deadpool/managed/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
//! Managed version of the pool.
//!
//! "Managed" means that it requires a [`Manager`] which is responsible for
//! creating and recycling objects as they are needed.
//!
//! # Example
//!
//! ```rust
//! use deadpool::managed;
//!
//! #[derive(Debug)]
//! enum Error { Fail }
//!
//! struct Computer {}
//!
//! impl Computer {
//!     async fn get_answer(&self) -> i32 {
//!         42
//!     }
//! }
//!
//! struct Manager {}
//!
//! impl managed::Manager for Manager {
//!     type Type = Computer;
//!     type Error = Error;
//!
//!     async fn create(&self) -> Result<Computer, Error> {
//!         Ok(Computer {})
//!     }
//!     async fn recycle(&self, conn: &mut Computer, _: &managed::Metrics) -> managed::RecycleResult<Error> {
//!         Ok(())
//!     }
//! }
//!
//! type Pool = managed::Pool<Manager>;
//!
//! #[tokio::main]
//! async fn main() {
//!     let mgr = Manager {};
//!     let pool = Pool::builder(mgr).max_size(16).build().unwrap();
//!     let mut conn = pool.get().await.unwrap();
//!     let answer = conn.get_answer().await;
//!     assert_eq!(answer, 42);
//! }
//! ```
//!
//! For a more complete example please see
//! [`deadpool-postgres`](https://crates.io/crates/deadpool-postgres) crate.

mod builder;
mod config;
mod dropguard;
mod errors;
mod hooks;
mod metrics;
pub mod reexports;

use std::{
    collections::VecDeque,
    fmt,
    future::Future,
    marker::PhantomData,
    ops::{Deref, DerefMut},
    sync::{
        atomic::{AtomicUsize, Ordering},
        Arc, Mutex, Weak,
    },
    time::Duration,
};

#[cfg(not(target_arch = "wasm32"))]
use std::time::Instant;

use deadpool_runtime::Runtime;
use tokio::sync::{Semaphore, TryAcquireError};

pub use crate::Status;

use self::dropguard::DropGuard;
pub use self::{
    builder::{BuildError, PoolBuilder},
    config::{CreatePoolError, PoolConfig, QueueMode, Timeouts},
    errors::{PoolError, RecycleError, TimeoutType},
    hooks::{Hook, HookError, HookFuture, HookResult},
    metrics::Metrics,
};

/// Result type of the [`Manager::recycle()`] method.
pub type RecycleResult<E> = Result<(), RecycleError<E>>;

/// Manager responsible for creating new [`Object`]s or recycling existing ones.
pub trait Manager: Sync + Send {
    /// Type of [`Object`]s that this [`Manager`] creates and recycles.
    type Type: Send;
    /// Error that this [`Manager`] can return when creating and/or recycling
    /// [`Object`]s.
    type Error: Send;

    /// Creates a new instance of [`Manager::Type`].
    fn create(&self) -> impl Future<Output = Result<Self::Type, Self::Error>> + Send;

    /// Tries to recycle an instance of [`Manager::Type`].
    ///
    /// # Errors
    ///
    /// Returns [`Manager::Error`] if the instance couldn't be recycled.
    fn recycle(
        &self,
        obj: &mut Self::Type,
        metrics: &Metrics,
    ) -> impl Future<Output = RecycleResult<Self::Error>> + Send;

    /// Detaches an instance of [`Manager::Type`] from this [`Manager`].
    ///
    /// This method is called when using the [`Object::take()`] method for
    /// removing an [`Object`] from a [`Pool`]. If the [`Manager`] doesn't hold
    /// any references to the handed out [`Object`]s then the default
    /// implementation can be used which does nothing.
    fn detach(&self, _obj: &mut Self::Type) {}
}

/// Wrapper around the actual pooled object which implements [`Deref`],
/// [`DerefMut`] and [`Drop`] traits.
///
/// Use this object just as if it was of type `T` and upon leaving a scope the
/// [`Drop::drop()`] will take care of returning it to the pool.
#[must_use]
pub struct Object<M: Manager> {
    /// The actual object
    inner: Option<ObjectInner<M>>,

    /// Pool to return the pooled object to.
    pool: Weak<PoolInner<M>>,
}

impl<M> fmt::Debug for Object<M>
where
    M: fmt::Debug + Manager,
    M::Type: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Object")
            .field("inner", &self.inner)
            .finish()
    }
}

struct UnreadyObject<'a, M: Manager> {
    inner: Option<ObjectInner<M>>,
    pool: &'a PoolInner<M>,
}

impl<'a, M: Manager> UnreadyObject<'a, M> {
    fn ready(mut self) -> ObjectInner<M> {
        self.inner.take().unwrap()
    }
    fn inner(&mut self) -> &mut ObjectInner<M> {
        return self.inner.as_mut().unwrap();
    }
}

impl<'a, M: Manager> Drop for UnreadyObject<'a, M> {
    fn drop(&mut self) {
        if let Some(mut inner) = self.inner.take() {
            self.pool.slots.lock().unwrap().size -= 1;
            self.pool.manager.detach(&mut inner.obj);
        }
    }
}

#[derive(Debug)]
pub(crate) struct ObjectInner<M: Manager> {
    /// Actual pooled object.
    obj: M::Type,

    /// Object metrics.
    metrics: Metrics,
}

impl<M: Manager> Object<M> {
    /// Takes this [`Object`] from its [`Pool`] permanently. This reduces the
    /// size of the [`Pool`].
    #[must_use]
    pub fn take(mut this: Self) -> M::Type {
        let mut inner = this.inner.take().unwrap().obj;
        if let Some(pool) = Object::pool(&this) {
            pool.inner.detach_object(&mut inner)
        }
        inner
    }

    /// Get object statistics
    pub fn metrics(this: &Self) -> &Metrics {
        &this.inner.as_ref().unwrap().metrics
    }

    /// Returns the [`Pool`] this [`Object`] belongs to.
    ///
    /// Since [`Object`]s only hold a [`Weak`] reference to the [`Pool`] they
    /// come from, this can fail and return [`None`] instead.
    pub fn pool(this: &Self) -> Option<Pool<M>> {
        this.pool.upgrade().map(|inner| Pool {
            inner,
            _wrapper: PhantomData,
        })
    }
}

impl<M: Manager> Drop for Object<M> {
    fn drop(&mut self) {
        if let Some(inner) = self.inner.take() {
            if let Some(pool) = self.pool.upgrade() {
                pool.return_object(inner)
            }
        }
    }
}

impl<M: Manager> Deref for Object<M> {
    type Target = M::Type;
    fn deref(&self) -> &M::Type {
        &self.inner.as_ref().unwrap().obj
    }
}

impl<M: Manager> DerefMut for Object<M> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.inner.as_mut().unwrap().obj
    }
}

impl<M: Manager> AsRef<M::Type> for Object<M> {
    fn as_ref(&self) -> &M::Type {
        self
    }
}

impl<M: Manager> AsMut<M::Type> for Object<M> {
    fn as_mut(&mut self) -> &mut M::Type {
        self
    }
}

/// Generic object and connection pool.
///
/// This struct can be cloned and transferred across thread boundaries and uses
/// reference counting for its internal state.
pub struct Pool<M: Manager, W: From<Object<M>> = Object<M>> {
    inner: Arc<PoolInner<M>>,
    _wrapper: PhantomData<fn() -> W>,
}

// Implemented manually to avoid unnecessary trait bound on `W` type parameter.
impl<M, W> fmt::Debug for Pool<M, W>
where
    M: fmt::Debug + Manager,
    M::Type: fmt::Debug,
    W: From<Object<M>>,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Pool")
            .field("inner", &self.inner)
            .field("wrapper", &self._wrapper)
            .finish()
    }
}

impl<M: Manager, W: From<Object<M>>> Clone for Pool<M, W> {
    fn clone(&self) -> Self {
        Self {
            inner: self.inner.clone(),
            _wrapper: PhantomData,
        }
    }
}

impl<M: Manager, W: From<Object<M>>> Pool<M, W> {
    /// Instantiates a builder for a new [`Pool`].
    ///
    /// This is the only way to create a [`Pool`] instance.
    pub fn builder(manager: M) -> PoolBuilder<M, W> {
        PoolBuilder::new(manager)
    }

    pub(crate) fn from_builder(builder: PoolBuilder<M, W>) -> Self {
        Self {
            inner: Arc::new(PoolInner {
                manager: builder.manager,
                slots: Mutex::new(Slots {
                    vec: VecDeque::with_capacity(builder.config.max_size),
                    size: 0,
                    max_size: builder.config.max_size,
                }),
                users: AtomicUsize::new(0),
                semaphore: Semaphore::new(builder.config.max_size),
                config: builder.config,
                hooks: builder.hooks,
                runtime: builder.runtime,
            }),
            _wrapper: PhantomData,
        }
    }

    /// Retrieves an [`Object`] from this [`Pool`] or waits for one to
    /// become available.
    ///
    /// # Errors
    ///
    /// See [`PoolError`] for details.
    pub async fn get(&self) -> Result<W, PoolError<M::Error>> {
        self.timeout_get(&self.timeouts()).await
    }

    /// Retrieves an [`Object`] from this [`Pool`] using a different `timeout`
    /// than the configured one.
    ///
    /// # Errors
    ///
    /// See [`PoolError`] for details.
    pub async fn timeout_get(&self, timeouts: &Timeouts) -> Result<W, PoolError<M::Error>> {
        let _ = self.inner.users.fetch_add(1, Ordering::Relaxed);
        let users_guard = DropGuard(|| {
            let _ = self.inner.users.fetch_sub(1, Ordering::Relaxed);
        });

        let non_blocking = match timeouts.wait {
            Some(t) => t.as_nanos() == 0,
            None => false,
        };

        let permit = if non_blocking {
            self.inner.semaphore.try_acquire().map_err(|e| match e {
                TryAcquireError::Closed => PoolError::Closed,
                TryAcquireError::NoPermits => PoolError::Timeout(TimeoutType::Wait),
            })?
        } else {
            apply_timeout(
                self.inner.runtime,
                TimeoutType::Wait,
                timeouts.wait,
                async {
                    self.inner
                        .semaphore
                        .acquire()
                        .await
                        .map_err(|_| PoolError::Closed)
                },
            )
            .await?
        };

        let inner_obj = loop {
            let inner_obj = match self.inner.config.queue_mode {
                QueueMode::Fifo => self.inner.slots.lock().unwrap().vec.pop_front(),
                QueueMode::Lifo => self.inner.slots.lock().unwrap().vec.pop_back(),
            };
            let inner_obj = if let Some(inner_obj) = inner_obj {
                self.try_recycle(timeouts, inner_obj).await?
            } else {
                self.try_create(timeouts).await?
            };
            if let Some(inner_obj) = inner_obj {
                break inner_obj;
            }
        };

        users_guard.disarm();
        permit.forget();

        Ok(Object {
            inner: Some(inner_obj),
            pool: Arc::downgrade(&self.inner),
        }
        .into())
    }

    #[inline]
    async fn try_recycle(
        &self,
        timeouts: &Timeouts,
        inner_obj: ObjectInner<M>,
    ) -> Result<Option<ObjectInner<M>>, PoolError<M::Error>> {
        let mut unready_obj = UnreadyObject {
            inner: Some(inner_obj),
            pool: &self.inner,
        };
        let inner = unready_obj.inner();

        // Apply pre_recycle hooks
        if let Err(_e) = self.inner.hooks.pre_recycle.apply(inner).await {
            // TODO log pre_recycle error
            return Ok(None);
        }

        if apply_timeout(
            self.inner.runtime,
            TimeoutType::Recycle,
            timeouts.recycle,
            self.inner.manager.recycle(&mut inner.obj, &inner.metrics),
        )
        .await
        .is_err()
        {
            return Ok(None);
        }

        // Apply post_recycle hooks
        if let Err(_e) = self.inner.hooks.post_recycle.apply(inner).await {
            // TODO log post_recycle error
            return Ok(None);
        }

        inner.metrics.recycle_count += 1;
        #[cfg(not(target_arch = "wasm32"))]
        {
            inner.metrics.recycled = Some(Instant::now());
        }

        Ok(Some(unready_obj.ready()))
    }

    #[inline]
    async fn try_create(
        &self,
        timeouts: &Timeouts,
    ) -> Result<Option<ObjectInner<M>>, PoolError<M::Error>> {
        let mut unready_obj = UnreadyObject {
            inner: Some(ObjectInner {
                obj: apply_timeout(
                    self.inner.runtime,
                    TimeoutType::Create,
                    timeouts.create,
                    self.inner.manager.create(),
                )
                .await?,
                metrics: Metrics::default(),
            }),
            pool: &self.inner,
        };

        self.inner.slots.lock().unwrap().size += 1;

        // Apply post_create hooks
        if let Err(e) = self
            .inner
            .hooks
            .post_create
            .apply(unready_obj.inner())
            .await
        {
            return Err(PoolError::PostCreateHook(e));
        }

        Ok(Some(unready_obj.ready()))
    }

    /**
     * Resize the pool. This change the `max_size` of the pool dropping
     * excess objects and/or making space for new ones.
     *
     * If the pool is closed this method does nothing. The [`Pool::status`] method
     * always reports a `max_size` of 0 for closed pools.
     */
    pub fn resize(&self, max_size: usize) {
        if self.inner.semaphore.is_closed() {
            return;
        }
        let mut slots = self.inner.slots.lock().unwrap();
        let old_max_size = slots.max_size;
        slots.max_size = max_size;
        // shrink pool
        if max_size < old_max_size {
            while slots.size > slots.max_size {
                if let Ok(permit) = self.inner.semaphore.try_acquire() {
                    permit.forget();
                    if slots.vec.pop_front().is_some() {
                        slots.size -= 1;
                    }
                } else {
                    break;
                }
            }
            // Create a new VecDeque with a smaller capacity
            let mut vec = VecDeque::with_capacity(max_size);
            for obj in slots.vec.drain(..) {
                vec.push_back(obj);
            }
            slots.vec = vec;
        }
        // grow pool
        if max_size > old_max_size {
            let additional = slots.max_size - slots.size;
            slots.vec.reserve_exact(additional);
            self.inner.semaphore.add_permits(additional);
        }
    }

    /// Retains only the objects specified by the given function.
    ///
    /// This function is typically used to remove objects from
    /// the pool based on their current state or metrics.
    ///
    /// **Caution:** This function blocks the entire pool while
    /// it is running. Therefore the given function should not
    /// block.
    ///
    /// The following example starts a background task that
    /// runs every 30 seconds and removes objects from the pool
    /// that haven't been used for more than one minute.
    ///
    /// ```rust,ignore
    /// let interval = Duration::from_secs(30);
    /// let max_age = Duration::from_secs(60);
    /// tokio::spawn(async move {
    ///     loop {
    ///         tokio::time::sleep(interval).await;
    ///         pool.retain(|_, metrics| metrics.last_used() < max_age);
    ///     }
    /// });
    /// ```
    pub fn retain(&self, f: impl Fn(&M::Type, Metrics) -> bool) {
        let mut guard = self.inner.slots.lock().unwrap();
        let len_before = guard.vec.len();
        guard.vec.retain_mut(|obj| {
            if f(&obj.obj, obj.metrics) {
                true
            } else {
                self.manager().detach(&mut obj.obj);
                false
            }
        });
        guard.size -= len_before - guard.vec.len();
    }

    /// Get current timeout configuration
    pub fn timeouts(&self) -> Timeouts {
        self.inner.config.timeouts
    }

    /// Closes this [`Pool`].
    ///
    /// All current and future tasks waiting for [`Object`]s will return
    /// [`PoolError::Closed`] immediately.
    ///
    /// This operation resizes the pool to 0.
    pub fn close(&self) {
        self.resize(0);
        self.inner.semaphore.close();
    }

    /// Indicates whether this [`Pool`] has been closed.
    pub fn is_closed(&self) -> bool {
        self.inner.semaphore.is_closed()
    }

    /// Retrieves [`Status`] of this [`Pool`].
    #[must_use]
    pub fn status(&self) -> Status {
        let slots = self.inner.slots.lock().unwrap();
        let users = self.inner.users.load(Ordering::Relaxed);
        let (available, waiting) = if users < slots.size {
            (slots.size - users, 0)
        } else {
            (0, users - slots.size)
        };
        Status {
            max_size: slots.max_size,
            size: slots.size,
            available,
            waiting,
        }
    }

    /// Returns [`Manager`] of this [`Pool`].
    #[must_use]
    pub fn manager(&self) -> &M {
        &self.inner.manager
    }
}

struct PoolInner<M: Manager> {
    manager: M,
    slots: Mutex<Slots<ObjectInner<M>>>,
    /// Number of available [`Object`]s in the [`Pool`]. If there are no
    /// [`Object`]s in the [`Pool`] this number can become negative and store
    /// the number of [`Future`]s waiting for an [`Object`].
    users: AtomicUsize,
    semaphore: Semaphore,
    config: PoolConfig,
    runtime: Option<Runtime>,
    hooks: hooks::Hooks<M>,
}

#[derive(Debug)]
struct Slots<T> {
    vec: VecDeque<T>,
    size: usize,
    max_size: usize,
}

// Implemented manually to avoid unnecessary trait bound on the struct.
impl<M> fmt::Debug for PoolInner<M>
where
    M: fmt::Debug + Manager,
    M::Type: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("PoolInner")
            .field("manager", &self.manager)
            .field("slots", &self.slots)
            .field("used", &self.users)
            .field("semaphore", &self.semaphore)
            .field("config", &self.config)
            .field("runtime", &self.runtime)
            .field("hooks", &self.hooks)
            .finish()
    }
}

impl<M: Manager> PoolInner<M> {
    fn return_object(&self, mut inner: ObjectInner<M>) {
        let _ = self.users.fetch_sub(1, Ordering::Relaxed);
        let mut slots = self.slots.lock().unwrap();
        if slots.size <= slots.max_size {
            slots.vec.push_back(inner);
            drop(slots);
            self.semaphore.add_permits(1);
        } else {
            slots.size -= 1;
            drop(slots);
            self.manager.detach(&mut inner.obj);
        }
    }
    fn detach_object(&self, obj: &mut M::Type) {
        let _ = self.users.fetch_sub(1, Ordering::Relaxed);
        let mut slots = self.slots.lock().unwrap();
        let add_permits = slots.size <= slots.max_size;
        slots.size -= 1;
        drop(slots);
        if add_permits {
            self.semaphore.add_permits(1);
        }
        self.manager.detach(obj);
    }
}

async fn apply_timeout<O, E>(
    runtime: Option<Runtime>,
    timeout_type: TimeoutType,
    duration: Option<Duration>,
    future: impl Future<Output = Result<O, impl Into<PoolError<E>>>>,
) -> Result<O, PoolError<E>> {
    match (runtime, duration) {
        (_, None) => future.await.map_err(Into::into),
        (Some(runtime), Some(duration)) => runtime
            .timeout(duration, future)
            .await
            .ok_or(PoolError::Timeout(timeout_type))?
            .map_err(Into::into),
        (None, Some(_)) => Err(PoolError::NoRuntimeSpecified),
    }
}