp::min(self.end, 'Z');
            return Some(ClassRange {
                start: char::try_from(u32::from(start) + 32).unwrap(),
                end: char::try_from(u32::from(end) + 32).unwrap(),
            });
        }
        None
    }

    /// Union the given overlapping range into this range.
    ///
    /// If the two ranges aren't contiguous, then this returns `None`.
    fn union(&self, other: &ClassRange) -> Option<ClassRange> {
        if !self.is_contiguous(other) {
            return None;
        }
        let start = core::cmp::min(self.start, other.start);
        let end = core::cmp::max(self.end, other.end);
        Some(ClassRange { start, end })
    }

    /// Returns true if and only if the two ranges are contiguous. Two ranges
    /// are contiguous if and only if the ranges are either overlapping or
    /// adjacent.
    fn is_contiguous(&self, other: &ClassRange) -> bool {
        let (s1, e1) = (u32::from(self.start), u32::from(self.end));
        let (s2, e2) = (u32::from(other.start), u32::from(other.end));
        core::cmp::max(s1, s2) <= core::cmp::min(e1, e2).saturating_add(1)
    }

    /// Returns true if and only if the intersection of this range and the
    /// other range is empty.
    fn is_intersection_empty(&self, other: &ClassRange) -> bool {
        let (s1, e1) = (self.start, self.end);
        let (s2, e2) = (other.start, other.end);
        core::cmp::max(s1, s2) > core::cmp::min(e1, e2)
    }
}

/// The high-level intermediate representation for a look-around assertion.
///
/// An assertion match is always zero-length. Also called an "empty match."
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub(crate) enum Look {
    /// Match the beginning of text. Specifically, this matches at the starting
    /// position of the input.
    Start = 1 << 0,
    /// Match the end of text. Specifically, this matches at the ending
    /// position of the input.
    End = 1 << 1,
    /// Match the beginning of a line or the beginning of text. Specifically,
    /// this matches at the starting position of the input, or at the position
    /// immediately following a `\n` character.
    StartLF = 1 << 2,
    /// Match the end of a line or the end of text. Specifically, this matches
    /// at the end position of the input, or at the position immediately
    /// preceding a `\n` character.
    EndLF = 1 << 3,
    /// Match the beginning of a line or the beginning of text. Specifically,
    /// this matches at the starting position of the input, or at the position
    /// immediately following either a `\r` or `\n` character, but never after
    /// a `\r` when a `\n` follows.
    StartCRLF = 1 << 4,
    /// Match the end of a line or the end of text. Specifically, this matches
    /// at the end position of the input, or at the position immediately
    /// preceding a `\r` or `\n` character, but never before a `\n` when a `\r`
    /// precedes it.
    EndCRLF = 1 << 5,
    /// Match an ASCII-only word boundary. That is, this matches a position
    /// where the left adjacent character and right adjacent character
    /// correspond to a word and non-word or a non-word and word character.
    Word = 1 << 6,
    /// Match an ASCII-only negation of a word boundary.
    WordNegate = 1 << 7,
    /// Match the start of an ASCII-only word boundary. That is, this matches a
    /// position at either the beginning of the haystack or where the previous
    /// character is not a word character and the following character is a word
    /// character.
    WordStart = 1 << 8,
    /// Match the end of an ASCII-only word boundary. That is, this matches
    /// a position at either the end of the haystack or where the previous
    /// character is a word character and the following character is not a word
    /// character.
    WordEnd = 1 << 9,
    /// Match the start half of an ASCII-only word boundary. That is, this
    /// matches a position at either the beginning of the haystack or where the
    /// previous character is not a word character.
    WordStartHalf = 1 << 10,
    /// Match the end half of an ASCII-only word boundary. That is, this
    /// matches a position at either the end of the haystack or where the
    /// following character is not a word character.
    WordEndHalf = 1 << 11,
}

impl Look {
    /// Returns true if the given position in the given haystack matches this
    /// look-around assertion.
    pub(crate) fn is_match(&self, haystack: &[u8], at: usize) -> bool {
        use self::Look::*;

        match *self {
            Start => at == 0,
            End => at == haystack.len(),
            StartLF => at == 0 || haystack[at - 1] == b'\n',
            EndLF => at == haystack.len() || haystack[at] == b'\n',
            StartCRLF => {
                at == 0
                    || haystack[at - 1] == b'\n'
                    || (haystack[at - 1] == b'\r'
                        && (at >= haystack.len() || haystack[at] != b'\n'))
            }
            EndCRLF => {
                at == haystack.len()
                    || haystack[at] == b'\r'
                    || (haystack[at] == b'\n'
                        && (at == 0 || haystack[at - 1] != b'\r'))
            }
            Word => {
                let word_before =
                    at > 0 && utf8::is_word_byte(haystack[at - 1]);
                let word_after =
                    at < haystack.len() && utf8::is_word_byte(haystack[at]);
                word_before != word_after
            }
            WordNegate => {
                let word_before =
                    at > 0 && utf8::is_word_byte(haystack[at - 1]);
                let word_after =
                    at < haystack.len() && utf8::is_word_byte(haystack[at]);
                word_before == word_after
            }
            WordStart => {
                let word_before =
                    at > 0 && utf8::is_word_byte(haystack[at - 1]);
                let word_after =
                    at < haystack.len() && utf8::is_word_byte(haystack[at]);
                !word_before && word_after
            }
            WordEnd => {
                let word_before =
                    at > 0 && utf8::is_word_byte(haystack[at - 1]);
                let word_after =
                    at < haystack.len() && utf8::is_word_byte(haystack[at]);
                word_before && !word_after
            }
            WordStartHalf => {
                let word_before =
                    at > 0 && utf8::is_word_byte(haystack[at - 1]);
                !word_before
            }
            WordEndHalf => {
                let word_after =
                    at < haystack.len() && utf8::is_word_byte(haystack[at]);
                !word_after
            }
        }
    }
}

/// The high-level intermediate representation of a repetition operator.
///
/// A repetition operator permits the repetition of an arbitrary
/// sub-expression.
#[derive(Clone, Debug, Eq, PartialEq)]
pub(crate) struct Repetition {
    /// The minimum range of the repetition.
    ///
    /// Note that special cases like `?`, `+` and `*` all get translated into
    /// the ranges `{0,1}`, `{1,}` and `{0,}`, respectively.
    ///
    /// When `min` is zero, this expression can match the empty string
    /// regardless of what its sub-expression is.
    pub(crate) min: u32,
    /// The maximum range of the repetition.
    ///
    /// Note that when `max` is `None`, `min` acts as a lower bound but where
    /// there is no upper bound. For something like `x{5}` where the min and
    /// max are equivalent, `min` will be set to `5` and `max` will be set to
    /// `Some(5)`.
    pub(crate) max: Option<u32>,
    /// Whether this repetition operator is greedy or not. A greedy operator
    /// will match as much as it can. A non-greedy operator will match as
    /// little as it can.
    ///
    /// Typically, operators are greedy by default and are only non-greedy when
    /// a `?` suffix is used, e.g., `(expr)*` is greedy while `(expr)*?` is
    /// not. However, this can be inverted via the `U` "ungreedy" flag.
    pub(crate) greedy: bool,
    /// The expression being repeated.
    pub(crate) sub: Box<Hir>,
}

/// The high-level intermediate representation for a capturing group.
///
/// A capturing group always has an index and a child expression. It may
/// also have a name associated with it (e.g., `(?P<foo>\w)`), but it's not
/// necessary.
///
/// Note that there is no explicit representation of a non-capturing group
/// in a `Hir`. Instead, non-capturing grouping is handled automatically by
/// the recursive structure of the `Hir` itself.
#[derive(Clone, Debug, Eq, PartialEq)]
pub(crate) struct Capture {
    /// The capture index of the capture.
    pub(crate) index: u32,
    /// The name of the capture, if it exists.
    pub(crate) name: Option<Box<str>>,
    /// The expression inside the capturing group, which may be empty.
    pub(crate) sub: Box<Hir>,
}

fn next_char(ch: char) -> Option<char> {
    // Skip over the surrogate range.
    if ch == '\u{D7FF}' {
        return Some('\u{E000}');
    }
    // OK because char::MAX < u32::MAX and we handle U+D7FF above.
    char::from_u32(u32::from(ch).checked_add(1).unwrap())
}

fn prev_char(ch: char) -> Option<char> {
    // Skip over the surrogate range.
    if ch == '\u{E000}' {
        return Some('\u{D7FF}');
    }
    // OK because subtracting 1 from any valid scalar value other than 0
    // and U+E000 yields a valid scalar value.
    Some(char::from_u32(u32::from(ch).checked_sub(1)?).unwrap())
}

impl Drop for Hir {
    fn drop(&mut self) {
        use core::mem;

        match *self.kind() {
            HirKind::Empty
            | HirKind::Char(_)
            | HirKind::Class(_)
            | HirKind::Look(_) => return,
            HirKind::Capture(ref x) if x.sub.kind.subs().is_empty() => return,
            HirKind::Repetition(ref x) if x.sub.kind.subs().is_empty() => {
                return
            }
            HirKind::Concat(ref x) if x.is_empty() => return,
            HirKind::Alternation(ref x) if x.is_empty() => return,
            _ => {}
        }

        let mut stack = vec![mem::replace(self, Hir::empty())];
        while let Some(mut expr) = stack.pop() {
            match expr.kind {
                HirKind::Empty
                | HirKind::Char(_)
                | HirKind::Class(_)
                | HirKind::Look(_) => {}
                HirKind::Capture(ref mut x) => {
                    stack.push(mem::replace(&mut x.sub, Hir::empty()));
                }
                HirKind::Repetition(ref mut x) => {
                    stack.push(mem::replace(&mut x.sub, Hir::empty()));
                }
                HirKind::Concat(ref mut x) => {
                    stack.extend(x.drain(..));
                }
                HirKind::Alternation(ref mut x) => {
                    stack.extend(x.drain(..));
                }
            }
        }
    }
}