1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
/*
NeuQuant Neural-Net Quantization Algorithm by Anthony Dekker, 1994.
See "Kohonen neural networks for optimal colour quantization"
in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
for a discussion of the algorithm.
See also http://members.ozemail.com.au/~dekker/NEUQUANT.HTML
Incorporated bugfixes and alpha channel handling from pngnq
http://pngnq.sourceforge.net
Copyright (c) 2014 The Piston Developers
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
NeuQuant Neural-Net Quantization Algorithm
------------------------------------------
Copyright (c) 1994 Anthony Dekker
NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994.
See "Kohonen neural networks for optimal colour quantization"
in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
for a discussion of the algorithm.
See also http://members.ozemail.com.au/~dekker/NEUQUANT.HTML
Any party obtaining a copy of these files from the author, directly or
indirectly, is granted, free of charge, a full and unrestricted irrevocable,
world-wide, paid up, royalty-free, nonexclusive right and license to deal
in this software and documentation files (the "Software"), including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons who receive
copies from any such party to do so, with the only requirement being
that this copyright notice remain intact.
*/
//! # Color quantization library
//!
//! This library provides a color quantizer based on the [NEUQUANT](http://members.ozemail.com.au/~dekker/NEUQUANT.HTML)
//!
//! Original literature: Dekker, A. H. (1994). Kohonen neural networks for
//! optimal colour quantization. *Network: Computation in Neural Systems*, 5(3), 351-367.
//! [doi: 10.1088/0954-898X_5_3_003](https://doi.org/10.1088/0954-898X_5_3_003)
//!
//! See also <https://scientificgems.wordpress.com/stuff/neuquant-fast-high-quality-image-quantization/>
//!
//! ## Usage
//!
//! ```
//! let data = vec![0; 40];
//! let nq = color_quant::NeuQuant::new(10, 256, &data);
//! let indixes: Vec<u8> = data.chunks(4).map(|pix| nq.index_of(pix) as u8).collect();
//! let color_map = nq.color_map_rgba();
//! ```
mod math;
use crate::math::clamp;
use std::cmp::{max, min};
const CHANNELS: usize = 4;
const RADIUS_DEC: i32 = 30; // factor of 1/30 each cycle
const ALPHA_BIASSHIFT: i32 = 10; // alpha starts at 1
const INIT_ALPHA: i32 = 1 << ALPHA_BIASSHIFT; // biased by 10 bits
const GAMMA: f64 = 1024.0;
const BETA: f64 = 1.0 / GAMMA;
const BETAGAMMA: f64 = BETA * GAMMA;
// four primes near 500 - assume no image has a length so large
// that it is divisible by all four primes
const PRIMES: [usize; 4] = [499, 491, 478, 503];
#[derive(Clone, Copy)]
struct Quad<T> {
r: T,
g: T,
b: T,
a: T,
}
type Neuron = Quad<f64>;
type Color = Quad<i32>;
pub struct NeuQuant {
network: Vec<Neuron>,
colormap: Vec<Color>,
netindex: Vec<usize>,
bias: Vec<f64>, // bias and freq arrays for learning
freq: Vec<f64>,
samplefac: i32,
netsize: usize,
}
impl NeuQuant {
/// Creates a new neuronal network and trains it with the supplied data.
///
/// Pixels are assumed to be in RGBA format.
/// `colors` should be $>=64$. `samplefac` determines the faction of
/// the sample that will be used to train the network. Its value must be in the
/// range $[1, 30]$. A value of $1$ thus produces the best result but is also
/// slowest. $10$ is a good compromise between speed and quality.
pub fn new(samplefac: i32, colors: usize, pixels: &[u8]) -> Self {
let netsize = colors;
let mut this = NeuQuant {
network: Vec::with_capacity(netsize),
colormap: Vec::with_capacity(netsize),
netindex: vec![0; 256],
bias: Vec::with_capacity(netsize),
freq: Vec::with_capacity(netsize),
samplefac: samplefac,
netsize: colors,
};
this.init(pixels);
this
}
/// Initializes the neuronal network and trains it with the supplied data.
///
/// This method gets called by `Self::new`.
pub fn init(&mut self, pixels: &[u8]) {
self.network.clear();
self.colormap.clear();
self.bias.clear();
self.freq.clear();
let freq = (self.netsize as f64).recip();
for i in 0..self.netsize {
let tmp = (i as f64) * 256.0 / (self.netsize as f64);
// Sets alpha values at 0 for dark pixels.
let a = if i < 16 { i as f64 * 16.0 } else { 255.0 };
self.network.push(Neuron {
r: tmp,
g: tmp,
b: tmp,
a: a,
});
self.colormap.push(Color {
r: 0,
g: 0,
b: 0,
a: 255,
});
self.freq.push(freq);
self.bias.push(0.0);
}
self.learn(pixels);
self.build_colormap();
self.build_netindex();
}
/// Maps the rgba-pixel in-place to the best-matching color in the color map.
#[inline(always)]
pub fn map_pixel(&self, pixel: &mut [u8]) {
assert!(pixel.len() == 4);
let (r, g, b, a) = (pixel[0], pixel[1], pixel[2], pixel[3]);
let i = self.search_netindex(b, g, r, a);
pixel[0] = self.colormap[i].r as u8;
pixel[1] = self.colormap[i].g as u8;
pixel[2] = self.colormap[i].b as u8;
pixel[3] = self.colormap[i].a as u8;
}
/// Finds the best-matching index in the color map.
///
/// `pixel` is assumed to be in RGBA format.
#[inline(always)]
pub fn index_of(&self, pixel: &[u8]) -> usize {
assert!(pixel.len() == 4);
let (r, g, b, a) = (pixel[0], pixel[1], pixel[2], pixel[3]);
self.search_netindex(b, g, r, a)
}
/// Lookup pixel values for color at `idx` in the colormap.
pub fn lookup(&self, idx: usize) -> Option<[u8; 4]> {
self.colormap
.get(idx)
.map(|p| [p.r as u8, p.g as u8, p.b as u8, p.a as u8])
}
/// Returns the RGBA color map calculated from the sample.
pub fn color_map_rgba(&self) -> Vec<u8> {
let mut map = Vec::with_capacity(self.netsize * 4);
for entry in &self.colormap {
map.push(entry.r as u8);
map.push(entry.g as u8);
map.push(entry.b as u8);
map.push(entry.a as u8);
}
map
}
/// Returns the RGBA color map calculated from the sample.
pub fn color_map_rgb(&self) -> Vec<u8> {
let mut map = Vec::with_capacity(self.netsize * 3);
for entry in &self.colormap {
map.push(entry.r as u8);
map.push(entry.g as u8);
map.push(entry.b as u8);
}
map
}
/// Move neuron i towards biased (a,b,g,r) by factor alpha
fn salter_single(&mut self, alpha: f64, i: i32, quad: Quad<f64>) {
let n = &mut self.network[i as usize];
n.b -= alpha * (n.b - quad.b);
n.g -= alpha * (n.g - quad.g);
n.r -= alpha * (n.r - quad.r);
n.a -= alpha * (n.a - quad.a);
}
/// Move neuron adjacent neurons towards biased (a,b,g,r) by factor alpha
fn alter_neighbour(&mut self, alpha: f64, rad: i32, i: i32, quad: Quad<f64>) {
let lo = max(i - rad, 0);
let hi = min(i + rad, self.netsize as i32);
let mut j = i + 1;
let mut k = i - 1;
let mut q = 0;
while (j < hi) || (k > lo) {
let rad_sq = rad as f64 * rad as f64;
let alpha = (alpha * (rad_sq - q as f64 * q as f64)) / rad_sq;
q += 1;
if j < hi {
let p = &mut self.network[j as usize];
p.b -= alpha * (p.b - quad.b);
p.g -= alpha * (p.g - quad.g);
p.r -= alpha * (p.r - quad.r);
p.a -= alpha * (p.a - quad.a);
j += 1;
}
if k > lo {
let p = &mut self.network[k as usize];
p.b -= alpha * (p.b - quad.b);
p.g -= alpha * (p.g - quad.g);
p.r -= alpha * (p.r - quad.r);
p.a -= alpha * (p.a - quad.a);
k -= 1;
}
}
}
/// Search for biased BGR values
/// finds closest neuron (min dist) and updates freq
/// finds best neuron (min dist-bias) and returns position
/// for frequently chosen neurons, freq[i] is high and bias[i] is negative
/// bias[i] = gamma*((1/self.netsize)-freq[i])
fn contest(&mut self, b: f64, g: f64, r: f64, a: f64) -> i32 {
use std::f64;
let mut bestd = f64::MAX;
let mut bestbiasd: f64 = bestd;
let mut bestpos = -1;
let mut bestbiaspos: i32 = bestpos;
for i in 0..self.netsize {
let bestbiasd_biased = bestbiasd + self.bias[i];
let mut dist;
let n = &self.network[i];
dist = (n.b - b).abs();
dist += (n.r - r).abs();
if dist < bestd || dist < bestbiasd_biased {
dist += (n.g - g).abs();
dist += (n.a - a).abs();
if dist < bestd {
bestd = dist;
bestpos = i as i32;
}
let biasdist = dist - self.bias[i];
if biasdist < bestbiasd {
bestbiasd = biasdist;
bestbiaspos = i as i32;
}
}
self.freq[i] -= BETA * self.freq[i];
self.bias[i] += BETAGAMMA * self.freq[i];
}
self.freq[bestpos as usize] += BETA;
self.bias[bestpos as usize] -= BETAGAMMA;
return bestbiaspos;
}
/// Main learning loop
/// Note: the number of learning cycles is crucial and the parameters are not
/// optimized for net sizes < 26 or > 256. 1064 colors seems to work fine
fn learn(&mut self, pixels: &[u8]) {
let initrad: i32 = self.netsize as i32 / 8; // for 256 cols, radius starts at 32
let radiusbiasshift: i32 = 6;
let radiusbias: i32 = 1 << radiusbiasshift;
let init_bias_radius: i32 = initrad * radiusbias;
let mut bias_radius = init_bias_radius;
let alphadec = 30 + ((self.samplefac - 1) / 3);
let lengthcount = pixels.len() / CHANNELS;
let samplepixels = lengthcount / self.samplefac as usize;
// learning cycles
let n_cycles = match self.netsize >> 1 {
n if n <= 100 => 100,
n => n,
};
let delta = match samplepixels / n_cycles {
0 => 1,
n => n,
};
let mut alpha = INIT_ALPHA;
let mut rad = bias_radius >> radiusbiasshift;
if rad <= 1 {
rad = 0
};
let mut pos = 0;
let step = *PRIMES
.iter()
.find(|&&prime| lengthcount % prime != 0)
.unwrap_or(&PRIMES[3]);
let mut i = 0;
while i < samplepixels {
let (r, g, b, a) = {
let p = &pixels[CHANNELS * pos..][..CHANNELS];
(p[0] as f64, p[1] as f64, p[2] as f64, p[3] as f64)
};
let j = self.contest(b, g, r, a);
let alpha_ = (1.0 * alpha as f64) / INIT_ALPHA as f64;
self.salter_single(alpha_, j, Quad { b, g, r, a });
if rad > 0 {
self.alter_neighbour(alpha_, rad, j, Quad { b, g, r, a })
};
pos += step;
while pos >= lengthcount {
pos -= lengthcount
}
i += 1;
if i % delta == 0 {
alpha -= alpha / alphadec;
bias_radius -= bias_radius / RADIUS_DEC;
rad = bias_radius >> radiusbiasshift;
if rad <= 1 {
rad = 0
};
}
}
}
/// initializes the color map
fn build_colormap(&mut self) {
for i in 0usize..self.netsize {
self.colormap[i].b = clamp(self.network[i].b.round() as i32);
self.colormap[i].g = clamp(self.network[i].g.round() as i32);
self.colormap[i].r = clamp(self.network[i].r.round() as i32);
self.colormap[i].a = clamp(self.network[i].a.round() as i32);
}
}
/// Insertion sort of network and building of netindex[0..255]
fn build_netindex(&mut self) {
let mut previouscol = 0;
let mut startpos = 0;
for i in 0..self.netsize {
let mut p = self.colormap[i];
let mut q;
let mut smallpos = i;
let mut smallval = p.g as usize; // index on g
// find smallest in i..netsize-1
for j in (i + 1)..self.netsize {
q = self.colormap[j];
if (q.g as usize) < smallval {
// index on g
smallpos = j;
smallval = q.g as usize; // index on g
}
}
q = self.colormap[smallpos];
// swap p (i) and q (smallpos) entries
if i != smallpos {
::std::mem::swap(&mut p, &mut q);
self.colormap[i] = p;
self.colormap[smallpos] = q;
}
// smallval entry is now in position i
if smallval != previouscol {
self.netindex[previouscol] = (startpos + i) >> 1;
for j in (previouscol + 1)..smallval {
self.netindex[j] = i
}
previouscol = smallval;
startpos = i;
}
}
let max_netpos = self.netsize - 1;
self.netindex[previouscol] = (startpos + max_netpos) >> 1;
for j in (previouscol + 1)..256 {
self.netindex[j] = max_netpos
} // really 256
}
/// Search for best matching color
fn search_netindex(&self, b: u8, g: u8, r: u8, a: u8) -> usize {
let mut bestd = 1 << 30; // ~ 1_000_000
let mut best = 0;
// start at netindex[g] and work outwards
let mut i = self.netindex[g as usize];
let mut j = if i > 0 { i - 1 } else { 0 };
while (i < self.netsize) || (j > 0) {
if i < self.netsize {
let p = self.colormap[i];
let mut e = p.g - g as i32;
let mut dist = e * e; // inx key
if dist >= bestd {
break;
} else {
e = p.b - b as i32;
dist += e * e;
if dist < bestd {
e = p.r - r as i32;
dist += e * e;
if dist < bestd {
e = p.a - a as i32;
dist += e * e;
if dist < bestd {
bestd = dist;
best = i;
}
}
}
i += 1;
}
}
if j > 0 {
let p = self.colormap[j];
let mut e = p.g - g as i32;
let mut dist = e * e; // inx key
if dist >= bestd {
break;
} else {
e = p.b - b as i32;
dist += e * e;
if dist < bestd {
e = p.r - r as i32;
dist += e * e;
if dist < bestd {
e = p.a - a as i32;
dist += e * e;
if dist < bestd {
bestd = dist;
best = j;
}
}
}
j -= 1;
}
}
}
best
}
}